
Ka
yp
roJ
ou
rna
l

..,_

Ka
yp
roJ
ou
rna
l

S-BASIC ©

A Language Facility

For CP/M© and its Derivatives

Copyright 1979, 1980
All rights reserved worldwide

By KAYPRO Division, Non-Linear Systems
533 Stevens Avenue

Solana Beach, CA 92075

CP/M is a Registered Trademark of Digital Research.

Ka
yp
roJ
ou
rna
l

S-BASIC, first revision, January 1983
S-BASIC, second printing, May 1983

Ka
yp
roJ
ou
rna
l

End usar•s cooy of Licansa. For information only. uo not fill out.

COMPUTER PROGRAM END USER UCEHSE AGREl!MENT

AGREEMENT t:Jetween Topaz Programming ot
TOPAZ and ot

I1ereinafter referred 10 as ENO USER LICENSEE.

San Diego. Cahforn1a . . . as licensor I,erematter referred to as

RECITALS· TOPAZ develops proprietary computer programs and licenses the distribution and use of said programs. S-BASIC Is a trademark"'
TOPAZ and is the designation used by TOPAZ tor its language compiler package of computer routines. An S-BASIC UNIT ot TOPAZ material shall
consist of a diskette containing a CP.1M compa1a1:11e copy of S-SASIC. a user·s relerence manual. and tour copies of the END USER LICENSEE
agreement. CPIM is the trademark of Digilial Research Corporation. TOPAZ product materials include. IN! are not l1m1led to. manuals, license
agreements. proprietary compute, programs. and media upon wn1ch TOPAZ's prop_rietary computer programs are recorded.

GRANT OF LICENSE: Subject to the terms and conamons of this agreement TOPAZ grants ro ENO USER LICENSEE a non-exclusive. non­
lranslerable license for lhe use of S-BASIC, and its companion reference manual.

TERMS AND CONDtTION8

ARTICLE I. EXCLUSIVE SOURCE. END USEFI LICENSEE shall otilain all TOPAZ product materials t11roug11 TOPAZ or an authonzea LICENSEE
and no 011,er source. ENO USER LICENSEE shall make no c~ies ot any kind or any Portion or the materials lurnishea unless specifically autt,orizea
to do so In writing signed by an officer or TOPAZ or otherwise specifically pennitled by a prov1s1on of this license agreemenl.

ARTICLE 11. LIOUIOATEO DAMAGES. ENO USER LICENSEE recoga1zas that TOPAZ has expended considerable time and e•pense to develop
TOPAZ's producrs and TOPAZ would be damaged by unauthorized copying or reproduction of TOPAZ's product materials. tn t11e evenl ENO USER
LICENSEE breacnes this agreement by unauthorized copying or reproducing of TOPAZ's prOduct material ENO USER LICENSEE agrees 10 pay
TOPAZ as liquidated damages, the sum of SS.000 (Five Thousand Dcllarsl tor each occurance ot the unauthro1zed act of copyi~g or reproducing ot
TOPAZ product materials,

ARTICLE Ill. AACHIVAL COPIES. ENC USER LICENSEE may make archival copies of those ponions ol TOPAZ'S product(sl that are provided on
machine readatile media, provided such copies are for the ENO U$ER LICENSEE'S personal use and that no more than one sucll copy 1s In use at

any time except as provided in ARTICLE IV of this agreement. ENO USER LICENSEE agrees 10 label each arhival copy wilh a readable reproduction
of TOPAZ'S copyright notice. product name. and ENO USER serial number as fumished wilh the vended media. Failure to so label each archival copy
shall be considered a breach ct ARTICLE II under the terme ot which liquidated damage1 are due.

ARTICLE IV. MULTIPLE COPY USE. TOPAZ uee licenus are applicable to a single computer installation. In lhe event that ENC USER LICENSEE
should dNire 10 use TOPAZ product or any Portion thereof in more than one compUter, the required tee for each such use must be pa1a. In the event
lhal ENO USER LICENSEE wishes to incorporate all or any~a,t of TOPAZ's prOducts in an ENO USER LICENSEE sys1em or prodi.ict to be sold, an
APPLICATIONS LICENSE must first be obtained from TOPAZ. The required license fN must be paid for each such insiance of use. and the required
regisrration procedure must be followed.

ARTICLE V. REWAAO FOR INFORMATION LEADING TO SUCCESSFUL PROSECUTION. In the event any party, including ENO USER 1..ICENSEE.
s11ould provide 1ntormat1on 10 TOPAZ that leads to successful prosecution and recovery of liquidated damages due 10 unautnorized reprOduction of
TOPAZ proeluct materials, TOPAZ will pay 1ne sum ot $2,000 to the provider of such infom,ation. The dec1s10n to pursue tegal ac,ion sl'lall be at 1I,e
sote option of TOPAZ. Furthermore. any sum paid will only be paid once, and in the event of multiple claimants. will be dislributed .111ne S<.'I• a11ere­
tion ot TOPAZ.

ARTICLE VI. LIMITED WARRANlY POLICY. TOPAZ wal'!'ants that all materials tumishect by TOPAZ to ENO USER LICENSEE is an accurate
manufacture of TOPAZ product and will replace any such TOPAZ furniShed material found 10 be defective. provided such defect 1s found pnor to or
within 1en days of purchase by ENO USER LICENSEE. However, TOPAZ makn NO express or implied warranty ol any kind with regard to perfor­
mance or fitness ror any pa,ticular purpose tor any TOPAZ product by any user. Furthermore. TOPAZ IS NOT RESPONSIBLE lor any Loss or inac­
curacy of data ct any kind or lor any conNQuential damages resulling u,.,etrom wnether 1nrougn TOPAZ's negligence or not. TOPAZ wall not honor
any warranty where TOPAZ prOCluct ha been subjected to pnyeical abuse or uNd in defective or non-compalible eQuipment. TOPAZ will no1 honor
any e•p,ns or implied warranty of any kind with regard to performance or fitneu for any purpose for any TOPAZ product maae by any DEALER.

ARTICLE VII. UPDATE POLICY. TOPAZ may. from time 10 lime, revise the partonnanca of its products and the content of its documant311on. I! is
TOPAZ's in1enuon to provide such reviSions to END USER 1.lCENSEES al nominal cosr through TOPAZ DEALER LICENSEES and DISTRIBUTOR
LICENSEES. However. nothing in this AATICLE nor any other Portion of tna Agreement shall be construed to mean thal TOPAZ. is obliged to alter it"s
prOClucts in any way, or to furnien such alteration, if made. to any party.

ARTIC1.E VIII. GOVERNING LAW. This agreement snall be int9f?rated in accordance with the .laws of the State of Califomia. In u,e event any part
or this Agreement is invalidated by court or legislative action, the remainder ct this Agreement shall remain in binding effect.

ARTICLE IX. LEGAL FEES. In the event of legal action to entorce the provisions of this agreement or secure damages as may result from a breach
ol t11is agreement, tne prevailing party shall be entitled to reuonatile attorney's INS, and his cosis"in addition lo any other amounts awarded by the
court.

ARTICLE X. WAIVER. The failure of TOPAZ IC insiSt, in any one or more instances, upon a strict performance ot any of tna provisions of mis agrff,
ment, or to exarciee any option herein contained. shall not be consi•ed as a waiver or retinQu1shmen1 for tile future concerning said provision or
option, but the same snall conlinue and remain in force or effect. The failure or TOPAZ to pursue its remedies or assert its rig1ns upon notice of me
breach of any ot the terms of this agreement by the END USER LICENSEE shall not constitute a waiver of suet, rights or remedies with respect 10 the
same or any other breach.

ARTICLE XI. TERMINATION FOR MATERIAL BREACH. In Iha event of a material breach of the terms of ttus agreement by ENO USER LICENSEE
TOPAZ may. at its option. withdraw Iha license granted ENO USEFI LICENSEE and require the immediate retum of all TOPAZ material and all copies
of TOPAZ material. In no event will TOPAZ be liao1e lor consequential damages due to ·termination even ii TOPAZ has been aav1Hd of Iha po5510I1tty
of SUCll dam119es.

ARTICLE XII. IMPAOVEMENTS AND PATCHES. Any improvements or patChN to TOPAZ programs made by ENO USER LICENSEE or at lus d1rec,
tion shatl beeorne the exclulfve property ot TOPAZ. excapt u may be provideO in this licensing agreement. ENO USER LICENSEE Shall provide
copies of any such improvements or patches within ten days of a written raQUNC from TOPAZ for such material. Copies as may oe rttQuasted by
TOPAZ must be in a torm or on media immediately usable by TOPAZ and not require transcription. ENO USER LICENSEE providing improvements .:.r
patches to any S.SASIC program material shall have tna right 10 u• nirnaetf such improvements or patchee at no extra charge by TOPAZ.

ARTICLE XIII. ENTIRE AGAEEMENT. This A9t'Nfflent conatitu&ea the entire ql'Nffl8ftt batween the parties and superledes any prior agrNments.

Ka
yp
roJ
ou
rna
l

PREFACE

This S-BASIC user's Guide was written in two parts: a Beginner's
S-BASIC section, and an S-BASIC Reference section, each section
having a separate index at the back of the User's Guide. It is
recommended that, if you have never programmed a computer before
or if you are not familiar with BASIC computer languages, you
read through the Beginner's Manual and try the example programs.
The S-BASIC Reference Manual provides a more complete and
technical description of S-BASIC for those already familiar with
BASIC programming and also for those who have completed working
with the Beginner's Manual and who want to learn more details of
S-BASIC programming.

Ka
yp
roJ
ou
rna
l

TABLE OF CONTENTS

Chapter 1 YOURS-BASIC DISKETTE

Chapter 2 FUNDAMENTALS OF S-BASIC PROGRAMMING

Chapter 3 LEARNING SOMES-BASIC STATEMENTS

Program l
Program 2
Program 3

Chapter 4 MORE ABOUT THE PRINT STATEMENT

The REM and COMMENT Statements
Printing Strings
INPUT Strings

Chapter 5 WORKING FURTHER WITH THE LET AND VAR
STATEMENTS

1

3

6

6
7
8

9

10
11
11

13

Table of Precedence 14
The VAR Statement 14

Different Forms of the INPUT Statement 17

Chapter 6 THE IF ... THEN, GOTO, AND GOSUB STATEMENTS 19

The IF ... THEN Statement
The BEGIN ... END Statement
The GOTO Statement
The GOSUB Statement

Chapter 7 THE REPEAT ... UNTIL, WHILE ... oo, CASE, AND

19
20
22
22

FOR ... NEXT STATEMENTS 24

The REPEAT ... UNTIL Statement
The WHILE ... DO Statement
The CASE Statement
The FOR ... NEXT Statement

Chapter 8 THE FUNCTION AND PROCEDURE STATEMENTS

FUNCTIONS
PROCEDURES

24
24
26
27

29

29
30

Ka
yp
roJ
ou
rna
l

Chapter l

YOURS-BASIC DISKETTE

A diskette is used to hold information. This stored information
is called a file. A disk can hold a number of files, depending
on how much information is in each file.

To use S-BASIC in your computer, you will use two diskettes:

* A word processor/text editor disk, which will be the disk
with which you write your programs.

* AS-BASIC disk, which has only S-BASIC and blank programming
space on it.

You will make the S-BASIC diskette by copying part of your CP/M
S-BASIC disk onto a blank, formatted disk.

1. Turn on your computer.

2. Put the disk marked CP/M S-BASIC in drive A. You will see A>
on your screen. This is the prompt and is waiting for you to
enter something on the keyboard.

3. Put a blank, formatted disk in drive B. {Note: If you don't
know how to FORMAT a blank disk, refer to your computer's User's
Guide).

4. Enter the following, pressing RETURN after each line. You
will see an asterisk (*) appear when your computer is ready for
the next line.

A>PIP
*B:=A:SBASIC.COM[OV]
*B:=A:OVERLAYB.COM[OV]
*B:=A:BASICLIB.REL[OV]
*B:=A:USERLIB.REL[OV]
*

5. Press RETURN. Your S-BASIC diskette is now completed.

6. Take the diskette out of drive B, and label it: S-BASIC

You now have the diskette you need to begin learning how to
program in S-BASIC computer language.

1

Ka
yp
roJ
ou
rna
l

The above instructions are in a generalized form. If you have
any trouble, please refer to your computer's User's Guide for
more information.

It would also be advisable for you to study your word processor/
text editor User's Guide and practice using it until you are
familiar with it. Then, go onto the next chapter in this manual
to begin learning S-BASIC.

2

Ka
yp
roJ
ou
rna
l

Chapter 2

FWNDAHENTALS OF S-BASIC PROGRAMMING

In the last chapter, we explained that a diskette holds
information in the form of files. Now, we will be more
specific, and explain the filename.

The first part of a filename lets the computer know which drive
holds the diskette with the file you want to use. If the file
you want is on the diskette in drive B, then B: would be the
first part of its filename. Similarly, if the file you want is
on the diskette in drive A, then A: would be the first part of
its filename. To avoid confusion, it is a good idea to always
include the first part of the filename when entering any file
into your computer. For example, if you enter B:TRYOUT.BAS your
computer knows to look for that file in drive B.

The second part of the filename is the actual name part. It can
be up to eight letters long. In the filename B:TRYOUT.BAS, the
name is TRYOUT.

The last part of the filename is the extent. The extent may be
up to three letters long. When you are writing programs in
$-BASIC, your original files will have filenames with the extent,
BAS. It is important to put a period (.) between the name and
the extent in a filename, so your computer can tell them apart.
Other extents you will become familiar with while using S-BASIC
are BBX and COM. The extent, COM, is a special case in itself.
When a filename has an extent of COM, you don't need to include
it in the filename when you tell the computer to get (call up)
that file. For example, if you had a file with the filename,
B:TRYOUT.COM, then all you would have to enter to call up this
file would be B:TRYOUT.

To illustrate this, let's write a short program in S-BASIC.

1. Turn on your computer.

2. Put your word processor/text editor disk in drive A.

3. Put the S-BASIC disk you made in the last chapter in drive B.
You should see a prompt, A>, on your screen.

3

Ka
yp
roJ
ou
rna
l

4. Create a new file with your word processor/text edit. Name
the file: B:TRYOUT.BAS Remember that you need to include BAS as
your filename's extent whenever you write an S-BASIC program.

5. Type the following into the file, B:TRYOUT.BAS:

PRINT "This is my first S-BASIC program."

Press the RETURN key at the end of the line.

This demonstration program uses the PRINT statement, which tells
the computer to print on the screen whatever is in quotation
marks following the PRINT statement.

6. Now, save this program on your diskette in drive B.

7. Quit the word processor/text editor, and return to the CP/M
operating system.

8. To use this program, type B: and press the RETURN key. This
will change the prompt, A> to B>.

9. Then, enter: SBASIC TRYOUT.BBX
Press RETURN.

The extent BBX contains useful information in each of its
letters:

* The first letter indicates which drive holds the diskette
storing the program you wrote.

* The second letter indicates which drive holds the diskette
which will receive the finished program.

* The third letter tells the computer where to list the program
(X = screen, Y = printer, and z = no listing). The third letter
can also tell the computer to create a file of the program
listing on the diskette in either drive (B = drive B, A= drive
A) under a filename with the extent PRN. For example, if you had
entered SBASIC TRYOUT.BBB above, then the computer would have
listed the program, not on the screen, but in the file TRYOUT.PRN
on the diskette in drive B.

Entering SBASIC TRYOUT.BBX started the computer translating
your program into a language that the computer understands. The
computer, complex machine that it is, only understands electronic
signals. So there is a stepladder of increasingly-compacted
languages connecting the computer to you, the programmer. The
simple statement PRINT, which you used in your first program,
eventually expands into a long string of electronic signals that

4

Ka
yp
roJ
ou
rna
lI

your computer can understand. To change your program into this
long string of signals (called machine language), S-BASIC uses a
"compiler."

You will see your program written on the screen and the message
will appear:

******End of program******

Then, the computer will begin compiling your program into machine
language. It will take a while for the computer to compile your
programs, especially as they become longer and more complex.
When it is done, you'll see on the screen:

Compilation complete

Now, you're ready to run your first program.

10. Type in: B:TRYOUT. Notice that you didn't have to type in
the extent part of the filename (the full filename is B:TRYOUT.COM),
because after a BAS files is compiled into machine language, it
is put in a COM file. COM stands for COMMAND and means that the
file is written in machine language and can run directly on the
computer.

Now press the RETURN key. On the screen you 1 ll see:

This is my first S-BASIC program.

Congratulations, you have written your first S-BASIC program!

In summary, in this chapter you have learned that you need to
store your programs on the S-BASIC diskette in drive B, using the
extent BAS so that your filename will resemble the form,
B:NAME.BAS where NAME is the name you have chosen for your
program's filename. To start the compilation of your file into
machine language, you change the prompt A> to B>, and then enter:
$BASIC NAME.BBX. To run your program, you enter: B:NAME. You
have also been introduced to the PRINT statement.

So, now that you know the fundamentals of the programming process,
you are ready to learn more in the following chapters of the
statements that make $-BASIC such a powerful programming tool for
your computer.

5

Ka
yp
roJ
ou
rna
l

Chaptec J

LEARNING SOMES-BASIC STATEMENTS

In this chapter, you will be introduced to some S-BASIC
statements by writing three sample programs on your computer.

Program 1

1. First create a new file with your word processor/text editor,
called: B:SAMPLEl.BAS.

2. Enter the following program. Remember to press the RETURN key
after each line, including the last line:

VAR X,Y,Z=REAL
LET X=2
LET Y=3
LET Z=X+Y
PRINTZ

The first statement VAR stands for variable and lets the computer
know that you are using certain characters that will later stand
for numbers. In this case X, Y, and z will get numerical values
in the next few lines. Think of X, Y, and Z as Post Office Boxes
into which you put pieces of paper with numbers written on them.

The second line introduces the LET statement. Here you are
telling the computer to make X equal to 2 {to store a piece of
paper with the number 2 on it in P.O. Box X).

In the third line, you use the LET statement to make Y equal
to 3 (to store the number three in P.O. Box Y).

The fourth line uses the LET statement to make z equal to X and Y
added together. And, since you have already told the computer
that X=2 and Y=3, X plus Y is just another way of saying 2 plus
3, or 5.

The fifth and final line tells the computer to PRINT z on the
screen. So, when you run this program, what will appear on your
screen is the number value of z--in this case, 5.

Try running this program now.

6

Ka
yp
roJ
ou
rna
l

3. Remember that you must first save your program.

4. Then, when the file is written on the diskette, exit to the
CP/M operating system.

5. Type B: and press the RETURN key to change the prompt A> to
B>.

6. To tell the computer to compile the program into a language
that the computer can understand, enter: SBASIC SAMPLEl.BBX. You
have to do this after each new program that you write before you
can run it.

We will assume from now on that you know how to perform these
steps after writing a new program. When you have done all of
this, run your program by entering: B:SAMPLEl

The number 5 will appear on the screen. And this is exactly what
was expected. Z was printed, and Z=X+Y, with X=2 and Y=3.

The next program will be almost the same as the last, except that
you'll learn how to use the INPUT statement.

Program 2

Create a new file called B:SAMPLE2.BAS and enter the following
program:

VAR X,Y,Z=REAL
LET X=S
INPUT Y
LET Z=X+Y
PRINTZ

In this program, you once again used the VAR statement to tell
the computer you are using the characters X, Y, and Zand that
they will later stand for certain numbers.

Line two says that X will be set equal to 5.

Line three introduces the INPUT statement, which you will see
demonstrated below.

Line four makes z equal to X plus Y. In fact, the only major
difference in this program from the last one is that you do not
tell the computer in the program what the character y equals.
The third line will take care of this, as you will see.

- 7 -

Ka
yp
roJ
ou
rna
l

Get ready to run this program. You will see a question mark (?)
appear on the screen. This is how the computer asks what you
want to input. In this case, you know from the program'that
INPUT is waiting for you to enter a numerical value for Y. If,
for example, you enter 7 and press the RETURN key, the computer
will print 12. That is, your program tells the computer to
PRINT z, and Z=X+Y with X=S and Y equal to whatever number you
input, which was 7 this time, so Y=7. Z=X+Y or z equals 5 plus
7. The answer, in this case, is 12. Experiment with this
program by running it and inputting different numbers for Y.

Program 3

This program will use two INPUT statements and multiply numbers
together instead of adding them, as you did with the first two
programs.

Create a new file called B:SAMPLE3.BAS and enter the following:

VAR X,Y,Z=REAL
INPUT X
INPUT Y
LET Z=X*Y
PRINTZ

Lines two and three are INPUT statements, one for the value of X
and one for the value of Y.

Line four is making z equal to X times Y. The asterisk sign (*)
is what you use between numbers or characters to multiply them
together. Note that line four had to come after the lines that
tell the computer what X and Y will equal, because the value of z
depends on the computer knowing the values of X and Y before it
can compute what z will be.

Line five will simply print Z, which is the result of
multiplying X times Y.

Run this program, and you will see a question mark (?). Enter the
number 3, and press RETURN. This is the X number value. You'll
then see another question mark (?). Enter 4, and press RETURN.
This is the Y number value. The computer should print 12 on the
screen; that is, the product of 3 times 4. Play around with
running this program for a while until you are familiar with it.

So, in this chapter, you have used some fundamental statements:
VAR, LET, PRINT, and INPUT. In the next chapter, you will become
more familiar with the PRINT statement.

8

Ka
yp
roJ
ou
rna
l

Chapter 4

MORE ABOUT THE PRINT STATEMEI'NT

You used the PRINT statement in programs in the last chapter to
print a number on your screen. You can print a list of numbers
also, and how they will look on your screen depends on what
punctuation mark you use to separate what you want to print. The
following program will help to illustrate this. Create a file

called B:PRINTl.BAS. Then, enter the program:

VAR A,B,C,D,E=REAL
LET A=l
LET 8=2
LET C=3
LET 0=4
LET E=S
PRINT A;B;C;D;E
PRINT A,B,C,D,E

The first six lines simply tell the computer what the values of
A, B, C, D, and E will be. Lines seven and eight look almost the
same, except that semicolons (;) are used in line seven to
separate what is to be printed, and commas {,) are used in line
eight to separate what is to be printed. The effect this has on
what you will see on the screen of your computer will be easy
to see if you run this program. Do so now.

You can see by having run the program that a semicolon (;)
separates the numbers with a blank space, that is, if the number
is positive. If the number is negative, then there would be a
minus sign {-} before the number in place of the space. The
comma (,} separates the numbers by a number of blank spaces.
What the comma (,) in a PRINT statement does, in fact, is TAB 15
blank spaces between what you want printed, thereby spacing what
is printed into columns.

You can use the PRINT statement to print equations on your
screen. The following demonstration program will help to
illustrate this. Call it B:PRINT2.BAS. Enter the program:

9

Ka
yp
roJ
ou
rna
l

VAR A,B,C=REAL
LET A=20
LET B=3
LET C=A+B
REM This will print an equation.
PRINT A;" +";B;" =";C

This program uses a feature of the PRINT statement that prints
material enclosed in quotation marks following a PRINT statement.
Note the use of the semicolons (;). Run the program and see what
happens.

You will see: 20 + 3 = 23. So, not only were the number values
of A, B, and C printed, but also the plus (+) and equal sign (=),
which were enclosed in quotation marks in the line containing the
PRINT statement.

The REM and COMMENT Statements

Notice that, in the sixth line of the above program, you used the
REM statement, which stands for REMark. This statement allows
you to put a single line remark into the body of your program to
remind you of what's going on in this part of the program.

For the same purpose, you can also use the COMMENT statement,
which allows you to insert multiple line comments into the body
of your program. COMMENT statements are used in the following
general manner:

COMMENT
This is a comment, which can be any number of
lines long and can contain all characters:
J#$%A&*{) and so on ... It is used to remind the
programmer something about a certain portion
of a program, and, as you can see, it can go
on and on and on and on ••...••...••..••...••
END

The COMMENT statement must have an END statement after the text
of the comment is written. Now, it is important to understand
that the REM and COMMENT statements appear only in the body of
your program but will not be printed on the screen when you run
the program.

- 10 -

Ka
yp
roJ
ou
rna
l

Printing Strings

Not only will the PRINT statement print single characters on your
screen, but it will also print groups of characters. we call
this group of characters a string. To do this, enclose the
characters you want to appear on your computer's screen in double
quotation marks. Into a program file called B:PR!N~;.BAS, enter
the following:

VAR A,B=REAL
LET A=4
LET B=A*A
PRINT "This program will multiply four times itself."
PRINT
PRINT A;" times";A;" equals 11 ;B

Notice that the fifth line of this program is simply a PRINT
statement, which produces a blank line on your screen when the
program is run.

Also notice that in this and the last program, a blank space is
included in the quotation marks before the word we want printed.
This is because, when we print a string, there is a space
automatically inserted after what you put in quotation marks, but
not before. In other words, if the sixth line of the above
program had been: PRINT A;"times";A;"equals";B , then what would
have appeared on your screen would have been:

4times 4equals 16

INPUT Strings

The INPUT statement can also have strings after it. Write the
following program to see what happens. Call it: B:PRINT4.BAS
Enter the program:

VAR A,B=REAL
PRINT "This program multiplies numbers times themselves."
INPUT "What number do you choose";A
LET B=A*A
PRINT A;" times";A;" equals";B

When you run this program, you will see the material in the
quotation marks following the PRINT statement in line two printed
out along with the material in the quotation marks following the
INPUT statement (plus a question mark) in line three. This is
called a prompt. After you enter a number and press the RETURN

11

Ka
yp
roJ
ou
rna
l

key, the multiplication will be performed, and you will see the
results. If you choose the number 3, it should look like this;

This program multiplies numbers times themselves.
What number do you choose?3
3 times 3 equals 9

So, in this chapter, you have looked deeper into uses of the
PRINT statement. In the next chapter, you will learn more about
the LET and VAR statements.

12

Ka
yp
roJ
ou
rna
l

Chapter 5

WORKING FURTHER WI'l'I'H THE LET AND VAR STATEMENTS

You've been using the LET statement in most of the programs
you've written so far. For example, you've written: LET Z=X+Y.
The statement LET, however, is optional. You don't really need
it for the statement to work. In other words, you could have
written the above statement as Z=X+Y, and it would have worked
just as well. From now on, we'll be writing LET statements
without the LET at the start of the line.

You can write multiple operations {that is, addition, subtrac­
tion, multiplication, division, and so on) within a LET state­
ment, but the computer will carry out certain operations before
it will do others. For instance, if you write the line,
Z=X+(Y-A), into a program, the computer will do what's in the
parentheses before it does anything else. In other words, the
computer will subtract A from Y before it adds the result of this
subtraction to X.

The way in which the computer decides which operations come
before others in a statement is called the rules of precedence.
The table below gives these rules. The operations described on
line 1) are performed by the computer before those operations in
line 2), and those in line 2) are performed by the computer
before the operations described in line 3), and so on. That is,
the operations in line l} have precedence over those in line 2).
The operations which are on the same numbered lines below have
equal precedence, meaning the computer won't try to perform one
before the other.

13

Ka
yp
roJ
ou
rna
l

Table of Precedence

1) operations enclosed in parentheses
2) A or** (exponentiation)
3) making a number positive or negative (+or-)
4) * (multiplication) and/ (division)
5) + (addition) and - (subtraction)
6) = (equals), < (less than), > (greater than}, <= (less

than or equal to),>= (greater than or equal to), and
<> or t (not equal to)

7) logical operations (NOT, AND, OR XOR, IMP, and EQV)

The VAR Statement

The work you have done with the VAR statement in the programs
you've already written has so far dealt only with one variable
type: REAL. There are, however, six variable types that you can
use in S-BASIC programming. They are:

* REAL
* REAL.DOUBLE
* FIXED
* INTEGER
* STRING
* CHAR

1. The REAL variable type lets you use numbers with
approximately 6 digits of accuracy, with a decimal point
"floating" (that is, the decimal point positioned somewhere in
the six digits). For example:

2 .. 457 .00201 98.32 -4.1212 675.301

If the number is larger than 6 digits, then scientific notation
is used to represent the number. For example:

5.123E+l2 6.321E-7 2.7314E+ll

E means "times ten to the power of." The first example above,
for instance, would stand for 5.123 times ten to the twelfth
power. The range of the exponent following the Eis
approximately +38 to -38.

14

Ka
yp
roJ
ou
rna
l

2. The REAL.DOUBLE variable type is the same as the REAL
variable type, except that numbers can have approximately 12
digits of accuracy, instead of 6. For example:

1.34567945628

The above number would be accepted as a number of the REAL.DOUBLE
variable type, but, if you tried to use it as a number of the
REAL variable type, it would be rounded off to:

1.34568

3. The FIXED variable type was designed for use when working in
a dollars and cents format. You can use numbers with up to 8
digits to the left of the decimal point and 3 numbers to the
right of the decimal point, although only 2 numbers to the right
of the decimal point will be displayed. For example:

5.75 250.05 236.74 27431617.99

When a FIXED variable type number is printed, it is automatically
formatted so that all decimal points will line up, which makes it
useful for long lists of numbers. If a number is entered which
is too large or small, an error message is given. You can use a
number that has 3 digits to the right of the decimal point, but
this will get rounded off to 2 digits when displayed by the
computer using the PRINT statement.

4. The INTEGER variable type lets you use an integer (that is, a
positive or negative number with no decimal point) in the range
of: +32767 to -32767. If you use a number more positive or
negative than these, it will simply wrap around in this range.
For example, if you use a number bigger than 32767, this will
wrap around into -32767 and upwards. You can aiso use hex
numbers (hexadecimal numbers are base 16 numbers) in the INTEGER
variable type. The last digit of the hex number must be an H.
For example:

0A6FH or 3CFH

5. STRING is a non-numeric variable type that may contain any
group of characters (except 00H) up to 80 characters long. You
can extend or shorten this length, using the VAR statement, as
will be described below. Strings are entered either enclosed in
double quotation marks or by pressing the RETURN key after typing
them in.

15

Ka
yp
roJ
ou
rna
l

6. The CHAR variable type is a single character that can be
entered either as a number (decimal or hexadecimal) or as a
character enclosed in single quotation marks. For example:

5 12 'q' 0BH Ip' 2FH

The VAR statement is used to establish what type a variable will
be. The VAR statement should be close to or at the top of any
program you write and always has to be before any LET or other
statements that use the variables you want to specify.
Generally, a VAR statement will resemble the following form:

VAR <name>=<type>

For example:

VAR X=REAL
VAR A=REAL.DOUBLE
VAR ACCOUNT=INTEGER
VAR YOURNAME=STRING

You can also name more than one variable of the same type in a
VAR statement. For example:

VAR X,Y,Z=INTEGER

To avoid confusion, you should be careful not to mix variable
types. For instance, you may write a program starting with:

VAR A,B=REAL
VAR X=INTEGER
A= 2.118
X = 5 + A

In the third line of the above program, A equals 2.118. The
fourth line makes X equal to 5 plus A, but X has been designated
as an INTEGER in line two, so that A is converted into an integer
so the operation X = 5 + A can be performed. Therefore, the
three digits to the right of the decimal point of A are dropped,
and you lose that much accuracy. Or, if A had been too large a
number, conversion into an integer could cause problems. Again,
to avoid confusion and errors, don't mix variable types.

16

......1

Ka
yp
roJ
ou
rna
l

To understand the VAR statement further, write the following program.
Call it: B:VARTYPE.BAS. Enter the program:

VAR X=REAL
VAR Y=REAL.DOUBLE
VAR A,B,C=FIXED
VAR !=INTEGER
VAR YOURNAME=STRING
VAR RESPONSE=CHAR
INPUT2 "Enter a five digit number and see what happens.";X
INPUT2 "Enter a longer number.";Y
INPUT2 "Enter a dollar and cents figure.";A
INPUT "Another dollar and cent figure";B
INPUT2 "Enter an integer.";!
INPUT "What's your name";YOURNAME
INPUT "What's your response character";RESPONSE
C = A + B
PRINT "This is your REAL number", X, YOURNAME
PRINT "This is your REAL.DOUBLE number", Y, YOURNAME
PRINT "These are your dollar and cent figures:"
PRINT A
PRINT B
PRINT "Added together:"
PRINT C
PRINT "This is your integer", I, YOURNAME

PRINT "And your response, ";YOURNAME;", is: ";RESPONSE

The above program is a massive program, because all the variable
types are used. This is an example program only, and when you
write programs, it would be best to select only those variable
types that are necessary for a particular program.

Note that, when you enter an input for a CHAR variable type, as
for the variable RESPONSE above, you don't need to press the
RETURN key. For all other variable types, you have to press
RETURN after you enter your input.

Play around with this program for a while until you become more
familiar with the six variable types.

Different Forms of the INPUT Statement

Notice that some of the INPUT statements in the above program
have a 2 after them. There are four options for using the INPUT
statement:

1. INPUT - generates a question mark and returns to the next

17

Ka
yp
roJ
ou
rna
l

line on the screen after an input has been entered.

2. INPUTl - generates a question mark but doesn 1 t return to the
next line after an input is entered.

3. INPUT2 - no question mark is generated but does return to the
next line after an input is entered.

4. INPUT3 - no question mark is generated and no return to the
next line after an input is entered.

So, in this chapter, you have been introduced to the six variable
types as well as the rules of precedence for LET statements. In
the next chapter, you'll learn some statements that redirect the
flow of execution of a program.

18
I

J

Ka
yp
roJ
ou
rna
l

Chapter 6

THE IF •.• THEN, GOTO, AND GCOSUB STATEMENTS

An S-BASIC program normally is executed from one line to the
next. For example, say you have written the following program:

VAR X = STRING
VARY= INTEGER
INPUT 11What is your name 11 ;X
INPUT "What year were you born in";Y
Y = 1983 - Y
PRINT "So, ";X;", you are";Y;" years old, right?"

The way the computer will execute this program, once you have
compiled and are running it, is to execute the first line, and
then go on to the second line. After executing the second line,
it will go on to the third, and so on.

This normal flow of execution can be controlled and redirected,
using a variety of statements. The first such statement we'll
look at is the IF ... THEN statement.

The IF ... THEN Statement

Create a new file called: B:IFTHENl.BAS. Enter the following
program:

VAR X = STRING
VAR Y,Z = INTEGER
INPUT "What is your name";X
INPUT "What year were you born in";Y
Y = 1983 - Y
PRINT "So, ";X;", you are";Y;" years old, right? 11

INPUT 11In the year 2000, you'll be how many years old 11 ;z
IF Z = Y+l7 THEN PRINT 11Right! 11

Run the program a few times using different answers to the third
INPUT statement. You'll notice that when you answer correctly
the word Right! will be printed, but when you answer
incorrectly, Right! isn't printed. This is because of the
IF ... THEN statement.

For instance, say you input the following:

1.9

Ka
yp
roJ
ou
rna
l

What is your name? Bowb
What year were you born in? 1958
So, Bowb, you are 25 years old, right?
In the year 2000, you'll be how many years old? 42
Right!

In this case Y = 1983 - 1958, which equals 25. The last line of
your program is saying that IF Z = Y+l7, THEN PRINT "Right!" So,
if your input for z equals Y+l7 (25+17 or 42), then the word
Right! will be printed. If your input for Z does not equal Y+l7,
then Right! won't be printed.

There is another statement that can be used with an IF ... THEN
statement, and that is the ELSE statement. Call up the last
program file you created (B:IFTHENl.BAS), and change it as
follows:

VAR X = STRING
VAR Y,Z = INTEGER
INPUT "What is your name 11 ;X
INPUT "What year were you born in";Y
Y = 1983 - Y
PRINT "So, ";X;", you are";Y;" years old, right? 11

INPUT "In the year 2000, you'll be how many years old";Z
IF Z = Y+l7 THEN PRINT "Right!" ELSE PRINT "Wrong!"

Only the last line has been altered by adding the ELSE statement.
Run the program a few times and see what happens. Input
different answers for the third INPUT statement. You will see
that, if your input satisfies the conditions of the IF ... THEN
statement, then the word Right! will be printed, but if your
input doesn't satisfy these conditions, then the ELSE statement
will be implemented, and the word wrong! will be printed.

The BEGIN ... END Statement

Not only can PRINT statements be used in an IF ... THEN statement,
but other statements can be used as well. Also, a group of
lines can be used, using the BEGIN ... END block structure.
For example:

IF A > B THEN
BEGIN

B = B + 1
INPUT "Sorry, pal. Try again";A

END

20

Ka
yp
roJ
ou
rna
l

In this example, the two lines between BEGIN and END are treated
as a single statement. When using the BEGIN ... END block
structure, it is important to keep track of where variables are
declared and used. Consider the following program:

10 VAR A,B=INTEGER
B=100
INPUT "Pick a number";A

----IF A> B THEN BEGIN
VAR X=INTEGER

b X = A - B
1 b---IF X > 50 THEN BEGIN
o 1 VAR Y=INTEGER
C O 2 Y = A/10
k c PRINT "Your number was too high. "; Y;" would be better."

k------END
1 X = A/5

PRINT "Your number was too big. Try something more like ";X
-------END

VARY= STRING
PRINT "That number is almost right. Still, I need another one."
INPUT "Want to try again";Y
IF Y = "Y" THEN GOTO 10

In the above program, there are two BEGIN ... END block structures.
The designations, block 1 and block 2, are not part of the
program; they are just included for the purpose of clarification.
Before the first BEGIN ... END structure (block 1), the variables A
and Bare declared as INTEGERs. These will stay as they are
throughout the program. At the beginning block 1, the variable X
is declared as an INTEGER. This will only stay valid within
block 1. Similarly, in the second BEGIN ... END structure (block
2), which is nested in block 1, the variable Y is declared as an
INTEGER. This is only valid within block 2. Notice that in the
last few lines, Y is again declared as a variable. Since block 2
has been executed, and the computer is done using the variable Y
declared there, we can use the name Y again outside of that block
as a name for another variable, this time as a STRING.

A and Bare global variables, meaning global to the entire
program. Xis a local variable and is local to block 1 and
global to block 2.

Also notice the GOTO statement in the last line of the above
program. This is another extremely useful statement when working
with the IF ... THEN statement.

21

Ka
yp
roJ
ou
rna
l

The GOTO Statement

The GOTO statement simply tells the computer to go to a certain
line in your program that you have specified. In the following
program, you'll combine the GOTO statement with the IF ... THEN
statement.

Create a new file called: B:IFTHEN2.BAS. Enter the program:

VAR I=CHAR
10 PRINT "ROW, ROW, ROW YOUR BOAT"

PRINT "GENTLY DOWN THE STREAM"
PRINT "MERRILY, MERRILY, MERRILY, MERRILY"
PRINT "LIFE IS BUT A DREAM ... "
PRINT
INPUT "DO YOU WANT TO SING AGAIN";!
IF I='Y' THEN GOTO 10
PRINT
PRINT "HAPPY DREAMS THEN."

In this program, only if you input a Y will the verses repeat.
The IF ... THEN statement sets up the condition that IF I='Y' THEN
GOTO 10. Notice that you had to specify which line you want to be
line 10 by entering it into your program. It would be useful to
indent each line of your programs with the TAB key from now on,
so that you have room to number your lines, so you can use GOTO
statements. Also, you don't have to call your lines by numbers.
You could GOTO 0LOOP or GOTO 0NAME just as well as GOTO 10 or
GOTO 100. And, lastly, you can use an IF ... THEN statement
without using the GOTO statement, and it will do the same thing.
For example, in the program above, you could have written:

IF I='Y' THEN 10

This would do the same thing as: IF I='Y' THEN GOTO 10.

Also, you could have written: IF I THEN 10
If I equals Y or T, then the condition is satisfied. This is a
built-in feature for the CHAR variable type.

The GOSUB Statement

The GOSUB statement is like the GOTO statement, except that after
the computer is done doing the subroutine, it will come back to
the line after the GOSUB statement by using the RETURN statement.

Here is an example. Suppose you wanted to write a game in

22

Ka
yp
roJ
ou
rna
l

S-BASIC, and in various parts of the game you want to give the
player the option of exiting as follows:

100 INPUT "TO EXIT PRESS E ... ";X

You could repeat this line a number of times or use a GOTO 100
statement, but you may want to go back to where you were after
executing line 100. The way to do this is with a GOSUB
statement.

Say you're at a point in your program where you want to ask the
user if he wants to exit. You'd write:

GOSUB 100

The computer would go to line 100 and execute it:

100 INPUT "TO EXIT PRESS E ... ";X
IF X = 'E 1 THEN RETURN

The GOSUB statement remembers where it came from. The RETURN
statement tells the computer to go back to the statement after
the GOSUB statement. Your program might look something like this
at that point:

GOSUB 100
If X = 'E' THEN PRINT "SO LONG, BUDDY!"

So, the RETURN statement would direct the computer to the line
after the GOSUB statement that sent it to line 100. That is, the
second line above.

Also, the GOSUB statement can direct the computer to execute
anything from one line to a whole block of lines, the only
condition being that a RETURN statement must be at the end of
whatever you want that part of the program to do. This block of
lines ending in a RETURN statement is called a subroutine and is
very useful when you have something you want to repeat a number
of times.

Concerning the GOTO and GOSUB statements, it is important to note
that S-BASIC incorporates various powerful statements which can
be used instead of repeatedly using GOTO or GOSUB statements.
You will be introduced to several of these statements in the next
two chapters.

So, in this chapter you have learned the IF ... THEN ... ELSE
statement as well as the GOTO and GOSUB statements. In the next
chapter you'll learn some other statements which will repeat some
parts of your pr~grams one or more times.

23

Ka
yp
roJ
ou
rna
l

Chapter 7

THE REPEAT ••• UN'l'I'IL, WHILE ... 00, CASE, AND FOR ..• NEXT STATEMENTS

The REPEAT ... UNTIL Statement

The REPEAT ... UNTIL statement will repeat a statement or a block
structure (using BEGIN ... END) until a certain expression is true.
As an example, create a file called: B:REPEAT.BAS. Enter the
following program:

VAR X=REAL.DOUBLE
VAR A,Y,Z=INTEGER
A=l0
X=l0
Z=l
PRINT "This program will print out powers of two in binary numbers."
PRINT
INPUT "Where should it stop (at what power) "; Y
REPEAT BEGIN

PRINT "2 to the power of";Z;" =";X;" in binary numbers."
Z=Z+l
X=X*A
END UNTIL Z=Y+l

Run the program, and enter 7 for your input. Notice that you get
a printout of 2 to the power of 1 up to 2 to the power of 7, and
that the REPEAT ... UNTIL statement will repeat until Z=Y+l, when
the condition of the UNTIL statement is satisfied. When this
condition is satisfied, in this case when Z=8, the computer won't
be directed back to the REPEAT statement and won't, therefore,
perform block structure that follows the REPEAT statement. So
you won't, in this example, get a printout of 2 to the power of 8.

You can GOTO out of the REPEAT ... UNTIL statement or RETURN from
it back to a GOSUB, in case this is necessary.

The WHILE ... DO Statement

The WHILE ... oo statement works much in the same way as the
REPEAT ... UNTIL statement, yet it is somewhat different. Create a
file called B:WHILEDO.BAS. Enter the following program:

24

Ka
yp
roJ
ou
rna
l

VAR !=FIXED
INPUT "How much money do you have to work with";!

10 WHILE I> 1.00 DO BEGIN
PRINT "For each transaction, more money must be taken."
I= I/2
PRINT
PRINT "You now have $";I;" left."
GOTO 10
END

PRIN1 "Sorry, Charlie, but you only have $";I;" left."
PRINT "You should make a visit to the bank."

The WHILE ... DO statement in the program above will do everything
in the BEGIN ... END block structure while I is greater than 1.00.
Notice that if you originally input 1.00 as "How much money do
you have to work with," then immediately you would have seen the
message on your screen:

Sorry, Charlie, but you only have$
You should make a visit to the bank.

1.00 left.

In other words, with the WHILE ... DO statement, the statement or
block following DO may never be executed if the conditions set
forth after WHILE aren't met. On the other hand, using the
REPEAT ... UNTIL statement, the statement or block following REPEAT
will be executed at least once, since the conditions to be
met don't occur until after the UNTIL statement.

As in the REPEAT ... UNTIL statement, you can GOTO or RETURN out of
a WHILE ... DO statement, if necessary.

25

Ka
yp
roJ
ou
rna
l

The CASE Statement

Another statement of the same type is the CASE ... OF statement. It
allows you to select a single statement or block structure (using
BEGIN ... END) from a group of many such statements or blocks.

Create a file named: B:CASE.BAS. Enter the following:

VAR RESPONSE=STRING
INPUT2 "Pick an animal (CAT, DOG, BIRD, or MAN)";RESPONSE
CASE RESPONSE OF

"CAT": PRINT "Me6www ... "
"DOG": PRINT "Bowowow ... "
"BIRD 11 : PRINT "Tweet, tweet ... "

11MAN": PRINT 11 Four score and seven years ago ... 11

RESPONSE: PRINT "Please enter CAT, DOG, BIRD, or MAN!"
END

Try running the above program a few times, entering different
inputs for RESPONSE each time. What the CASE statement does is
evaluate your input and compare it with each expression between
the CASE and END statements. In this case, your input is
compared to CAT, DOG, BIRD, and MAN. If your input is equal to
any of these expressions, then the statement following that
expression is executed. If your input is not equal to any of
these expressions, the eighth line, included as an otherwise
clause, will be executed. It is important, when using the CASE
statement, to have an END statement after the last expression and
statement or block following the CASE statement, or the computer
won't know when to stop its evaluations.

Unlike the REPEAT ... UNTIL and WHILE ... DO statements, you cannot
GOTO or RETURN from within a case statement.

26

Ka
yp
roJ
ou
rna
l

The FOR ... NEXT Statement

Another useful statement is the FOR ... NEXT statement. Create a
file called: B:FORNEXT.BAS. Enter the program:

VAR X,Y=INTEGER
Y=99
FOR X = 1 TO 99

PRINT
PRINTY;" bottles of beer on the wall,"
PRINTY;" bottles of beer."
Y=Y-1
PRINT" If one of those bottles should happen to fall,"
PRINTY;" bottles of beer on the wall."
PRINT

NEXT X

Before you run this program, you should know about a command for
the computer that will stop the printing on the screen. This is
useful when you are running long programs, because only a certain
amount of printout will fit on one screen, and your program, when
running, may be longer than this, such as the above example. In
such a case, the screen will continue printing all the material,
yet it will scroll by so quickly that you probably would have
trouble reading it. To stop the computer printing on the screen
at any point, press the CTRL key and the s key at the same time.
This will allow you to read a screen full of material before
scrolling forward. To start the computer scrolling again after
you have stopped ,it, simply press another CTRL-S.

Run the program above as an illustration of this scrolling.
Remember, CTRL-S will stop the scrolling, and pressing CTRL-S
again will start it up again.

Another useful command, which you can use while your program is
running, is the trace command. To start the tracing while the
program is running, press the CTRL key and the T key at the same
time. Try this while running the above program, and see what
happens.

What the trace command does is display the line numbers of your
program as they're executed. To turn off the trace command,
enter another CTRL-T.

The FOR ... NEXT loop in the above program will simply repeat
itself until X has gone from 1 to 99. X automatically is
increased by 1 each time.

27

Ka
yp
roJ
ou
rna
l

You can, however, control the value added to your variable for
each repetition of the loop by using STEP. For instance:

FOR A= 0 TO 100 STEP 5

This will count from 1 to 100 in steps of 5 (that is, 5, 10, 15,
20, etc.). Some more examples:

1. FOR I= 1 TO 10 STEP .01

2. FOR N = 20 TO 1 STEP -1

3. VAR LETTER=CHAR
FOR LETTER= 'A' TO 'Z'

In example number one, I will be increased from 1 to 10 in steps
of .01. In example two, N will be decreased from 20 to 1 by -1
for each repetition of the loop. In example three, LETTER will
be advanced through the letters of the alphabet from A to z.
Remember that, for each FOR statement, you need an equivalent
NEXT statement somewhere after it.

As with the CASE statement, you cannot GOTO or RETURN out of a
FOR •.. NEXT loop.

You've learned quite a bit in this chapter. The next chapter
will deal with FUNCTIONS and PROCEDURES. You are encouraged to
experiment with each of the statements presented in the order in
which they are given until you are familiar with them. The
sample programs should be some help, but you are, of course, not
limited to writing only these.

28

Ka
yp
roJ
ou
rna
l

Chapter 8

THE FUNCTION AND PROCEDURE STATEMENTS

FUNCTIONS

FUNCTIONS and PROCEDURES are statements which you define. Say
that, for example, a program you are writing requires that a
variety of numbers be cubed, that is, N x N x N. Create a file
called: B:FUNCTION.BAS. Enter the following program:

FUNCTION CUB(I=INTEGER)=INTEGER
END=I*I*I
VAR X,Y,Z,A,B,C=INTEGER
INPUT "Pick a number";X
INPUT "Another";Y
INPUT "Yet another";z
A=CUB(X)
B=CUB(Y)
C=CUB (Z)
PRINT
PRINT X;" cubed equals ";A
PRINT
PRINTY;" cubed equals ";B
PRINT
PRINTZ;" cubed equals ";C

Run this program to see if it works.

The FUNCTION statement is set up with the name of the function
after the word FUNCTION. In the above case, the name used was
CUB. Then, one or more variables are declared within parentheses
after the name. In the example above, the variable is
(!=INTEGER). Next, you write the type of variable that the
result of your function will be. In the above example, the whole
CUB function will result in an integer, =INTEGER. Lastly comes
the END statement which is the end of the function and will
determine the result of the function. As an example:

FUNCTION CUB(I=INTEGER)=INTEGER
VAR Z=INTEGER
Z=I*I*I
END=Z

- 29 -

Ka
yp
roJ
ou
rna
l

PROCEDURES

PROCEDURES are very similar to FUNCTIONS. PROCEDURES might be
best explained as being like named subroutines. There is no type
declared for the PROCEDURE and no result, as there is in
FUNCTIONS. Create a file called: B:PROCEED.BAS. Enter the
program:

PROCEDURE CLEAR.SCREEN
PRINT CHR(26);

END of CLEAR.SCREEN

VAR A=INTEGER
VAR B=CHAR
VAR X=STRING
INPUT "What's your first name";X
FOR A=l TO 200

PRINT X;
NEXT A

05 INPUT2 "When you want to clear the screen, enter Y.";B
IF B <> 'Y 1 THEN 05
CLEAR.SCREEN
PRINT "The screen, it seems, has been cleared."

In the above program, the first three lines are the PROCEDURE,
which we called CLEAR.SCREEN. So, when you call up this newly­
defined statement later in the program, the screen will be
cleared. As in the FUNCTION statement, the PROCEDURE statement
must be concluded with an END statement. And it would be best if
you place both FUNCTIONS and PROCEDURES at the beginning of
programs. Another example of a PROCEDURE:

PROCEDURE PRINT.SUM (A,B,C=INTEGER)
PRINT A+B+C

END

Variables declared within both PROCEDURES and FUNCTIONS are valid
only within those statements, just as in a BEGIN ... END statement
described previously.

You have done a lot with S-BASIC now that you've gotten this far.
You are, in fact, no longer a beginner and will probably be
wanting more specific information and details that are not
offered in this part of the manual. Go on and read the S-BASIC
reference portion of this manual, and you should find what you
need to write programs to solve more complex problems.

30

Ka
yp
roJ
ou
rna
l

TABLE OF CONTENTS

Introduction 31
Features 31
Machine language 31
Compiler (Translator) 32
BASIC 32
Programming 32

An Introduction to S-BASIC for the Experienced Programmer 34

Getting Started 36

Notation
Line numbers
Statements
Physical Length of Lines
Key Words
Comments

Data Types
REAL.DOUBLE and REAL
FIXED
INTEGER
STRING
CHAR

Suggested Program Structures

Variables
Data storage area
Common storage area
Base-located area
Based variables
Arrays
Finding a data structure at run-time
System Load Map
Block structures
Global and local variables

37
37
37
38
39
39

41
41
42
43
43
44

44

45
45
47
47
47
47
49
50
51
52

Ka
yp
roJ
ou
rna
l

Expressions
Determining the type of an expression
String--Special Form
Functions
Table of Precedence
Defining local functions
Truth Table for Logical Functions
Truth Table Summary
Relational Symbols

Control Statements
GOTO
GOSUB
The ERROR Statement

ON ERROR OFF/GOTO
Table of Error Codes and Messages (Run-time)

REPEAT ... UNTIL
WHILE ... DO
CASE
IF ... THEN
FOR ... NEXT

Loading a BASIC program from disk under control
of another BASIC program

CHAIN
EXECUTE

Input/Output
I/0 devices
Designating an I/0 source
Echo
CONTROL.C.TRAP
Input only

Output (printing}
Changing the Destination of the Output
TEXT
PRINT USING
String fields
Numeric fields
Exponential format
Providing for the ecape of characters
from format control

Reading Data

54
54
57
57
57
58
59
59
60

61
61
61
63
63
64
65
65
66
67
68

71
72

74
74
74
77
77
77

78
79
80
81
82
83
85

85

88

Ka
yp
roJ
ou
rna
l

Disk Files 90
Storage areas of disks 90
Disk statement types 90
Access to data 90
FILES 91
CREATE 92
DELETE 92
RENAME 92
INITIALIZE 93
Attaching and detaching files from a file channel 93
Reading data from a file 93
Writing data to a file 94
Closing the file 95

The Use of Random and Serial Files
The pointer
Sequential files
Strings
Updating a file
Random files
READ and WRITE

ASCII Files and Channel Numbers

Functions
User-defined functions

Procedures

Scope of Recursion

Quick-reference List of Intrinsic Functions
ABS {RS)
ASCII (S) / ASC (S)
ATN{RS)
CHR (I) / CHR$ (I)
COS (RS)
EXP(RS)
FCB$(S) / FCB(S)
FFIX(F)
FINT {F)
FIX{RS)
FRE (I)
HEX${!)
INP{I)
INSTR(I<Sl,S2)
INT(RS)
LEFT$(S,I)
LEN(S)
LOG(RS)
MID{S,Il,12) / MID$(S,Il,I2)
NUM$(RS) / STR$(RS)

96
96
96
97
97
98
98

102

106
106

109

111

114
114
114
114
114
115
115
115
115
115
115
115
116
116
116
116
116
116
116
116
117

Ka
yp
roJ
ou
rna
l

PEEK (I)
POS (I)
RIGHT(S,I)
RIGHT$(S,I)
RND(RS)
SGN(RS)
SIN(RS)
SIZE($)
SPACE$(!) / SPC(I)
SQR(RS)
STRING(Il,I2) / STRING$ (Il,I2)
TAB (I)
TAN(RS)
VAL(S)
XLATE(Sl,S2)

Compiler Operation
Files used during compilation
Commands used during compilation
$LINES
$TRACE
$PAGE
$CONSTANT
$INCLUDE
$LIST
$LIST [ON/OFF]
$STACK
$LOADPT

Statements
BEGIN ... END
CALL
CHAIN
EXECUTE
DATA
READ
RESTORE
OUT
POKE
CONTROL.C.TRAP ON/OFF
RECORD.SEQUENTIAL ON/OFF
REPEAT ... UNTIL
WHILE ... DO
IF ... THEN . .. ELSE
VAR
COM
BASED
DIM
BASE
LOCATE
LOCATION
END

117
117
117
117
117
118
118
118
118
118
118
118
118
119
119

120
122
122
122
123
124
124
125
126
126
126
127

128
128
128
128
128
128
129
129
129
129
129
129
129
129
130
130
130
130
130
130
130
131
131

Ka
yp
roJ
ou
rna
l

STOP
PRINT
PRINT USING
ECHO ON/OFF
INPUT
TEXT
LPRINTER
CONSOLE
COMMENT
REM/ REMARK
ON ERROR GOTO
GOTO
GOSUB
FUNCTION
PROCEDURE
FILES
OPEN
CLOSE
READ
WRITE
INITIALIZE
DELETE
RENAME
CREATE
CASE
FOR ... NEXT

Application Notes
The EXECUTE Statement

Merging and Using Assembly Language Routines

131
131
131
131
131
131
132
132
132
132
132
132
132
133
133
134
134
134
134
134
134
134
134
135
135
135
136
136

140

Ka
yp
roJ
ou
rna
l

IRTRODUCTIOR TO S-BASIC

S-BASIC has features for the most advanced and comprehensive
applications, but it can be used by the beginner. Read the
manual; use what applies to your situation. If you have
questions, consult a book or two that covers programming in
general terms. If you have further questions, write us at the
address given on the title page.

FEATURES

S-BASIC means Structured BASIC. It:

*Isa high-level language for use in the CP/M environment.

* Maintains the flexibility of BASIC, yet includes the power
of advanced structured techniques.

* Is a true compiler (translator) that converts the user's
program directly into machine language for the computer to
run. This gives the user speed and power not available
from an interpreter or a compiler/interpreter combination.

* Has source line information and program trace control to
make easy the writing and debugging of programs.

* Has a rich assortment of variable types to allow the use
of:

single characters
large strings of characters
two types of floating point
integer
fixed point

* Includes long multiline comments in the source

* Documents all variables

MACHINE LANGUAGE

Microcomputers recognize their own special, low-level machine
language.

Machine language is the instructions that the computer follows to
do something simple, such as add, subtract, multiply, and divide.
But, it cannot handle numbers as you understand them.

31

Ka
yp
roJ
ou
rna
l

More complex operations are done by a long series of the simple
operations.

COMPILER (TRANSLATOR)

The Z80 cannot understand BASIC.

The compiler (translator) compiles (translates) your BASIC
program into machine language.

This compiled {translated) program is called by several names,
such as:

code, run-time code, run-time, object code, machine code, and
COM file.

No matter what it is called, it is machine language. It is what
the Z80 can execute (understand) directly.

BASIC

BASIC is a high-level computer language.

High-level languages were invented so that humans would not have
to bother with the tedium of low-level machine language, which
consists of zeros and ones.

The same high-level language can be found on different computers,
because different compilers can be written to translate a
high-level language into different low-level machine languages.

PROGRAMMING

BASIC has different versions, because there is a difference of
opinion on which features should be included.

Programming in high-level language can be thought of as two tasks:

* The understanding of programming ideas

* The implementation of those ideas in a specific high-level
langua,Je.

Once you understand the basic programming ideas, learning a new
programming language is simple. Once you have learned to program
in S-BASIC, you could easily learn other programing languages,
such as PASCAL, FORTRAN, C, or ALGOL.

32

Ka
yp
roJ
ou
rna
l

I .

You might want to pick up an introductory book on programming to
give you the concepts of structured programming, Some of the
concepts which you might tackle when you have learned your BASIC
are: procedures, functions, local variables, and logical blocks.

As you read your BASIC books, be aware of the differences between
S-BASIC and the BASIC used in the book. Major differences are:

* Variables must be declared, using the VAR statement.

* Line numbers are only needed where referenced by GOTO and
GOSUB.

* Disk files will probably be different, but S-BASIC supports
all major forms of disk files, so an analagous method of
disk I/O will be found in S-BASIC.

33

Ka
yp
roJ
ou
rna
l

AN INTRODUCTION TO S-BASIC FOR THE EXPERIENCED PROGRAMMER

S-BASIC is a structured language built on a BASIC syntax
foundation. This leads to a clean and easy-to-use syntax.

There are six data types:

Single and double precision binary floating point
Fixed-point BCD
Integers
Characters (bytes)
Strings

There are three basing modes:

Data
Common
Run-time specified

(i.e., dynamically positioned in RAM programatically)

All major structure statements are implemented:

PROCEDURE
FUNCTION
BEGIN AND END
IF THEN ELSE
WHILE
REPEAT
CASE
Local variables

There are procedures, functions, and logical blocks.

The language is extendable, using procedures and functions.

Serial and random files are provided. Both can be ASCII or
binary.

Random files have three access modes:

* Buffer-directed

* Record sequential with auto rewind to beginning of record
on re-read of random record

* Record sequential without auto rewind

An ability to search and include from a source library at compile
time is provided.

34

Ka
yp
roJ
ou
rna
l

The TEXT statement is provided to facilitate the construction of
menus and help text in a program.

The COMMENT statement allows large blocks of comment text without
redundant REM statements.

There are many more unique features in S-BASIC. They are covered
elsewhere in the manual.

35

Ka
yp
roJ
ou
rna
l

GETTING STARTED

To program in S-BASIC, you will need four files from the CP/M
S-BASIC diskette:

$BASIC.COM
OVERLAYB.COM
BASICLIB.REL
USERLIB.REL

The S-BASIC beginner's section fully explains how to set up your
program diskette.

To start compilation of a program, enter: SBASIC <name>.BBX

This is also fully explained in the beginner's section.

When you write a program in S-BASIC, always store it on a
diskette in drive B, and always give it the extension, BAS.

36

Ka
yp
roJ
ou
rna
l

NOTATION

LINE NUMBERS

In general, an S-BASIC statement would be represented with a line
number and a basic statement, but line numbers are optional; they
need to appear only where a reference is necessary.

A valid line number is a digit, 0, 1, 2, ... 9, followed by ASCII
characters that are not reserved. (Reserved characters are:
;:[]{}<>(),"=#-+*/%-)The following are valid line numbers:

0000 0025 0746 0test.routine

(Be sure to leave no space between the zero and "test.routine".)

If numbers only are used, they need not be in order.

STATEMENTS

A statement may be upper case or lower case ASCII characters, as
the compiler will convert all lower case into upper case.

In this manual, when <statement> is called for, no line number is
necessary.

When <statement> is called for, the following construction may be
substituted in its place:

BEGIN
<body>

END

Where BEGIN and END form a frame around <body>, <body> may be any
number of basic statements, including nested BEGINS and line
number references.

Key words (things that must be included in a statement) will be
printed in capital letters.

Key words may not appear by themselves in any other way in the
program, because they have special meaning.

Spaces, where given, must be included, so that a key word may be
included in a variable name without being confused with the
variable.

37

Ka
yp
roJ
ou
rna
l

Angle braces<> enclose an item that must be included in the
statement.

Brackets] enclose an item that is optional.

Braces { } enclose an item that may or may not be included and/or
repeated.

Three dots indicate an item that may repeat.

A slash mark/ should be read as ''or". Example: this/that=
this or that

The words "run-time" refer to the compiled object code produced
by the compiler.

Physical Length of Lines

The input buffers of the compiler are token-oriented. This means
there is no limit to how long a physical line can be.

However. sometimes the physical line length must be restricted.
A backslash (\) can be used to continue a logical line on to the
next physical line.

Everything from the backslash to the end of physical line is
ignored, i.e., you can put a comment after the backslash.

Example:

INPUT VALl, VAL2, VAL3\
VAL4, VAL5, VAL6

or another use:

PRINT FIRST.NAME,
LAST.NAME,

PHONE.NUMBER

\PERSONS FIRST NAME
\PERSONS LAST NAME

\PERSONS PHONE NUMBER

38

Ka
yp
roJ
ou
rna
l

KEY WORDS

ECHO LOCATION SQR
$CONSTANT ELSE LOG STEP
$INCLUDE END LOGIC STOP
$LINES EQV LPRINTER STR$
$LIST EXECUTE MID STRING
$LOADPT EXP MID$ STRING$
$PAGE FCB NEXT SUB
$STACK FCB$ NOT TAB
$TRACE FFIX NUM$ TAN
ABS FILES OF TEXT
AND FINT ON THEN
ASC FIX OPEN TO
ASCII FOR OR UNTIL
ATN FRE OUT VAL
BASE FUNCTION PEEK VAR
BASED GO POKE VARIABLE
BEGIN GOSUB POS WHILE
CALL GOTO PRINT WRITE
CASE HEX$ PROCEDURE XLATE
CHAIN IF READ XOR
CHR IMP REM
CHR$ INITIALIZE REMARK CONTROL.C.TRAP
CLOSE INP RENAME RECORD.SEQUENTIAL
COM INPUT REPEAT
COMMENT IN PUT 1 RESTORE
COMMON INPUT2 RET
CONSOLE INPUT3 RETURN
cos INSTR RIGHT
CREATE INT RIGHT$
DATA LEFT RND
DELETE LEFT$ SGN
DIM LEN SIN
DIMENSION LET SIZE
DO LOCATE SPACE$

SPC

COMMENTS

Single line comments may be implemented using the REM statement:

REM/REMARK <text>

where <text> is a single line comment or remark.

Multiple comments may be inserted into the text as follows:

39

Ka
yp
roJ
ou
rna
l

COMMENT
<text>

END

where <text> may be any number of lines made up of any type of
characters.

In both the REM and COMMENT statements, <text>, REM, COMMENT, and
END are ignored by the compiler and produce no code. Thus, they
may be as long and as frequent as desired without affecting the
the operation or size of the program at run-time.

Examples:

REM This is a comment line
REMARK This is another comment line
COMMENT

This is a comment line that can
be any number of lines long and can
contain all characters*#$%&() and so on
a COMMENT is ended by a line that starts with the word END
like so:

END

40

Ka
yp
roJ
ou
rna
l

DATA TYPES

There are six variable types from which the programmer can
choose. This allows for the best selection between storage and
accuracy. The six types are:

Type

REAL.DOUBLE
REAL
FIXED
INTEGER
STRING
CHAR

Abbreviations
Used in the
Manual Only

RD
RS
F
I
s
C

REAL.DOUBLE and REAL

This type provides the user with binary floating point numbers.
There are approximately 6 digits of accuracy with the type REAL
and 12 digits with the type READ.DOUBLE.

When these numbers are printed, the following rules apply:

* If the number will fit (meaning, 6 digits for REAL and 14
digits for REAL.DOUBLE), then the number will be printed with
the decimal point 'floating'. For example:

-23.003 5.023 .0002 -1000.1

* If the number will not fit, then scientific notation will be
used to represent the number times a power of ten.

5.123El2 6.321E-7

Here the letter E reads as "times ten to the power of". The
range of the exponent is approximately +38 to -38.

In general, the forms for these types are represented below
with the letter:

RD
RS

S standing for the algebraic sign,
D standing for a digit from 0 to 9, and
E standing for the power of ten function, if needed.

SD.DDDDDDDDDDESDD
SD.DDDDDESDD

or
or

41

DODDDDDDDDDDD Floating '.'
DDDDDD with the'.' anywhere

Ka
yp
roJ
ou
rna
l

Constants may be entered into the compiler, and at run-time,
using either the "floating point" or 11 scientific 11 form. If
the sign is positive, it is printed as a space.

FIXED

Provides the programmer with a packed BCD number providing 11
digits of decimal accuracy.

This is decimal math, so there is no rounding problem as is
inherent with floating point math. In general, for long summing
operations, the fixed point format gives the best results.
Indeed, it was designed for business use.

The form of a fixed point number is:

SDDDDDDDD.DDD

where there are 8 digits to the left of the decimal point and 3
digits to the right of the decimal point.

When a fixed point number is printed, it is automatically
formatted so that all the decimal points will line up. This is
done as follows:

1. .005 is added to the number. This is done for display
purposes only.

2. A leading space is printed.

3. Leading zeros are replaced with spaces, and the sign is
printed (right justified) as a space, if positive, and as a
"-", if negative. The digits up to the 11- 11 are then printed.

4. The decimal point is printed.

5. And the next TWO digits are printed. The effect is a
printout in dollars and cents format.

Fixed point numbers may be entered into the computer at run-time
or as constants to the compiler in a free format similar to that
of type REAL. The main difference is that no Eis allowed, and a
check is made for a number too large or too small. If such a
number is entered, then an error message is given. If the error
is encountered at run-time, the user is asked to re-enter the
number before the program continues.

When printing a fixed type number set>= 99999999.995, an
overflow warning is given. This is because, before a fixed-point

42

Ka
yp
roJ
ou
rna
l

number is printed, .005 1s added to it for rounding. This
addition does not occur 1n a PRINT USING statement.

INTEGER

Its range 1s +32767 to - 32767

An INTEGER is stored as a word (2 bytes) integer in twos
complement form. There is no check made for overflow. The
number simply wraps around.

Integer and character division truncates the answer. No rounding
is performed.

Constants to the compiler may be entered as decimal numbers or as
hex constants.

Hex constants must have as the first digit a decimal digit from 0
to 9, and the last digit should be an H; for example, 0A6FH or
80H.

When numbers are entered at run-time, they may be either decimal
or hex.

When hex numbers are entered, it is not necessary for the first
digit to be a decimal digit, and a sign is not allowed.

Otherwise, the rules are the same as when they are entered as
constants.

STRING

A STRING variable may contain any type of ASCII character except
for an ASCII null (00H).

The length of this string of characters may be from 0 to the
maximum length of a given string variable. This maximum length
is set using the VAR statement described below.

Constants should be entered enclosed in double quote marks.

"This is a string constant"

Strings may be entered at run-time either enclosed in quotes or
terminated with a "return". For more information on entering
strings, see the section on input and output.

There are two right string functions, RIGHT and RIGHT$. These
functions are different.

43

Ka
yp
roJ
ou
rna
l

CHAR

A CHAR (character) is a single ASCII character that may assume
any ASCII or 8-bit value assigned to it.

A character constant is entered in the compiler as a decimal
number, a hex number, or as a single character enclosed in single
quotes. For example:

5 OCH 'a'

For the rules governing the input and output of char~clers during
run-time, see the section on input and output.

When defining the data type, CHAR, the word, BYTE, may be used in
its place. This is the same data type, but it will help to make
clear the intended use of the variable.

When the symbol <type> is used, it refers to one of the six types
described above. All six types have three different possible
locations in the run-time package (i.e., the compiled code).
They may be:

* located in the data storage area set aside by the compiler
* set into the common storage area where they will not be

changed during chaining (See the section on chaining.)
* not assigned any storage or location. This will be done by

the BASIC program at run-time.

When using characters as numeric values, or when mixing with
integers, the values assumed are equal to, or greater than, 0 and
equal to, or less than, 255.

Integer and character division truncates the answer. No rounding
is performed.

SUGGESTED PROGRAM STRUCTURE

common variables
Variables global to the total program
Functions and procedures
Variables global to main program only
Main body of program
Data statements

44

Ka
yp
roJ
ou
rna
l

VARIABLES

In the following statements:

<name> refers to the ASCII name given to the variable.
The first letter of <name> must be a letter.
This may be followed by ASCII characters that are not reserved.
<name> may not be a reserved word, though it may cont~1in one.

To declare variables, the variable statement is used:

VAR <name>{,<name>}{/[;<comment><new line>}]=<type>[:size]

For example:

VAR
First.name
Last.name
X, Y, Z

= Integer

;This is a comment.
;Another comment
;Another comment line
;Some more variables

VAR A, B
C, D

;A comment line of text
=Byte

Note: Byte is the same as CHAR.

Variables must be declared as to their type and location in
memory. The following statements are used for this purpose.

Data Storage Area

The following statement sets variables into the data storage
area:

VAR <name>{,<name>}{/;<comment><new line>}=<type>[:<size>]

If the <type> is string, a maximum length may be given, using the
:<size> argument.

If <size> is omitted for <type>=STRING, then a default length of
80 characters is used for the length of the string.

<size> may range from 1 to 255 characters. For example:

FIRST.NAME,LAST.NAME=STRING:30

This creates two string variables: FIRST.NAME and LAST.NAME.

The maximum length that each of these two strings can reach is 30

45

Ka
yp
roJ
ou
rna
l

characters.

When an integer constant is called for, a compile-time symbolic
constant can be used. Its use is to specify the <size> of a
string symbolically when used with $INCLUDE. For further use of
this, see section on $CONSTANT.

The programmer should be aware of a string's internal format:

<length><ASCII characters>[<0 byte>]

<length> is the maximum length the string can obtain.

<length> is a byte value in memory.

<ASCII characters> is the string of characters that make up the
string, one byte per character.

<0 byte> flags the end of the string in memory IF the maximum
length has NOT been reached.

Thus, from the above VAR statement, FIRST.NAME would look like
this in memory if 'tom' was stored in it for 30 bytes:

<30><t><o><m><O><O><O> ...

When a base-located string is positioned in memory, the <length>
byte "follows" the string around in memory. The based statement
sets up the string length only. The string variable should not
be used until the variable is positioned in memory. Failure to
do so may destroy other data in memory.

Some more examples:

VAR X,Y,Z=REAL
VAR ACCOUNT=INTEGER
VAR BALANCE,DEBIT,CREDIT=FIXED
VAR RESPONSE=CHAR

These statements allocate storage into the data storage area.
They create the real type variables, X, Y, and z. They also
create an integer named ACCOUNT, three fixed type numbers called
BALANCE, DEBIT, and CREDIT, and a variable called RESPONSE of
type char.

46

Ka
yp
roJ
ou
rna
l

Common Storage Area

Variables may be allocated to the COMMON STORAGE area with the
statement:

COM/COMMON <name>{,<name>}=<type>[:<size>]

The operation of this statement is the same as for the VAR
statement.

Base-located Area

Variables that are assigned no storage or location are called
"base located". They are declared using the following statement:

BASED <name>{,<name>}=<type>[:<size>

The operation of this statement is the same as for VAR and COM.
For example:

BASED X, Y = INTEGER

BASE <name> AT <expression>

<expression> is of type integer. This statement positions the
variable <name> at the memory location given by <expression>.
For example, this could be in a disk I/0 buffer or memory-mapped
I/0 location. Any type of variable, not just strings, may be
based. For example:

BASE X AT Z + 12

Arrays

Arrays must be declared using the following statement:

DIM/DIMENSION [COM/BASE] <type>[:<SIZE>} <name>(<size>{,<size>}) ...

If COM is given, then the array resides in the common storage area.

If BASE is used, then the array is assigned no location or
storage.

If both are omitted, then the location is in the standard data
area.

<type> specifies the type for each <name> in the statement.

47

Ka
yp
roJ
ou
rna
l

<name> is the name given to the array, and the same rules apply
for it as for <name> in a variable statement.

<size> gives the number of elements in each dimension (vector) of
the array.

As before, <SIZE> refers only to strings. Some examples:

DIM BASE CHAR VIDEO.DISPLAY(80,24)
DIM REAL X(S,5,7) Y(20) ALPHA.VECTOR(3)
DIM COM STRING:30 NAME(3)
DIM STRING:X+Y; FIELD (A+J,C)

The DIM statement (for the data field only) may be used to change
the <size> argument(s). The same array name may be used more
than once in several DIM statements. This does not create two
arrays, but rather changes the size of the array. The number of
size arguments (dimensions) must remain the same.

DIM <type> <name> (<size exp>{,<size exp>}) ...

When an array is redimensioned, its data contents are destroyed.
If the <type>=STRING, then the syntax for the expression giving
the maximum string length is:

STRING: <Integer expression>;
DIM STRING:MAX.LEN+Q; NAME{X-1)
DIM COM STRING:32 COMMON.NAME{20)

{The semicolon (;} is not allowed for arrays that are BASE or
COMMON.}

A base-located array may be positioned in memory, using the
following statement:

LOCATE <name> AT <expression>

where:

<name> is the name of an array declared, using a DIM BASE ...
statement.
<expression> is an integer expression which specifies where in
memory the array is to be positioned.

Experienced programmers may find the information in the following
table helpful. Beginners may ignore it or find more information
from other sources.

48

Ka
yp
roJ
ou
rna
l

Memory

Word
Byte
Byte
Byte
word 1
[Word2

Wordx

ARRAY CONTROL STRUCTURE
(SPEC)

Use

Address of array data
of dimensions
Size of each element
Reserved
Dope vector (size of a dimension)
Dope vector

Dope vector]

Finding a Data Structure at Run-time

The location of a data structure may be found at run-time with
this statement:

LOCATION VAR/ARRAY/SPEC/FILE <namel>=<name2>

In this statement:

VAR refers to a variable,

ARRAY refers to an array, and

SPEC refers to the array control field set up by the DIM
statement.

FILE refers to the location of a disk I/0 buffer.
For further information on file buffers, see the section on
files.

<namel> is a variable of type integer that will be sent to
the numeric location in memory of <narne2>.

An example of the use of based data type is placing a character array on
top of a string.

VAR X=STRING
DIM BASE CHAR CHARACTERS(80)
LOCATION VAR ADDRESS=X
LOCATE CHARACTERS AT ADDRESS

Note: Array index 0 is the <length> of the string.

49

Ka
yp
roJ
ou
rna
l

Or the system's command line:

BASE X=STRING
BASE X AT 80H

In the above examples, variables are placed into memory either on
top of existing variables or into default locations (80H). Care
should be taken not to place a variable into a program.

The system load map which follows shows where based data types
can be placed in memory.

Hex Address

0-FF
100
103
105-108
109
10B
to "109
???

SYSTEM LOAD MAP

Contents

System defined
JMP <program>
Error code
System
Address of end of compiler code
Common data or program
End of compiled code
Beginning of BDOS

Location 109H has several uses.

on initial load, this word points to the end of the
compiler-generated code.

This location is also used as a stack pointer (similar to SP of
the 8080) for use by procedures and functions.

This stack builds to the 8080 stack. Consequently, NO memory in
the TPA (transient program area) is safe.

But, if location 109H is changed BEFORE the use of a function or
procedure, room can be made by increasing its value. For
example, to make lk of "safe" memory:

VAR START.MEM,STOP.MEM=INTEGER
BASED MEM=INTEGER
BASE MEM AT 109H
START.MEM = MEM
START= MEM+l024
STOP.MEM = MEM

50

Ka
yp
roJ
ou
rna
l

Future versions of the compiler will use location 109H for
allocation of array space and file buffer space. To remain
compatible, this location should not be changed until after all
DIM and FILES statements have been executed.

Also see the section on files to find where based data types can
be placed in memory.

Block Structures

A block structure is a group of <statements> that is treated as
one logical statement. An example of this is the use of the
BEGIN ... END construction.

Remember that, when <statement> 1s called for, the BEGIN ... END
structure may be substituted.

Within this block, variables may be declared.

Only variables generated with the VAR statement may be used.

These variables are considered local to the block. By "local" we
mean that the <name> given to the variable is only valid within
the block structure.

The compiler allocates storage for local variables within the
block. At the end of the block structure, the same data storage
areas will be used for other variables that might be declared
later in the program.

The <name> is discarded from the compiler's symbol table, so that
the <name> may also be used in another area of the program.

Be sure to close block structures. Otherwise, at the end of a
compilation, you may get a message something like: UNDEFINED
LINE NUMBER(S), followed by some garbage. As the compiler
generates code, it creates some internal symbols. If these
symbols cannot be resolved later on, they are treated as bad line
numbers. For example:

IF BOOL THEN BEGIN
PRINT "THE VALUE IS ";BOOL

X = S*Y
and so on with the rest of the program ...

This is incorrect, because there is no END to match the BEGIN
statement.

51

Ka
yp
roJ
ou
rna
l

Global and Local Variables

This leads us to the concept of global and local variables.

Variables declared outside of a local block structure are global,
i.e., can be used by the entire program.

Variables declared inside a block (BEGIN ... END and later
functions and procedures) are local to that block and cannot be
accessed outside the block.

Block Structures using Variables

Block structures can be nested to any depth, limited by memory.

Variables declared outside a block are considered global to the
block. Variables declared inside a block are local to the block.

Some examples:

1)
2)
3)
4)
5)
6}
7)
8)
9)
10)
11)
12)
13)

VAR A=INTEGER
BEGIN ----------------------------:

VAR B=INTEGER
<some basic statements>
BEGIN ----------------------:

VAR C=INTEGER : block b2
<Some more statements> :

END -----------------------:
VAR C=INTEGER

<more statements>
END ----------------------------:
VAR B,C=REAL
<And yet more statements>

In line 1, variable A is created.

block bl

Line 2 is the beginning of a block structure that goes from line
2 to line 11.

In line 3, a variable called Bis created. It is local to block
bl.

In line 5,
generated.
considered
block.

a second block, "nested" inside the first, is
In this block, the variable B created on line 3 is

global to block b2. Both A and Bare global to the

In line 6 and within block b2, a third variable is made.

52

Ka
yp
roJ
ou
rna
l

I .

At line 8, b2 is ended and, as far as the program is concerned,
the variable C ceases to exist.

So, in line 9, a NEW variable C can be created. This C is local
to bl and IS NOT the same C used in block b2.

In line 11, the structure bl is ended, and both variables (Band
C), local to bl, are dismissed. Once again, their <narne>s may be
used for other purposes.

In line 12, this is done.

Once local block structures are declared, then the use of the
statements DIM and COM is forbidden.

53

Ka
yp
roJ
ou
rna
l

EXPRESSIONS

Determining the Type of an Expression

An <expression> has a property known as type.

The type of an expression refers to the data type of the
variables in the expression. For example,

an expression could be of type REAL
or
if we are dealing with a person's name, it could be of type
STRING.

How is the type of an expression determined? There are a few
simple rules.

* If the <expression> is to the right of an assignment in a
LET statement, its type is the same as the <name>
(name=expression)

* If, in this manual, during the description of a statement
or function, the type of an expression is given, then
simply, that is its type.

* If an expression is by itself, for example, in an IF ... THEN
or PRINT or UNTIL statement, then the type of the
expression is set by the first operand encountered.

* If the first operand is a variable, i.e., <name>, then the
type of the expression is set to the type of <name>.

* If the first operand encountered is a constant, then:

If it is a:

single quote
double quote
number

then it 1s a type:

char
string
real

Variables and constants of a type different than the expression
type are allowed in an expression.

54

Ka
yp
roJ
ou
rna
l

In a MIXED type expression, variables and constants are converted
to the expression type by the following rules:

1) String to char and char to string are done directly.
2) Char to integer and integer to char are done directly.
3) Fixed to integer are done directly.
4) Given typel to be converted into type2:

a) Convert typel into real.double.
b) Convert real.double into type 2.

Type conversions as defined in 4) above, consume much time.

It is best not to mix expression types unless necessary.
Conversion errors, such as converting too large a number into an
integer, for example, could cause problems. However, conversion
by 1, 2, or 3 AND converting real and real.double to integer, and
vice versa, need not be avoided.

In general, the conversions are provided to facilitate the use of
arrays and functions. Some examples of expressions and their
type:

VAR X,Y=REAL
VAR A=FIXED
VAR I=INTEGER
VAR S=STRING
X=S+Y
A=X+.5
PRINT X
PRINT S+A
X=X=Y
W=S+S

type is
type is
type is
type is
type is
type is

real, no conversions
fixed X, convert to fixed
real, no conversions
real.double, convert A to real.double
real, no conversions
real, convert string to real

In the statement, IF I=A THEN PRINT, the expression type is
INTEGER. Therefore, the variable A will be converted into an
integer.

When the compiler encounters one of the following logical
operators: NOT, AND, OR, XOR, IMP, AND EQV, it clears the
expression type to undefined, and the following operators and
argument types are defined, governed by the rules given
previously. For example:

VAR R=REAL
VAR !=INTEGER
VAR S=STRING
VAR BOOL=INTEGER

55

Ka
yp
roJ
ou
rna
l

BOOL= I>5 OR S="STRING"

The assignment above sets the expression type to INTEGER (the
type of BOOL).

When the OR is encountered, the expression type is cleared.

When Sis encountered, the expression type is set to STRING.

When the expression is finally evaluated, the res~ilt is converted
to the appropriate type-- in this case, INTEGER, th,, type of
BOOL.

BOOL= R=S AND S>="ABCDEFG"

BOOL sets the expression type to INTEGER.

When R is encountered, it is converted into an integer.

AND clears the expression type, and evaluation continues as in
the above example.

If the first constant 1n an expression is a constant number,
explore:

25 AND MASK

This will NOT do a bit-by-bit AND of 25 and MASK. 25 will be
considered and processed by the compiler as a real. MASK, if it
is not a real, will be converted into a real. A logical AND 1s
done of the real 25 and MASK, producing a logical result.

The simplest expressions involve constants or variables. The
statement below is used to assign a value to a variable:

[LET] <name>=<expression>

In its simplest form:

A=l0
NAME.FIRST="Torn"

Or, using a variable:

A=B

56

Ka
yp
roJ
ou
rna
l

String--Special Form

In addition to the LET statement, there is a special form for use
with strings:

MID/MID$(<name>,<expl>,<exp2>)=<exp3>

<name> is a string variable, and part of it is replaced by
<exp3>, a string expression. Put another way: <exp3> is
inserted into <name>.

<exp2> and <exp3> are integer expressions.

Replacement starts with the character position given by <expl>
and continues until either the end of <exp3> is reached or <exp2>
characters have been transferred.

If <expl> is greater than the current length of <name>, then
<name> will remain unchanged.

If <expl>=<exp2>, or length of <exp3> is greater than the maximum
length of <name>, then the larger string will be created and
truncated to the length of <name>.

FUNCTIONS

Functions can also be used in the <expression> as follows:

A=A+B*C

In this function, operators and operands are mixed to get the
desired result from <expression>.

The order of execution of the operations is determined by their
precedence.

TABLE OF PRECEDENCE

Those functions on the same line have equal precedence and are
evaluated from left to right through the function.

l} subexpressions enclosed in parentheses
2) A or** exponentiation
3) +, - unary negation and absolute value, i.e., +5=ABS(5)
4) *,/multiplication and division
5) +, - addition and subtraction
6} relational: <>or# and=, >, <, <=, >=
7) logical operators: NOT, AND, OR, XOR, IMP, and EQV

57

Ka
yp
roJ
ou
rna
l

Defining Logical Functions

Logical functions are defined, using true/false states for the
different variable types.

For types real.double, real, and fixed,

a value of zero is false;
a value not equal to zero is true.

If logical functions are used to return a value, the values are:

-1 for true
0 is returned for false

With type integer, the same basic rules apply, but logical
operations are done bit-wise instead of considering the number as
a whole.

For integer, the test for true/false 1s done for the number as~
whole.

When using integers, use the value of
-1 for true and

0 for false.

String type and char type are the same except that, when
considering a string, only the first character is looked at.

Simply, if the letter is of the set, (T,t,Y,y),
then the string or char is considered to be true,
else it is false.

Remember, integer is done bit-wise. For all other types , the
variable as a whole is considered.

58

Ka
yp
roJ
ou
rna
l

Operator

NOT

AND

OR

XOR

IMP

EQV

TRUTH TABLE FOR LOGICAL FUNCTIONS

Example

NOT Q

Q AND X

Q OR X

Q XOR X

Q IMP X

Q EQV X

Meaning

The logical negative of Q.
If Q is true, NOT Q is false.

The logical product of Q and X.
The function is true if, and only if,
Q and X are true.

The logical sum of Q and X.
Function is false if, and only if,
Q and X are both false.

The logical exlusive OR of Q and x.
Function is true if either Q or Xis true,
but false if both are true or both are false.

The logical implication of Q and X.
Function is false if, and only if,
Q is true and Xis false.

Equivalent function.
Has the value true if Q and X
are both true or both false.

It is possible for a logical expression to be broken into several
subexpressions.

Q X

T T
T F
F T
F F
T
F

Q

TRUTH TABLE SUMMARY

T stands for true, and F stands

AND X Q OR X Q XOR X Q EQV X

T T F T
F T T T

F T T F
F F F T

59

for false.

Q IMP X

T
F
T
T

NOT Q

F
T

Ka
yp
roJ
ou
rna
l

Relational Symbols

Relational symbols test the relationship between two arguments.
They return a value of true or false, depending upon whether the
relation is true. The relational symbols are as follows:

Symbol Example Meaning

= Q = X Q is equal to X
< Q < X Q is less than X
> Q > X Q is greater than X
<>,# Q <> X Q is not equal to X
<=,=< Q <= X Q is less than or equal to X
>=.=> Q >= X Q is greater than or equal to

60

X

Ka
yp
roJ
ou
rna
l

CONTROL STATEMENTS

In this section, we will be concerned with the control and
transfer of control in a program.

In Structured BASIC, normal statement execution continues from
one source line to the next. This flow of execution can be
controlled by the programmer, using several statements that
either:

direct control to be passed to another line
or
direct a block or group of statements to be executed
zero or more times.

The GOTO Statement

The simplest example of the transfer of control is the GOTO
statement, using GOTO or GO TO. The following statement
transfers control to the line labeled with <line number>.

GOTO <line number>/ GO TO <line number>

Example: GOTO 57
GO TO 0ALPHA

You may want to review the information on line numbers in the
section on Notation.

The GOSUB and RETURN Statements

The GOSUB (GO SUB) statement:

GOSUB <line number>/ GO SUB <line number>

passes control to a subroutine. The subroutine begins with the
line number referred to in the GOSUB statement where there are
one or more statements to be executed. It ends with a RETURN
statement which returns control to the line following the GOSUB
statement.

61

Ka
yp
roJ
ou
rna
l

When the GOSUB is executed, control is transferred to <line
number>. But, unlike a GOTO, it is possible to "return" to the
statement that directly follows the GOSUB.

Example:

GOSUB 100
PRINT A

100 REM Arithmetic Mod z subroutine
A=(X+Y)
A=A-(A/Z)+Z
RETURN

In the above example, control is transferred to line number 100,
where some statements are executed (the subroutine). Then, when
the RETURN statement is encountered, control is returned to the
statement right after the GOSUB that called the subroutine (such
as the PRINT A statement in the example above).

The computed GOTO and GOSUB are as follows:

ON x GOTO <line number>{,<line number>}
ON x GOSUB <line nurnber>{,<line number>}

"x" is an integer expression that should evaluate to a value from
1 to the number of <line number>s in the statement. Should x be
out of range, then the next statement will be executed.

The CASE statement and the FOR ... NEXT statement described later
in this chapter place information on the run-time stack. This
allows an optimization for speed and efficiency that would not be
possible otherwise.

A program should not GOTO or GOSUB out of a FOR NEXT or CASE
structure. Doing this will leave information on the run-time
stack, thus accumulating garbage on the stack. Additionally, if
a RETURN is executed within such a structure, the return address
may be lost.

However, due to the advanced control structures of S-BASIC, it is
a simple matter to avoid this. Please see the section on FOR ...
NEXT for a general example of this.

62

Ka
yp
roJ
ou
rna
l

The ERROR Statement

There are two types of errors:

Nonfatal

Fatal

An example of a nonfatal error is when an error is made
while entering a number in response to an INPUT
statement. Nonfatal errors will only give a warning.

Nonfatal errors will not be trapped by the ON ERROR
statement.

An example of a fatal error is division by zero.

If the error is fatal, then an error message is printed,
and control is passed to the operating system.

ON ERROR OFF/GOTO <line number>

With this statement:

the fatal error message is not printed,
and control is transferred to <line number>
or, if OFF is used, then normal error processing is resumed.

Both nonfatal and fatal errors generate a message and place a
code in a location in memory.

Once an ON ERROR statement is executed, it is active throughout
the program until another ON ERROR statement changes the <line
number> destination of an error.

The run-time stack pointer is reset. This causes the loss of any
data on the stack, i. e., FOR NEXT loop control information,
returns for a GOSUB, procedures, functions, and any other
statement that uses the run-time stack.

The ON ERROR GOTO statement resets the stack. It should not be
executed in statements that use the stack. For example, do not
place this statement within a FOR NEXT loop. Its execution, even
staying within the loop, will corrupt the loop control
information on the stack.

63

Ka
yp
roJ
ou
rna
l

ERROR CODES AND MESSAGES (RUH-TIME)

When the following messages are printed on the console, they are
followed by: ERROR

If line numbers are known, then 'IN LINE xxxx' is also added.

When the error is not fatal, then 'WARN I NG ONLY' 1 s ippended.

Code

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24*
28*
29*
31*
33
37
38

Message

LOG <==0
CHAIN/EXECUTE OPEN
S-TYPE FILE NOT FOUND
R-TYPE FILE NOT FOUND
S-TYPE FILE CLOSE
R-TYPE READ
EXTENDING FILE
END OF DISK DATA
RANDOM RECORD
R-TYPE FILE NOT OPEN
NO MORE DIR SPACE
READ/WRITE PAST EOR
S-FILE WRI'rE
WRITE ON UNOPENED FILE
READ PAST EOF
READ ON UNOPENED FILE
<F> DIVISION BY ZERO
OVERFLOW/UNDERFLOW
OUT OF STRING DATA
OUT OF NUMERIC DATA
<RS> DIVISION BY ZF.RO
<RD> DIVISION BY ZERO
SUBSCRIPT OUT OF BOUNDS
STRING INPUT
NUMBER TOO LARGE/SMALL
INSUFFICIENT INPUT
TOO MANY CHARACTERS. MAX IS 255
*** OUT OF MEMORY ***
BAD CHANNEL NUMBER
INPUT FILE READ

The code is placed in memory. This location in memory is 103H.
It can be accessed using the BASED data location type.

BASED ERROR.CODE=INTEGER
BASE ERROR.CODE AT 103H

Now, when an error is encountered, the coded value (each error
has its own value) can be accessed, using ERROR.CODE.

64

Ka
yp
roJ
ou
rna
l

This value will only be changed by the run-time if another error

occurs.

This could be used when processing an ON ERROR statement
or after an INPUT statement
to see if the user had trouble when typing in the response.

The REPEAT UNTIL Statement

Please review the section on expressions.

Remember, when <statement> is called for, the block structure,
BEGIN ... END, may be used.

REPEAT <statement> UNTIL <expression>

<statement> is repeated until <expression> is true. For example:

REPEAT
BEGIN

END
UNTIL X>6

PRINT "STILL LESS THAN"
X=X+l

Note that the REPEAT statement may be broken up by a carriage
return line feed sequence onto several lines. The point where
this is permitted is after the REPEAT and just before the UNTIL.

In a REPEAT statement, the <statement> will be done at least
once.

You may RETURN or GOTO out of this statement.

The WHILE DO Statement

Another statement for controlling the execution of a <statement>
is:

WHILE <expression> DO <statement>

The <expression> is checked for truth.
If it is true, then <statement> is done.
Therefore, <statement> may never be executed.

This statement may be broken up in the same manner as the
REPEAT ... UNTIL after the DO.

65

Ka
yp
roJ
ou
rna
l

You may RETURN or GOTO out of this statement.

WHILE A>B OR C<D DO
BEGIN

<some statements>
END

Use of the REPEAT statements guarantees that <BODY> will be done
at least once. If this is not necessary, a WHILE loop could be
used.

The CASE Statement

To select a single <statement> or block structure for execution
from among many.

CASE <expression> OF
<exprl>:<statement>
<expr2>:<statement>

<exprn>:<statement>
END

In this statement, <expression> 1s evaluated and compared for
equality with <exprl>.

If they are equal,
then the <statement> with <exprl> is executed, and
control is passed over the rest of the CASE statement,
past the END,
and to the rest of the program.

If they are not equal,
then the :<statement> is passed over
and <expr2> is checked for equality.

If this test is good,
then <statement> is executed,
and control is passed out of the CASE structure.

This continues until a match with one of the <exprn> is found or
the END statement is reached.

66

Ka
yp
roJ
ou
rna
l

<exprl>, <expr2>, <exprn> are all expressions of type equal to
<expression>. For example:

"YES":

"NO":

CASE RESPONSE OF
BEGIN

<the yes branch>
END

<the no statement>
END

You cannot RETURN or GOTO from within a case statement to outside
a case statement.

An otherwise clause can be made by setting <exprn>=<expression>

The IF ... THEN Statement

Another form of conditional testing and branching

IF <expression> THEN <statement l> (ELSE <statement 2>]

If <expression> is true, then <statement l> is done.

If the ELSE clause is present, then <statement 2> is done if
<expression> is false.

The statement may be broken up onto several lines after the THEN
and before and after the ELSE. For example:

IF A=B AND C>D THEN PRINT "TRUE" ELSE PRINT "FALSE"

IF RESPONSE THEN RETURN
ELSE PRINT "NOT DONE"

IF Q<>B THEN

ELSE

BEGIN
<some statements>

END

BEGIN
<some more statements>

END

A short form of the IF ... THEN uses a line number to replace
<statementl>. This is the same as if <statementl>= GOTO <line
number>. Example:

IF RESPONSE THEN 2037

Please note that, in the IF statement, it is "ok" to GOTO or
RETURN out of a block.

67

Ka
yp
roJ
ou
rna
l

The IF statement is sensitive to blank lines. The following will
not process correctly:

IF <exp> THEN <statement>
ELSE

<statement>

No else clause, a null statement (a blank line) is a statement to
the compiler.

The FOR ... NEXT Statement

To re-execute a group of statements a fixed number of times with
a specific increment value.

The form of the statement is:

FOR <name>=<expl> TO <exp2> [STEP <exp3>]
<body>

NEXT [<name>]

In this statement <name> is an index variable that is used as the
counter in the FOR ... NEXT loop. Its type determines the type of
the three expressions <expl>, <exp2>, and <exp3>.

<expl> is the starting value of the index or loop counter <name>.

<exp2> is the terminal value. That is to say, <name> shall not
exceed <exp2> during the execution of the loop.

If STEP is given, it determines the value that is added to <name>
for each repetition of the loop.

If this value is positive, then the loop counts up.

If the value is negative, then the loop counts down by step
value.

When STEP is omitted, a default value of +l is used.

<body> refers to a grouping of statements not unlike the grouping
found in a BEGIN ... END block. There may be any number of
statements including more FOR ... NEXT statements {nesting).

The key word, NEXT, functions like the key word, END, in that it
forms a frame around the statements that are to be repeated or
looped.

With the NEXT statement, the <name> need not be specified. The
NEXT always refers to the next nest or loop. iname> can be

68

Ka
yp
roJ
ou
rna
l

given, if the loop is long, and the programmer wishes to help
indicate which FOR he is referring to. A check is not made to
insure that <name> refers to its matching FOR. <name> is treated
like a comment by the compiler.

It should be noted that <exp2> is evaluated once when the loop
control is set up.

Some examples:

VAR LETTER=CHAR
VAR INDEX=INTEGER
VAR X.STEP=REAL

1) FOR LETTER=FIRST.LETTER TO LAST.LETTER
<body>

NEXT

2) FOR INDEX=l TO 10
PRINT INDEX

NEXT INDEX

3) FOR X.STEP=l TO 10 STEP .01

4) PRINT X.STEP
NEXT

5) FOR LETTER='A' TO 'Z'
<body>

NEXT LETTER

In the FOR ... NEXT loop #1 above:

the variable, LETTER, takes on the value of FIRST.LETTER,

<body> is executed,

and LETTER is moved on to the next letter in the ASCII set
until LAST.LETTER is reached.

In loop #2, a value called INDEX is stepped from 1 through 10,
i.e., the loop is executed 10 times. With this statement, the
numbers 1 through 10 would be printed on the console device.

In statement #3, a variable called X.STEP is started with a value
of 1 and indexed to 10 by a step value of .01. This means that
the loop will be executed 1000 times (10/.01).

For an explanation of statement #4, see the section on procedures.

69

l

Ka
yp
roJ
ou
rna
ll

In the FOR ... NEXT statement starting on statement iS above:

the variable, LETTER. is started at the value of 'A',

<body> is executed,

and the NEX1' statement is reached.

LETTER is moved on to the next letter in the ASCII set
until z is reached.

<body> is executed then for each letter from A to Z with
LETTER being set to the value of the letter during the
looping.

In this statement:

FOR X.STEP=l0 TO 1 STEP -.01
PRINT X.STEP

NEXT

the function of this statement is to step through the loop 1000
times by a step value of .01. The main difference between this
statement and the one above is that the counting is done
backwards. The value X.STEP starts out at 10 and counts down to
1 by increments of .01.

Remember not to RETURN or GOTO out of a FOR ... NEXT statement. If
that type of construction is necessary (for example, when
translating from another BASIC), it is possible to substitute a
general construction. Thus:

FOR X = EXPl TO EXP2 STEP EXP3
<BODY>

NEXT

Becomes:

X=EXPl
REPEAT
BEGIN

<BODY>
XaX+EXP3

END
UNTIL X>EXP2
X=X-EXP3

Of course, much simpler constructions are possible for specific
examples. The above is general for the purpose of demonstrating
the technique.

70

Ka
yp
roJ
ou
rna
l

I

CHAIN AND EXECUTE Statements

Often, it is desirable to load a BASIC program from disk under
control of another BASIC program.

It is also desirable to preserve arrays and variables during the
loading and executing of the other BASIC programs and maintain
the symbolic reference in the program.

Such arrays and variables are created with the COMMON statement
and the DIM COM ... statement.

During the loading and executing (chaining) of BASIC programs,
these variables remain intact with their run-time values
unchanged.

(It should be noted that CHAIN will only work with BASIC programs
produced by the S-BASIC compiler.)

COMMON variables need not be declared for two programs to chain
each other in and out of memory.

When chaining, the number and type of COMMON variables and/or
arrays must match exactly, i.e., they each must have the same
number of COM and DIM COM statements, and be in the same order as
each other. If they are not be in order, then a CHAIN error will
occur. This is a fatal error.

CHAIN Statement

A BASIC program can load and execute another BASIC program using
the following statement:

CHAIN <file name>

Where <file name> is the name of the file in a valid operating
system format. <file name> may be an expression, and its type is
string. For example:

CHAIN "LDF.COM"
CHAIN LOAD.FILE
CHAIN COMMAND.FILE+".COM"

Where the string variable, LOAD.FILE, holds the file name to .be
loaded and executed.

A program may chain back to the program that invoked it or to
another BASIC program. CHAIN always starts execution of the
program at the beginning.

71

Ka
yp
roJ
ou
rna
l

When the end of program is reached, or a STOP statement is found,
the chained program returns control to the operating system.

EXECUTE STATEMENT

To load and execute any .COM file and then regain control of the
system from a BASIC program, the following statement may be used:

EXECUTE <expressionl>[,<expression2>]

In this statement, <expressionl> is of type string and should
evaluate to an operating system file name with an extent of .COM.

If <expression2> is given, it is of type string and should
evaluate to a valid operating system command line. This command
line is executed AFTER the file specified by <expressionl> is
loaded, executed, and has returned control back to the operating
system.

Even if the file specified by <expressionl> is not found or an
error is generated, the command line given by <expression2> is
still executed so that control can be returned to your program in
the event of an error. For example:

EXECUTE FILE.NAME,COMMAND.STRING
EXECUTE "A:SORT.COM"
EXECUTE "A:SORT.COM","B:MENU"

In the above examples, FILE.NAME and COMMAND.STRING are string
variables.

The file specified by FILE.NAME will be loaded and executed.

Upon completion, the COMMAND.STRING will be executed as a system
command.

The command string given by <expression2> is controlled through
the SUBMIT facility of the operating system.

As such, it is restricted in the same way, i.e., the statement
should be executed while the system is logged in on drive A.

For further information, see your operating system manuals.

EXECUTE does not preserve the common data structures.

CHAIN and EXECUTE look for the file as given in the argument.
For example, under CP/M, if you do not append a .COM to the
file name, it will try to load a file with a blank extent. This
can be useful in preventing program modules from being run out of
sequence. Also, CHAIN and EXECUTE allow lower case file names.

72 (
\

t

Ka
yp
roJ
ou
rna
l

INPUT/OUTPUT

I/0 Devices

Data quantities are entered into a variable at run-time, using
the INPUT statement.

Data quantities are printed on a physical device, such as a CRT
screen or printer, using the PRINT statement and the TEXT
statement.

Below is a table of the physical devices connected to each I/0
channel.

Channel # Input Output

0 Console Console
1 Dummy List
2 Dummy Punch
3 Reader Dummy
4 Console status Dummy
5 Keyin Keyout (Dummy)

Above, where Dummy is specified, it refers to a nonexistent
device.

Input from the input devices is terminated with a RETURN or
ESCAPE or having the carry bit set in the program status word.

If an ESCAPE is used to terminate a line, it will be stored as
part of the line.

The device key-in will return the ch~racter typed if a key is
down; otherwise, it will return a 0, with the carry bit set in
the PSW. The effect of this is that an input can be done to see
if a key has been pressed.

Data quantities are entered into the run-time package produced by
the compiler via these channels. The BASIC statement that
directs this activity is the INPUT statement.

Designating an I/0 Source

INPUT [#<exp>;] [11 <prompt>" ,/;] <name> {,<name>} [,/;]

Where <exp>, if given, is an integer expression designating one
of the I/0 channels listed above as the source of input data.

If <exp> is not given, then a default device of 0 will be used;
this is the console.

74

Ka
yp
roJ
ou
rna
l

The <prompt>, if included in the statement, will precede the
input statement's request for data. The input statement requests
data from the user with a ? prompt (see below for exception).

The <prompt> must be followed with either a comma (,) or a
semicolon (;). If the semicolon is used, then the input request
will be placed in the character position directly after the
<prompt>. If the comma is used, then the input request will be
placed in the next tab position.

Tab positions are set at every 14 character positions.

At least one <name> must be given.

The information entered from the device given by <exp> is
converted into internal format according to the <name>'s type and
stored at <name>.

<name> may then be followed by a comma and more <name>s to be
entered.

This list of <narne>s may be ended in one of three different ways.

* With a return-line-feed, which will continue to the next line
of the device.

* With a comma, which will tab to the next tab setting.

* With a semicolon, which will do nothing (stay put).

Generally, the S-BASIC run-time prompts the user with a question
mark, accepts the input, and terminates this with a return and a
line-feed to the next line on the device. Both the question mark
generation and the moving to the next line can be controlled by
the INPUT statement. The key word, INPUT, is substituted with
one of the below to give the desired effect:

Generates a Generates a return
question mark prompt to the next line

INPUT Yes Yes

INPUTl Yes No

INPOT2 No Yes

INPUT3 No No

75

Ka
yp
roJ
ou
rna
l

When more than one data item is to be entered (i.e., more than
one <name> in the input list), then the items are separated with
commas.

If the items being entered are strings which include commas, then
they must be enclosed in double quotes.

Single characters must be separated with commas.

There are two special cases of the above:

1. If only one <name> is given to the input list, and its type
is string, then everything the user types is entered into the
string. No commas or quotes are needed, and, if typed, will
be entered into the string.

2. If only one <name> is given as above, and its type is char,
then only one key press will be required; an ESC or RETURN
will not be necessary.

Some examples of the use of the INPUT statement:

VAR A=REAL
INPUT A

This will enter a number in real format and store it in A.

VAR B=REAL
INPUT A,B

Enter two reals separated by commas, and store at A and B.

VAR LETTER=CHAR
VAR REAOER=INTEGER
READER=3
INPUT3 #READER; LETTER

Get a byte from the reader device.

VAR CHECK.AMOUNT=FIXED
INPUT2 #0; "Enter amount of check $'';CHECK.AMOUNT

Enter a dollar amount, and store it at CHECK.AMOUNT. Channel #0
is the default and need not be specified. It is done here for an
example.

When variables are entered, using the INPUT statement, they are
first entered into a buffer, then converted into the run-time
format. While the text is being entered into the buffer, several
editing functions can be used to make corrections before
conversion. They are:

76

Ka
yp
roJ
ou
rna
l

Echo

1. Control-U - to delete the current line typed in and
begin anew.

2. Control-R - the computer prints what has been entered
into the buffer.

3. If a terminal that will use ASCII BS is being used for
input, an ASCII BS may be typed to delete the last
character typed.

4. If the console does not use ASCII BS, then an ASCII DEL
(rub out) may be used to delete the last character
typed.

As each character of input is typed by the user, it is 'echoed'.
This action can be turned on and off by using the statement:

ECHO ON/OFF

The INPUT statement generally will return to the operating system
if a control--c is typed during type-in.
This feature can be turned on and off with the following
statement:

CONTROL.C.TRAP ON/OFF

It is initially on.

Input Only

A special "input only" channel is provided for use when an SBASIC
run-time file is loaded with a second file name. This channel is
#9 and can be used to "read" the file specified in the command
line. This is the file which is set up in the default FCBN at
SCH. The input only status and the way the file is used can be
changed by entering changes into the I/0 routine, "USERLIB".

REM DUMP TEXT FILE TO CONSOLE
VAR LETTER=CHAR
LETTER=0DH
WHILE LETTER <>lAH DO BEGIN

PRINT LETTER;
INPUT #9;LETTER

END

To run this program, assume a name of DUMP.

A> DUMP FILE

77

Ka
yp
roJ
ou
rna
l

Output (Printing)

Data is sent to a device (printed), using the PRINT statement.

PRINT [#<exp>;] [<expl>{,/;<expl>}[,/;]]

<exp>, if given, refers to an I/0 channel from above; it is an
integer expression.

If not given, then output is sent to the console (device i0}.
<expl> is an expression of any type. See section on Determining
the Type of Expression.

This expression may be followed by a comma (,} or a semicolon
(;) .
A comma will cause the print position to be moved to the next tab
stop.

A semicolon will cause the print position to advance to the next
print position.

A PRINT statement without an expression list will generate a
blank line, or if some commas are in the statement, will cause
the print head to move to the next print tab stop.

Some examples:

VAR LIST=INTEGER
LIST=l
PRINT iLIST;A,B;

Will print reals A and Bon the list device supressing the return
to the next line.

PRINT #LIST;A,B,

Same as above, except moves to next tab stop after printing B.

PRINT iLIST

Generates a blank line on the list device.

78

Ka
yp
roJ
ou
rna
l

Changing the Destination of the Output

A use for #<exp> is to change the destination of the PRINT
statements output at run-time.

LIST = 1
CONSOLE = 0
INPUT "HARDCOPY";RESPONSE
IF RESPONSE THEN DEVICE=LIST ELSE DEVICE=CONSOLE
PRINT #DEVICE; JUNK

If a device is not given (i.e., <exp> above), then the rlefault
print device is the console (device #0).

I/0 statements set up the I/0 channel once at the beginning of
the statement to conserve code generation. For example, the
PRINT statement sets up the channel to be used for output
once--just before the first expression is evaluated. Thus, if
one of the expressions to be printed is a call on a user-defined
function that changes the 1/0 channel, from that point on, the
PRINT statement will send its output to the wrong channel.

If the following statements are used, the default destination can
be changed. The statement:

LPRINTER [<integer canst>]

will cause the default print device to be changed to #1 if
<integer canst> is not present.

If <integer canst> is present, then that will become the default
print device, and will be used from then on when LPRINTER is
encountered.

The statement:

CONSOLE [<integer canst>]

can be used to change back to the console as the default print
device.

<integer canst> can be given to change the default setting of #0.

LPRINTER and CONSOLE are compile-time statements and have no
effect at run-time.

79

Ka
yp
roJ
ou
rna
l

In the statement:

IF A=B THEN LPRINTER

LPRINTER will •texecute" regardless of the logical state of the IF
expression A=B.

LPRINTER is a compile time statement.

You may change the I/0 channel used at run-time by using the
#<exp>; form of the PRINT statement. See above, starting "A use
for #<exp>".

The TEXT Statement

When large blocks of text need to be sent to a device (for
example, when giving instructions on how to run a program), the
TEXT statement can be used to compose the text just as it will be
printed without the bothersome PRINT statement. The form of this
statement is:

TEXT <channel>,<delm><text><delm>[,/;]

In this statement, <channel> is an integer constant for the
compiler that specifies where the text is to go.

<delm> can be any printing character and is used to frame <text>.

<text> can be any number of lines and any characters, not
including <delm>.

The second <delm> is to be the same character as the first <delm>
and tells the compiler that the end of the output text has been
reached.

The comma and the semicolon, or lack of, function just like the
print statement ending.

The following is an example of the TEXT statement.

TEXT 0,&

A menu might look like this:

1. Do something
2. Do something else
3. Do nothing
4. I do not want to respond

80

Ka
yp
roJ
ou
rna
l

And still more is possible. The need for a bunch of print
statements is gone. Just one text statement and easy formatting
is at your command. For, with the TEXT statement, you enter the
text just as it will be displayed. No need to cope with the
offset caused by the PRINT statement. And it's fast.

&

The character"&" is used as the <delm> and frames the <text> of
the TEXT statement in this example. This example sends the
<text> to the console.

The PRINT USING Statement

A PRINT statement generally outputs numbers and strings in a free
format that is left justified. The exception to this is when
printing fixed point numbers. Often, it is desirable to employ a
specific format for the printout.

The PRINT USING statement is provided for this purpose.

The statement contains a format specification that controls the
area in which printing takes place.

A format string is composed of two basic fields:

*afield to control the printing of numbers

*afield to control the printing of strings

Both fields need not be specified, if numbers only or strings
only are to be printed by a statement.

Between these fields are literal data that is printed as found in
the format string.

The form for printing, using a format string, is:

PRINT USING <string exp>;<print list>

With a general form for the PRINT statement:

PRINT [USING <string exp>;J [*<integer exp>;] [<print list>]

The format string is <string exp>.

This format string is scanned from left to right to seek a format
field.

81

Ka
yp
roJ
ou
rna
l

The type of field, string or numeric, is determined by the print
list.

Characters that are found before encountering the desired format
field are printed (literal data).

Therefore, the <string exp> is an image of the line to be
printed, with the exception of the formatting characters, or
field. This will be further explained after a discussion of the
for mat fields.

String Fields

String fields control the printing of a string from the print
list.

A one-character field, a fixed-length field, or a variable-length
field can be specified.

An exclamation mark is a one-character format field. It
specifies that the string from the print list is to be printed in
one character position.

If the string is empty, then a space is printed.

If there is more than one character in the string, only the first
character is printed.

PRINT USING"!. "; "John 11 ,"Doe"

would output:

J. D.

The period and space in the format string are treated as literal
data; they are not part of the format field.

When the end of a format string is reached, it is re-used.

82

Ka
yp
roJ
ou
rna
l

I
Jhe slash mark is used to format a fixed-length field, when
printing a string.

It is specified by a pair of slash marks separated by 0 or more
characters.

Both slashes count for a character position.

Thus/ ... / would reserve 5 spaces for a string to be fitted into,
when printed.

If the string is less than the length specified, it is filled
with spaces on the right.

If longer, then the print string is cut off.

PRINT USING"/ ... /"~ "JO","GILBERT"

would output:

JO GILBE

&
The ampersand is a one-character format field.

It specifies that the string is to be printed as is, or in a
variable-length field.

Numeric Fields

Numeric fields are used to control the printing of numeric data.

It is generally not necessary to format fixed point numbers, as
they already print in a format style.

However, by using formatted print, it is possible to "see'' the
last digit which is normally not printed, due to the rounding of
fixed point numbers when displayed. (See the section in Data
Types starting F SDDDDDDDD.DDD)

In general, the format field specifies how many digits are to be
printed before the decimal point and how many are to be printed
after the decimal point. Also, floating dollar sign, trailing
sign, asterisk fill, exponential format, and others can be
specified.

83

Ka
yp
roJ
ou
rna
l

The pound sign reserves one digit position for the number to be
printed.

There may be one decimal point within these"#" to indicate where
the decimal point is to be printed.
Leading zeros are replaced with spaces.

Format Number Printout

12 12
##.# 12 12.0

###.## 12.456 12.46
500 %: 500

As can be seen, the number is rounded to fit within the formatted
field.

If the number will not fit, it 1s printed with a"%" symbol.

L
A comma may be inserted one or more times before the decimal
point.

The effect is to cause the printing of a comma every 3 decimal
places.

Each comma takes up a digit position.

So, though one comma in the format field will cause comma
insertion, it is best to use a comma for each occurrence, so as
not to use up"#" digit positions from above.

+
The plus sign may be used at the beginning of a numeric format
field or at the end of a numeric field. It indicates that the
sign of the number is to be printed.

A plus sign is printed if the number is positive.

A minus sign is printed if the number is negative.

The hyphen may be used like the plus sign. The difference is
that, if the number is positive, a space is printed.

84

Ka
yp
roJ
ou
rna
l

**
.Two asterisks, when placed at the beginning of a numeric field,
specify that leading zeros are to be·replaced with an asterisk.
Normally, leading zeros are replaced with spaces.

$$
Apair of dollar signs placed at the beginning of a numeric field
is used to generate a floating dollar sign. That is to say, the
dollar sign is floated through leading spaces to the first
character position before the number.

**$
The character sequence**$ at the beginning of a numeric field
generates both asterisk fill and a floating dollar sign.

The*, which is located in the first character position before
the number, is replaced with a$.

Exponential Format

One or more A following the format field will specify that the
number is to be printed in exponential format.

Comma insertion is not allowed.

The decimal point may be fixed anywhere within the format field.

The number 1s left justified, and trailing spaces are filled with
zeros.

The exponent is printed in the fo~m "Esdd' 1 , where E stands for
"times ten to the" and "s" is the sign (-,+). The "dd" stands
for the digits of the power function. Thus, the printout 5E+l2
would be read as "Five times ten to the 12th power''.

Providing for the Escape of Characters from Format Control

When it is necessary to print one of the above characters,
whether from the string type or numeric type, the character can
be made to escape from format control. For example, to print a#
before a number, the# would have to escape being part of the
numeric format field.

The procedure is to type a backslash followed by the character to
be escaped.

85

Ka
yp
roJ
ou
rna
l

Some examples:

0001:
0002:
0003: 0000
0004:
0005:
0006:
0007:
0008:

var f=string
var x=real
input f
input x
print using f;x
goto 0000
end
****** End of program******

r
86

Ka
yp
roJ
ou
rna
l

? ttllll.11
? 12

12.00
? ttt.lt
? 5.555

5.56
? It
? 5000
% 5000
? lt,tll,tltl.lt
? 12345

12,345.00
? +ttt.tl
? 12

+12.00
? flt.II+
? 12

12.00+
? lit.It+
? -12
12.00-
? Ill.It­
? 12

12.00
? ttl.tl­
? -12

12.00-
? **tlltll.tt
? 12
******12.00
? $$1ttttt.tt
? 12

$12.00
? **$1tttt.tl
? 12
*****$12.00
? **$llttt.tl
? -12
****$-12.00
? ti.ti
? 123.45
12.35E+01
? Literal data tttt.lt
? 12
Literal data 12.00

? Literal data with escape \11111.11
? 12
Literal data with escape I 12.00
? Pay **$,111,111.11+
? 123456
Pay ***$123,456.00+

87

Ka
yp
roJ
ou
rna
l

0001:
0002: 0000
0003:
0004:
0005:
0006:
0007:

var f,x=string
input f
input x
print using f;x
goto 0000
end
****** End of program******

? Single character field
? Print string
Single character field P
? Fixed length field/ ... /
? Gilbert
Fixed length field Gilbe
? Any length &
? Any string
Any length Any string
? I .. . /The end
? k
k The end
? & after format
? Test
Test after format
? & after format &
? Test
Test after format

When printing is finished, what literal data is left in the
format string is printed. This can be seen above in the last few
examples.

Reading Data

Data need not come from INPUT statement. It can be included in
the program and read during run-time. This is done by using one
of three BASIC statements.

1. DATA <ASCII data>
This statement stores ASCII data in the program for use at
run-time.

All data statements must appear together in the program.

The ASCII data is saved in memory in a compacted form by
removing all the spaces from the ascii data.

The exception to this is data enclosed in double quotes.

The programmer may include as many spaces and/or tabs as
desired to improve readability without taking up room in the
run-time package.

88

Ka
yp
roJ
ou
rna
l

Data items in the ASCII data should be separated by commas
just like data for an INPUT statement.

All data statements must be together.

Examples:

DATA 5,6,-204,line,data,"line with spaces"
DATA a,b,c,d,e,f,g,h,i,j,k,l

2. Data is read from the data list generated by the DATA
statement, using the READ statement.

Items are read from the beginning to the end of the list.

Example:

READ <name>{,<name>}

Here <name> is a variable that is to be stored with the
current value in the data field.

The data should make some sense for the type of <name>.

3. As items are read from the data list, a pointer is moved
through the list to determine what item is to be READ next.
This pointer can be moved to point to the beginning of the
data field or to a particular DATA statement.

BEFORE data can be read, the pointer must be positioned,
using the following statement:

RESTORE [<line number>]

where <line number> is a line number of a data statement at
which the pointer is to be positioned.

If <line number> is omitted, then the pointer is set to the
first data statement in the program.

89

Ka
yp
roJ
ou
rna
l

DISK FILES

This chapter is about the storage and retrieval of data from the
disk.

Storage Area of Disk

A disk is divided into three different regions:

* operating system area

* directory with information on the file name, its location
on the disk, its length, etc.

* data storage area

Data is written to and read from the data storage area under the
control of the operating system, using the information in the
directory to keep track of where the data is to go to or come
from.

Disk Statement Types

There are three classes of disk statements in S-BASIC:

* One type deals with the setting up of memory buffers for
the operating system. This is where data comes from or
goes to during a disk transfer.

* Another set of statements manipulates the directory.

* The third group brings this all together to accomplish the
final transfer of data to and from the disk.

Access to Data

There are two basic types of files and data transfers:

* Random access

* Serial access

All disk I/0 (input/output) is done through file channels.

These channels are another set of channels from those used in the
INPUT and PRINT statement. Each channel is defined as to its

90

Ka
yp
roJ
ou
rna
l

type, random or serial.

Files

1. The files statement may use expressions of type integer for
the <size> argument.

FILES R/S (<SIZE EXPRESSION>){ .R/S(<SIZE EXPRESSION>) }

2. The OPEN statement may change the size of the disk buffer by
adding an expression of type integer.

OPEN #<channel>;<expression>,<size expression>

FILES R/S (<SIZE>) { ,R/S (<SIZE>)}

where the first channel number is 0.

In the statement above:

R - defines the file channel as random access.

For a channel defined as random, <size> is an integer
expression which determines the number of bytes per record.

If <size> is a multiple of 128 bytes, a special optimization
is possible that enhances the speed in which data moves to
and from the random record on the disk.

s - defines a channel as serial, and <size> will determine the
length in sectors of the disk I/0 buffer for this channel.

some examples of the FILE statement:

FILES R(l28) ,R(4) ,S (1) ,S (2) ,R(917)

FILES R(RANDOM.BUFFER.SIZE),S(SERIAL.BUFFER.SIZE)

FI LES R (12 8) , R (2 5 6) , S (1)

In the first statement:

Channel 10 is a random file with a record length and memory
buffer length of 128 bytes.

Channel #1 is a random file with a record length of 4 bytes.

Channel 12 is a serial file with a buffer length of 1 sector.

Channel #3 is a serial file with a buffer length of 2 sectors.

91

Ka
yp
roJ
ou
rna
l

Channel #4 is a random file with a record length of 917 bytes.

The maximum number of channels is 32.

One FILES statement per program is allowed.

The channels defined with this statement may be used more than
once for different files, by use of the OPEN and CLOSE
statements.

A FILES statement only defines the type of file for a given
channel.

CREATE <expression>

Before anything can be done with a file, it must exist in the
directory.

The CREATE statement will create an entry in the directory with
the name given by the string <expression>. This does not affect
the data area of the disk.

Note: If a file with the name given by <expression> is already
on the disk, nothing will happen.

DELETE <expression>

The DELETE statement deletes the named file specified by the
string expression <expression>. If there is data stored in this
file, the data is lost.

RENAME <expl> TO <exp2>

With this statement, both <expl> and <exp2> are of type string.

The file specified by <expl> is renamed to the name given by
<exp2>.

If the file <expl> does not exist, then no renaming takes place,
and a file named <exp2> is not created.

In either case, the data in the file is not changed.

92

Ka
yp
roJ
ou
rna
l

INITIALIZE

This statement initializes the operating system for a new disk.
It MUST be used whenever a disk is changed.

For further information on these statements, see their
counterparts in your operating system manuals.

Attaching and Detaching Files from a File Channel

For disk I/0 to take place, a file from the directory must be
assigned a file channel from the FILES statement. At the end of
the disk I/0, the file must be detached from the channel or
damage might occur to the data in the file.

A file is attached to a file channel with the following
statement:

OPEN #<channel>;<expression>[,<size>]

Where <channel> is an integer expression specifying one of the
file channels defined with a FILES statement.

<expression> is of type string and should be the same as a valid
operating system file name.

<size> is an integer expression specifying the size of the disk
I/0 buffer and is optional.

The statement enables the file specified by <expression> to be
used for input or output operations.

OPEN #RANDOM.CHANNEL;ACCOUNT

Reading Data from a File

There are two statements used to read data from a disk file:

If the file channel is serial:

READ 4<channel>;<narne>{,<narne>}

Data is read from the file much like data being read using the
READ statement.

The data is read sequentially from the beginning of the file to
the end.

The data can be re-read by re-opening the file.

93

Ka
yp
roJ
ou
rna
l

If the file channel is random:

READ #<channel>,<exp>;[<name>{,<name>}

Read <exp> is an integer expression which is used to read the
record from the file into a buffer.

Note: No <name>s need be given for this to occur.

Thus, it is possible to do direct buffer I/0 with the file. A
common use would be to place based located data types into the
buffer. As disk I/0 progresses, their values will reflect the
changes.

Data can be read from the record into variables much like the
READ statement for the sequential file, except that only the data
in the current record can be read. This is record sequential
access.

writing Data to a File

Data is written to the file much the same as it is read, except
in reverse.
The statements for doing this are:

If the file is serial:

WRITE #<channel>;<name>{,<name>}

<channel> is the integer expression specifying the file channel
to be used.

Data is written to the file one <name> at a time, from the
beginning to the end of the file.

If the file is random:

WRITE #<channel>,<exp>; [<name>{,<name>}

Data is written to the file's record.

<exp> is an integer expression specifying the record number.

If no <name>s are given, then the buffer is written to the file.

94

Ka
yp
roJ
ou
rna
l

Closing the File

Once writing to a file is complete, it must be closed to ensure
that all the disk buffers have been cleared and the directory
updated with any changes made to the file. This is done with the
statement:

CLOSE #<channel>

Where <channel> is the file channel to be closed.

This disconnects the file from the file channel; this channel may
now be used for another file.

95

Ka
yp
roJ
ou
rna
l

THE USE OP RAIIDOM AND SERIAL PILES

Binary is used to store data on file and in memory.

All data types have a fixed length measured in bytes:

Real
Real.Double
Fixed
Integer
Char
String

4 bytes
7 bytes
6 bytes
2 bytes
1 byte
max.len+l

The type string has a length equal to the maximum length of the
string+ 1.

When information is stored on the disk file, each data item takes
up its count of bytes, no matter what the value of the data item.

For example, the number 0 takes up as much storage as 456.

The Pointer

When a file is opened, a pointer is created for that file
channel. The pointer indicates where the next data item will be
read from or written to.

For example, if we open a file, the pointer is set to the
beginning of that file.

If a real data type is read from the file, then the pointer is
set to the fifth byte in the file after the read operation. This
is the next location in the file where data will be read from.

Now, if the same file is opened on ANOTHER channel and used for
writing, then the real that we read can be changed and written
back onto the file right where it was.

Sequential Files

This is handy for updating large sequential files in that, to
make changes, the file does not have to be copied into another
file. It can simply be written onto itself, since the data field
lengths are fixed.

Problems would occur if different data types were written, then
read, or string lengths were changed .

96

Ka
yp
roJ
ou
rna
l

For example, to read a number from a sequential file, the
following statement would be used:

READ #FILE.CHANNEL;VAR.NAME

And the next value in the file:

READ #FILE.CHANNEL;VAR.NAME2

And so on.

Strings

When talking about string lengths, we do not mean the number of
characters in the string, but rather the maximum length the
string can obtain, since the string is padded to the maximum
length.

Updating a File

The technique for updating a large file is to open the file on
two different channels, then read from one channel and write to
the other.

REM UP-DATE A SEQUENTIAL FILE
FILES S(l) ,S(l)
OPEN #0,"FILENAME"
OPEN #1,"FILENAME"
FOR X=l TO EOF

READ #0;VARIABLE.X
REM SHOW THAT THE VALUE CAN BE CHANGED
VARIABLE.X=VARIABLE.X+SOMETHING
WRITE #l;VARIABLE.X

NEXT
CLOSE :#1

As shown above, when a file is opened, it can be used for read or
write mode. However, once an opened file is read from or written
to, its mode cannnot be mixed.

Generally, it is not necessary to close a file that has been used
for reading.

A file may be opened on a channel where a file is already open,
but this action destroys any data in the old file's memory
buffer.

S-BASIC will NOT automatically close a file~ it must be closed
with the CLOSE statement. This helps to prevent needless trips
to the directory.

97

Ka
yp
roJ
ou
rna
l

Random Files

A random file is separated into several parts called records.
Each record can be thought of as a mini sequential file.

The same type of actions described above are possible for a
random file, except that only a single record of the file is
considered.

Remember, the size of a random record is defined in the FILES or
OPEN statement.

READ and WRITE

Variables are read and written directly from and to a random
record as follows:

READ #FILE.CHANNEL,RECORD;VARIABLE.l,VARIABLE.2
WRITE #FILE.CHANNEL,RECORD;VARIABLE.l

As can be seen above, a random file can be read and written to at
the same time. These actions of read and write can be mixed in
any order.

This is different from sequential files, as sequential files can
only be read from or written to, but not both at the same time on
the same channel.

This is possible with random files.

The mode of a random record is: read when reading data, and
write for writing data.

A new record is fetched into the buffer or written onto the file
when the mode changes or the record number is changed.

Therefore, it is possible, for example, to read some data from a
random record in one statement and read some more data in another
statement. This is called record sequential.

READ t:3,R;Xl
READ #3,R;X2

The above statements would read the first variable in record R
and then the NEXT variable in record R. It will not read the
same data into Xl and X2.

The record is treated like a mini sequential file.

98

Ka
yp
roJ
ou
rna
l

The same type of action is possible for writing.

To get back to the beginning of the record, a different record
could be read, or the same rcord could be fetched with a buffer
direct statement (see below).

READ #1,R;X
REM CHANGE VALUE OF X
X=X+l
WRITE #1,R;X
READ #1,R;X

The above example would read X.

The mode at this point is "read", and the record number R.

Then, with the WRITE statement, m-0de is CHANGED to "write".

For this reason, X will be written into the record as the first
data in that record.

In the following READ, mode is again changed so the buffer is
fetched from the file and will reflect the change in the value of x.

When doing random file I/0, it is possible to read and write
variables directly from the record. It is also possible to do
direct buffered I/0. This is done by declaring variables to be
based located.

Remember that a based located variable is not assigned a location
by the compiler, but rather its location is assigned at run-time.

Also, remember that the location of a file's buffer can be found,
using the LOCATION statement and specifying FILE.

Using these statements, variables can be placed in the disk file
buffer.

These buffers can then be read from or written to the random
record, using the READ# and WRITE# statements without any
<name>s. The effect of this is that, when a READ# statement is
executed, that record is fetched from the file and placed in the
disk buffer.

If variables have been placed in the buffer, they will be reflect
the new contents of the buffer.

99

Ka
yp
roJ
ou
rna
l

Likewise, if data is stored into the buffer with assignment
statements and the LET statement and followed by a WRITE#, then
they will be written to the random record.

Not only simple variables of any type can be placed in the
buffer, but arrays of any type can also be placed into the
buffer. It is also permitted to overlay variables on top of one
another. See the section on arrays.

FILES R(8)
BASED X,Y=INTEGER
BASED Z=REAL
LOCATION FILE ADDRESS=#0
BASE X AT ADDRESS
BASEY AT ADDRESS+2
BASE Z AT ADDRESS+4

FILES R(l28}
DIM BASE CHAR X(l27)
LOCATION FILE ADDRESS=#0
LOCATE X AT ADDRESS

To get a buffer:

READ #CHANNEL,RECORD

To put a buffer:

WRITE #CHANNEL,RECORD

In the above examples, based located variables are placed into
the disk file buffer.

A READ statement will read a disk buffer (record), and X, Y, and
Z would be set to the value of the buffer.

A WRITE statement would write the buffer to the disk, and thus
the values of the variables.

When reading and writing a random file using direct-buffered I/0,
leave off the semicolon.

Wrong:
CORRECT:

WRITE #1,X;
WRITE #1,X

The first example uses simple variables. The second uses an
array.

100

Ka
yp
roJ
ou
rna
l

Variables and array(s) may be placed in the buffer in just about
any way the programmer wishes, including on top of each other.

A possible example would be a character array on top of a string.

When strings are placed into a file buffer, be sure the <length>
is not changed inadvertently by a disk read. See the section on
the BASED statement.

The method to expand the size of a file is to append records to
the end of the file, i.e., the last record +l.

Writing out farther than this will have unknown results.

101

Ka
yp
roJ
ou
rna
l

ASCII FILES AND CHANNEL NUMBERS

S-BASIC has been expanded to allow channel numbers to be
expressed as type integer expressions. This includes the
statements READ, WRITE, OPEN, and CLOSE.

This section is concerned with the addition of ASCII files to the
INPUT and PRIN~ statements. The expanded syntax for these
statements concerns only the channel number. The expanded syntax
is:

t<channel number>[,<record number>];

An example of use:

PRINT fCHANNEL, RECORD.NUMBER; A, B, C

Also, the syntax of the FILES statement has been expanded as
follows:

FILES <R/S/RA/SA(<SIZE>)> /D {,<R/S/RA/SA(<SIZE>)> /D}

Example:

FILES D, D, S(l), R(213), SA(l), RA(80+2)

where RA stands for Random ASCII and SA stands for Sequential
ASCII files. Dis used as a place marker for Device.

Before the above can be fully understood, the concepts governing
disk I/0 channels and device I/0 channels must be presented.

Normally, disk and device channels are separate. Channel number
0, when used with the statements REAL and WRITE, refers to the
disk. Channel number 0, when used with the statements PRINT and
INPUT, refers to devices. In other words, disk and device
channels are separate, accessed by different statements.

With the addition of ASCII files accessed through the statement
INPUT and PRINT, the separateness of the channels is violated.
In the above FILES statement, RA and SA are used to set up ASCII
DISK channels. When an ASCII file channel is defined, the device
channel of the same number is LOST! It is important to remember
this. In the above example, FILES statement device channels
number 4 and 5 are lost. In their place are now disk channels.
INPUT and PRINT, when using channels numbers 4 and 5, will talk
to the disk and not to a device. A consequence of this can be
examined, using the following example:

102

Ka
yp
roJ
ou
rna
l

FILES SA(l), SA(l)

In this example, ASCII files are defined for channels number 0
and 1. BUT, these are the channels used for c~nsole and print
device! Remember, that, if an ASCII channel is defined, the
corresponding device channel is lost. This statement destroys
our ability to talk to the console and printer! For this reason,
a dummy place marker has been defined to set aside channels for
device I/0. The dummy marker is 'D'.

FILES D, D, SA(l), SA(2)

The device marker is treated as a comment by the compiler. It
simply reserves a channel as a device channel. Its principle use
is as a program-documenting feature. Please note the following
example:

FILES S(l), S{l), SA(l), SA(l)

Here we have defined disk channel numbers 0 and 1. This files
statement does NOT cause device channels 0 and 1 to be lost.
Device channels are only lost when defining ASCII file channels.
We would ENCOURAGE the use of the device marker, D, in the files
statement. This is to make clear the use of channels. By using
the device marker in the FILES statement, the appearance of
merged disk and device channels can be given.

Note: ASCII file channels may NOT be accessed with the READ and
WRITE disk statements. Also, direct-buffered I/0 is not possible
with ASCII files. For example, the following statement is not
permitted:

PRINT #CHANNEL,RECORD.NUMBER

But the following statement is permitted to generate a return and
line feed sequence:

PRINT #CHANNEL,RECORD.NUMBER;

Please note further that, when inputting from an ASCII file, the
only input statement that can be used is INPUT3. This is because
the disk is not an interactive device. You cannot send it a
prompt, get data, then send it a return linefeed combination.

Also, the input prompt must be left out. Failure to abide by
this will result in a fatal run-time error. An example of a
proper input statement:

INPUT3 #C,R: A,B,C
or

INPUT3 #C; ~,B,C

103

Ka
yp
roJ
ou
rna
l

When doing random ASCII disk I/0, it is permitted (provided
record sequential is enabled) to write more than one logical line
into the record. Therefore, a given record may contain more than
one logical line. A logical line is all characters up to, but
not including, an ASCII return. An ASCII linefeed is assumed
after the return. The print statement will automatically
generate the return linefeed sequence. Before data is accepted
into a record {when writing), the record is filled with spaces,
and a return linefeed sequence is appended. Therefore, a blank
record is a line of spaces. As you print into the record, your
printed characters are overlayed on top of the spares in the
record.

The characters sent to the disk by the print statement are
identical to the character stream sent to a device. Commas are
not inserted. What goes to the disk is a print image.
Generally, this would cause problems when it came to reading back
in the data with an INPUT statement. This problem has been
avoided by expanding the power of the library routine that
fetches values. Spaces, commas, plus sign, and minus sign are
all treated as delimiters for numbers. Null values generate
numeric values of 0. It is therefore not necessary to insert
commas. When printing numbers using the";" delimiter, at least
one space is inserted in place of the plus sign. When printing
values using the"," delimiter, tabbing is done as with normal
printing. Remember, what goes to the file is a print image.
Example:

PRINT #DI SK; 1; 2; 3

generates:

1 2 3

and can be read back in using:

INPUT3 #DISK; A, B, C

If you wish to insert commas:

PRINT #DISK; 1

generates:

1, 2, 3

• I I •
I , I

as before, to read in:

INPUT3 #DISK; A, B, C

2 • I I •
I t ,

104

3

Ka
yp
roJ
ou
rna
l

When inputting from an ASCII file, each input statement addresses
one logical line. The process_is as follows:

* The logical line is fetched from the disk and placed into
a buffer.

* Then, each variable specified in the input statement is
retrieved one by one from the buffer.

Since an input buffer is used, the MAXIMUM INPUT LINE LENGTH lS

255 characters! If you printed a line longer than this, you will
NOT be able to read it!

This buffer 1s used so that:

*

*

*

*

The library routines that fetch variables from the console
input buffer can be used for the disk input operation.
This saves a considerable amount of run-time memory.

Since a record may contain any number of logical lines, it
is not necessary (as with other BASICs) to write all the
data for the record with one PRINT statement.

It is also not necessary to input all the data in a record
with one INPUT statement (provided record sequential
access is enabled}.

With $-~ASIC, binary files are available for data storage.
These files are MUCH faster, as there is no need to
convert the ASCII data into the internal binary formats.

ASCII files have three principle uses:

*

*

*

to hold parameter information. This parameter info can
then be manipulated with a text editor.

to collect printed output. By sending printed output to
the disk, instead of the printer, a system utility can be
used at a latter time to print the file.

In moving data from one system to another 1n a standard
ASCII format.

105

Ka
yp
roJ
ou
rna
l

FUNCTIONS

There are two types of functions in Structured BASIC:

User-defined functions
Built-in or intrinsic functions

User-defined Functions

Functions are defined, using the following statement:

FUNCTION <name>[(<arg def>[;<arg def>})=<type>
<body>

END=<expression>

where <name> is the name given to the function.

It is generally a good idea to define all data structures at the
beginning of a function or procedure.

When a function is called from an expression, it may require one
or more arguments to be passed to it. The type of the argument
and where it is to be stored in the function is defined by the
argument list enclosed in '() '.

Within the braces is <arg def> for argument definition. The form
of the <arg def> is the same syntax as a VAR statement, except
that the key word, VAR, is not included.

There may be more than one <arg def> in the argument definition;
these are separated with';'. Thus, the argument list may have
many different arguments of differing types.

A function need not have an <arg def> if no arguments are needed.
An example of this would be a function that returned a value from
a file or I/0 device.

Then comes <type>. <type> determines the type of the result of
the function.

<body> is the body of the function and is composed of several
basic statements. There need not be any body, if the function can
be expressed using one expression.

Next comes the END statement, which is the end of the function,
and an <expression>, which will determine the result of the
function.

106

Ka
yp
roJ
ou
rna
l

The type of <expression> is set by the <type> of the function.

Expressions that appear in the <body> of the function need not be
of this type. <body> may be considered a mini program within a
program.

Within <body>, other functions may be called, or the function may
call itself. Some examples of functions:

FUNCTION FAC(I=REAL)=REAL
IF I=O THEN Il ELSE I=FAC*I-l)*I

END=I

To use:
X=FAC(Y+S)

FUNCTION QUB(I=INTEGER)=INTEGER
END=I*I*I

To use:
PRINT QUB(5)

FUNCTION CHAR.STRING(LETTER=CHAR;COUNT=INTEGER)=STRING
VAR COMPOSE=STRING
VAR !=INTEGER
C()MPOSE= 1111

FOR I+l TO COUNT
COMPOSE=COMPOSE+LETTER

NEXT
END=COMPOSE

FUNCTION READER=CHAR
VAR BYTE.VALUE=CHAR
INPUT3 (3) TYPE.VALUE
END=BYTE.VALUE

Variables that are declared in the argument list or in the body
of the function are local to that function.

Different variables with the same name could be declared later in
the program.

Functions may also be declared inside of a function, and
functions can be declared inside this, and so on and on.

Remember that the <body> of a function is like a mini program, so
what you can do in a program, you can do in a function.

If the argument list is long, it may be continued on another line
after the';'. Like so:

107

Ka
yp
roJ
ou
rna
l

FUNCTION <name>(<arg def>;
<arg def>;<arg def>;
<arg def> and so on ...)=<type>

When defining the result type of a function as string, it is not
necessary to specify the result length. The result length is set
during the evaluation of the expression.

108

Ka
yp
roJ
ou
rna
l

PROCEDURES

Procedures can be thought of as subroutines that can have
variables (arguments) passed to them when they are called.
Generally, subroutines cannot call themselves without destroying
their local data structures, but procedures can call themselves
without destroying their local data structures.

When procedures or functions call other procedures or functions,
the local data structures are saved on the run-time stack. This
is called recursion.

When control is 'returned', these data structures are put back.
Only those data structures defined up to the point of call are
saved.

Procedures are defined like functions, except that there is no
<type> of the procedure and no result <expression>.

The form of the procedure declaration is:

PROCEDURE <name.>[(<arg def>{;<arg def>})
<body>

END

Once again, the argument list may be continued on another line
after a';'.

As with functions, the body of a procedure is like a mini
program.

Variables can be declared within <body>, files manipulated, and
so on.

Functions may be defined within a procedure. Procedures may be
defined within a function. Procedures may call themselves or
other procedures.

A procedure is invoked with its <name> as the first thing (token)
on a line (note the procedure's name may be preceded with a line
number).

After the procedure's name, expressions of the same type as the
variables in the argument list should follow, separated by
commas.

If there are no arguments, then there need not be any expressions
following the procedure's name.

109

Ka
yp
roJ
ou
rna
l

PROCEDURE NEW. PAGE
PRINT #LIST;CHR$(0CH);

END

PROCEDURE SORT(KEY=INTEGER)
<body of code to sort something>

END

PROCEDURE OUTPUT(DEVICE=INTEGER;ARGUMENT;STRING)
PRINT tDEVICE; ARGUMENT

END

PROCEDURE PRINT. SUM(A,B,C=INTEGER)
PRINT A+B+C

END

How they would be used:

NEW PAGE
SORT SOMETHING
OUTPUT LIST,"A JUNK LINE"
PRINT.SUM NUMBER1,NUMBER2,NUMBER3

110

Ka
yp
roJ
ou
rna
l

SCOPE OP RECURSION

By scope we are referring to those variables that will not be
changed during a recursive call. That is to say, a function may
call itself, and it appears as if each invocation of the function
has created anew its own local set of variables. For example,
consider the following:

FUNCTION FAC(I=REAL)=REAL
IF I=0 THEN I=l ELSE I=FAC(I-1)*1

END =l

This function finds X! {If X=3, X!=3*2*1). Each time FAC calls
itself, a new I is created. When FAC ends and returns a result
to itself, the value of I appears to have been unchanged; only
the result is returned.

The scope, or variables, that are created anew are important to
the desi~n of a·program. Without a knowledge of the rules of
recursion in S-BASIC, some strange things can seem to occur.

Variables will refuse to change values or will appear to change
values at random times. Even if our program does not do explicit
recursion, the compiler still follows the rules. This prevents
unwanted crosstalk between local variables and helps exclude
program code interactions (one function or procedure interfering
with another).

The rules governing recursion are designed to limit the amount of
variables that must be created with each invocation. This saves
memory and increases speed of execution. The program following
this discussion shows a program that demonstrates these rules.
The program is composed of procedures, but the same rules apply
to functions and to procedures and functions mixed.

Recursion occurs if:

* The function or procedure calls itself. In this case, any
variables declared within the function or procedure, including
parameters, are created anew.

* The function or procedure is declared within another function
or procedure (nested) and calls a function or procedure that is
also declared (nested) within the same function or procedure.
This includes the function or procedure calling itself or the
function or procedure within which it is nested.

Only those variables declared within the function or procedure
doing the calling are recursive.

111

Ka
yp
roJ
ou
rna
l

In all cases, only those variables declared in the source code
up to the point of the invocation are recursive.

In the following program, these rules can be seen in action:

In procedure Pl, line 5, a call is made on PO.
recursive. No variables are created. In line
made on Pl itself. This call is recursive, and
variable recreated.

This call is not
6 of Pl, a call is
variable Xl is the

Procedure P2 is an example of nested procedures.

In P3, line 12, procedure P0 is called. Since PO is outside the
scope of P2, there is no recursion.

Procedure P4, line 20, is an example of a nested procedure
calling another nested procedure; this call is recursive for X4
only. P4 does not create new variables X2 and X3. That
operation is saved for the future, should program flow require
it. This helps conserve memory and program execution speed.

In line 25, P2 calls itself, and variables X2, X3, and X4 are
created anew. This is the simple rule that all variables
declared within the procedure or function up to the point of the
recursive call are recreated, Although it serves no obvious
purpose, it does help in the allocation of variables and in the
prevention of interactions.

112

Ka
yp
roJ
ou
rna
l

0001:00 PROCEDURE P0(X0=INTEGER)
0002:01 END of P)
0003:00
0004:00
0005:01
0006:01

PROCEDURE
P0
Pl

0007:01 END of
0008:00

Pl

Pl(Xl=INTEGER)
Xl
Xl

0009:00 PROCEDURE P2(X2=INTEGER)
00010:01
0011:01
0012:02
0013:02
0014:02
0015:02
0016:01
0017:01
0018:02
0019:02
0020:02
0021:02
0022:02
0023:01
0024:01
0025:01
0026:01
0027:01

PROCEDURE P3(
PO X3
P2 X3
P3 X3

END of P3

PROCEDURE P4(
Pl X4
P2 X4
P3 X4
P4 X4

END of P4

P0 x2
P2 x2
P3 X2

0028:01 END of P2

X3=INTEGER

X4=INTEGER)

113

Procedure #0, Scope 1

Procedure #1, Scope 2
No Recursion
Recursion, Xl

Procedure #2, Scope 3

Procedure #3, Scope 3
No Recursion
Recursion, X3
Recursion, X3

Procedure $4, Scope 3
No Recursion
Recursion, X4
Recursion, X4

No Recursion
Recursion, X2 X3 X4
Recursion, X2 X3 X4

End of P2 and end of
Scope

Ka
yp
roJ
ou
rna
l

QUICK-REFERENCE LIST OF

INTRINSIC FUNCTIONS

Structured BASIC provides several built-in functions for
commonly-used algebraic and string operations.

Functions are of the form:

<name>(<argument list>)

where <name> is the name of the function
and <argument list> is a list of one or more expressions
separated by commas and enclosed in braces.

The type of each expression in the <argument list> is defined by
the abbreviations: RD, RS, F, I, S, and C, as described in
chapter 2.

For example, the random number generator is a function of the
form- RND(RS) r
where RS means an expression of type real.

ABS (RS)

This function returns the absolute value of the real expression.

If RS is positive, then RS is returned.
If RS is negative, then RS is returned as positive.

ASCII (S} / ASC(S)

Returns an integer (type integer) that is equal to the first
character of the string argument.

ATN{RS)

Returns the angle whose tangent is RS (in radians).

CHR{I) / CHR${I)

Returns a one-character string, having the ASCII value of I.

114

Ka
yp
roJ
ou
rna
l

COS(RS)

Returns the cosine of RS. RS is in radians.

EXP(RS)

Returns e (2.71828) to the power of RS.

FCB$(S) / FCB(S)

Returns a string equal to a valid format for an FCB.

FFIX(F)

Returns the integer part of the fixed type expression.

The return is a type fixed number.

FINT(F)

Returns the next lowest integer <=F.

Returns a type fixed result.

FIX(RS)

Returns the integer of RS.

This integer is of type RS
and is generated by truncating the fractional part.

FRE(I)

If I is false (I=0), returns amount of free memory by a
comparison of the 8080 stack and the procedure/function stack
(memory location 109H).

If I is true, returns the number of blocks used on the current
drive.

It is preferable to use this function to SIZE(*.*),
because FRE looks at the bit map in memory,
where SIZE looks at the directory on the disk.

115

Ka
yp
roJ
ou
rna
l

HEX$(!)

Returns a string of 4 characters.

Each character position is set to the hex character of I,
i.e., a string of hex characters equal to I.

INP(I)

Does an 8080 input instruction from port I.
The result is returned as an integer.

INSTR{I<Sl,S2)

Searches for S2 within Sl, starting at the Ith character of Sl.
The result is an integer =0, if S2 is not found in Sl,
or equal to the character position in Sl where S2 was found.

INT(RS)

Returns the next lowest integer<= RS. The result is of type
real.

LEFT$(S,I)

Returns the leftmost I characters of Sas a string result.

LEN(S)

Returns an integer with a value equal to the number of characters
in S.

LOG(RS)
Returns the natural log (Ln or log to the base e) of RS.

MID(S,Il,12) / MID$(S,Il,I2)

Returns a substring of S, as a string result. Characters are
taken, starting at the Ilth character position in the string, for
a count of 12 characters. Mid is used for insertion. It is
covered in the chap~er on expressions.

116

Ka
yp
roJ
ou
rna
l

NOM$(RS) / STR$(RS)

Returns a string that is composed of characters representing the
value of RS, as if it was to be printed.

PEEK(!)

Returns an integer equal to the memory location I.

POS{I)

If I is a positive integer,
POS(I) returns an integer
whose value is equal to the print position on output channel I.

If I is a negative integer,
it is converted to a positive integer and
the current line count for that channel is returned.

The print position is set to 1 by an ASCII CR.

The line count is set to 1 by an ASCII FF.

Since there is no -0 to return the console line count, 255 is
used.

RIGHT(S,I)

Returns the characters of the string, s,
starting at the Ith character through the last character of the
string, s.
The result is a string.

RIGHT$(S,I)

Returns the rightmost I characters of Sas a string result.

RND(RS)

If RS is true (<>0), returns a random number between 0 and 1.

If RS is false {=0), returns last number generated.

117

Ka
yp
roJ
ou
rna
l

SGN(RS)

If RS>0, returns 1.
RS=0 returns 0.
RS<0 returns -1.

SIN(RS)

Returns the sin of RS. RS is an angle measured in radians.

SIZE(S)

Returns the size of a disk file in blocks.

Wild card file names can be used as described in the system
manuals.

The file name is specified by the string argument.

SPACE$(!) / SPC(I)

Returns a string result that is composed of I number of spaces.

SQR(RS)

Returns the square root of RS.

STRING(Il,12) / STRING$(Il,I2)

Returns a string result that has a length of Il and is composed
of characters whose ASCII value is equal to I2.

TAB(I)

Returns a string of spaces that will move the print head from the
current print position to print position I.

The channel used is the last one accessed.

TAN(RS)

Returns the tangent of the angle RS.
RS is in radians.

118

Ka
yp
roJ
ou
rna
l

VAL(S)

Returns a RS that is equal to the numeric value of S, as if the
number was entered using an INPUT statement.

XLATE(Sl,S2)

The result is a string. This string is the result of a translate
function.
Sl is the source string, and S2 is the table string.

Each character from Sl is used as an index into S2, and this
character is placed into the result. This process continues
character by character until Sl is exhausted.

119

Ka
yp
roJ
ou
rna
l

COMPILER OPERATION

From a basic program, S-BASIC produces zero, one, or two files.

One file is a .PRN file, which is a print file of the source with
line numbers and error messages, if any.

The other file is a .COM file that can be execut~i directly in
the TPA.

S-BASIC is a true compiler, in that the .COM file is Z80 code.

The compiler is initiated by typing:

SBASIC filename

or

SBASIC filename.parameters

For both cases, filename refers to the basic source file and is
ASSUMED to have an extent of .BAS.

When SBASIC loads and executes, it prints the following sign-on
message on the console:

SBASIC Compiler Version x

where x refers to the version number of the compiler.

When the compiler is initiated by the command, SBASIC filename,
one file is generated, called filename.COM.

This is the execution or run-time file for use in the TPA.

If errors are detected by the compiler, the file, filename.COM,
is not generated.

Depending on when the error is found, if filename.COM existed
before compilation, it may be deleted.

A copy of the source file with line numbers and error messages is
sent to the console during compilation.

The second part of the command allows the user to specify
parameters to the compiler. These parameters direct where the
files, if any, are to go. The form is:

SBASIC filename,ala2a3

120

Ka
yp
roJ
ou
rna
l

where, as before, filename is assumed to have an extent of .BAS.
The arguments al, a2, and a3 designate the following:

al

a2

a3

designates from which disk drive the source or .BAS file
is to come:
A for A drive, B for B drive, and so on.

designates on which disk drive the object or .COM file
is to be placed. A is for A drive, B for B drive, and
so on. The use of the letter, z, specifies that the
generation of the object file is to be skipped.

This argument specifies where the print or .PRN file is
to go. A capital letter specifies the drive where the
file is to be placed. If the letter, X, is used, the
print output is sent to the console. If the letter, Y,
is used, the print output is sent to the list device.
the letter, z, suppresses the generation of the listing.

Some examples:

1. $BASIC TEST
2. SBASIC TEST.BBX
3. SBASIC TEST.BZY
4. SBASIC TEST.BAB

In example 1:

The basic source file, TEST.BAS, is compiled from the current
drive.

If no errors were found, the file, TEST.COM, is placed on the
current disk.

A listing is sent to the console during compilation.

In example 2:

TEST.BAS is compiled from drive B.

If no errors were found, the object file, TEST.COM, is placed on
drive B.

A listing is sent to the console.

121

Ka
yp
roJ
ou
rna
l

In example 3:

The source file comes from B, and there is no generation of
TEST.COM.

The listing is sent to the list device.

In example 4:

The source file is on drive B.

The object file is to be placed on A ..

The print file, TEST.PRN, is sent to drive B.

Listings sent to the list device are headed with the SBASIC
sign-on.

Page ejects (form feeds) are used to separate pages.

Files Used During Compilation

When the compiler is runningJ it uses several files which must be
on the currently-selected drive. These files are SBASE.COM,
OVERLAYB.COM, BASICLIB.REL, and USERLIB.REL.

Commands Used During Compilation

During compilation, several commands may be given to the compiler
via the $<command> statement included in the source file. The
commands are:

$LINES Command

Under normal operation, in the case of a run-time error, the
compiler emits code that enables the printing of line numbers.

This production allows control to be returned to the system
during program execution by typing a control--C.

This production takes up memory in the object program.

This feature can be disabled, using the LINES command.

The LINES command changes the state of a compiler toggle from:
true (produces line number references) to
false {does not produce line number references)
and back again.

122

___ _J

Ka
yp
roJ
ou
rna
l

So, when debugging is finished, this statement can be used to
suppress the generation of line number references. Then, if a
run-time error is encountered, the error message is printed, but
no line number is given.

As the compiler generates code, source line information is
included so that run-time errors can print the line number that
the error occurred on. Also, by typing a control--t at the
console, a run-time trace can be produced. This code generation
also checks for a control--c as a panic out of program execution.
This code production is normally on. It can be toggled on and
off by the statement:

$LINES

This takes about 7 bytes per source line. By turning this
production off, some memory can be saved. Also, by turning this
production off, the program may run faster.

$TRACE Command

This command works with the LINES command. When line number
references are being generated, it is possible to have the line
numbers printed on the console at run-time. This traces the flow
of the program as it executes.

Line number references are generated for every <statement> given
in this manual. They are also generated when a <line number> is
given. For example:

0516:
0517:

123 IF A THEN PRINT
IF Q THEN RETURN

For line 516, three line numbers will be printed:

One for the 123
Another for the statement, IF
A third for the PRINT statement within the IF.

In line 517, two would be generated:

One for the IF ... statement
One for the RETURN.

This feature allows not only the execution of a program to be
followed, but for the internal flow of instructions to be
monitored.

123

Ka
yp
roJ
ou
rna
l

For example: an IF ... THEN need not transfer control, and with
$TRACE in effect, it is possible to determine if the <expression>
of the IF statement was true or false. This follows for other
statements as well.

A trace for the above program could be:

[0516] [0516] [0516] [0517] [0518]

This trace would indicate that statement 516 was executed.

A was found to be true, and the PRINT statement was executed.

Then statement 517 was executed, Q was found to be false, so the
RETURN was not executed.

Program execution continued on to line 518 (not shown).

The $TRACE command statement works like the $LINES statement, in
that a compiler toggle is changed from false to true or true to
false with each occurrence of $TRACE in the source file. This
command can be used to frame the portion of basic source file for
which a trace is needed, but avoid tracing program steps that
need not be traced.

A run-time trace can be turned on and off by typing a control--t
at the console.

$PAGE Command

This statement causes an ASCII form-feed to be sent to the
listing device, causing a skip to the next page.

$CONSTANT Command

This command is used to define an integer symbolic constant at
compile time. The form of the statement is:

$CONSTANT <NAME>=<INTEGER VALUE>

This will create a symbol named <NAME> and will substitute
<INTEGER VALUE> each time it is used. This constant can be used
whenever an integer constant is called for. For example:

$CONSTANT KEY.LENGTH=8
VAR FIRST.KEY,LAST.KEY=STRING;KEY.LENGTH

It is important to remember that this constant is a compile-time
constant and cannot be changed at run-time.

124

Ka
yp
roJ
ou
rna
l

It can be used in an expression as any other integer constant
would be.

$INCLUDE Command

This command is used to access a library file.

The form of this statement is:

$INCLUDE <FILE NAME> [<MODULE NAME>

The <NAME> and <MODULE NAME> should not include reserved
characters.

The foregoing statement is used with these statements:

$MODULE (MODULE NAME>
<body of module>

$END.MODULE

The simplest form is when <MODULE NAME> is not given.

With this form of the statement, the file <FILENAME>.BAS is
inserted into the source program and compiled.

When the end of <FILE NAME>.BAS is reached, the compiler returns
to the main source program.

<FILE NAME> may be an S-BASIC program to be included in the main
source, or it may be a library of S-BASIC programs or modules.

When <FILE NAME> is a library file, composed of basic program
modules, the idea is to pluck out only those modules that are
needed. This is done by giving the <MODULE NAME> in the $INCLUDE
statement that is needed. Some examples will follow.

Modules are defined within the library file by the use of the
$MODULE and $END.MODULE commands to frame the beginning and the
end of the module.

$MODULE EXAMPLE
REM THIS IS AN EXAMPLE MODULE
PRINT EXAMPLE

$END.MODULE

Thus, to pluck out module EXAMPLE from above (assuming a library
file called EX-LIB.BAS), we would use:

$INCLUDE EX-LIB EXAMPLE

125

Ka
yp
roJ
ou
rna
l

Naturally, there may be many modules per library file. The
nesting of $INCLUDE (i.e., having an included file include
another file) is limited only by memory. Each nest uses about
160 bytes of memory.

The module's name is not a symbol to the compiler, so functions,
procedures, and variables can use its name.

An error within an included module aborts the compilation within
the module.

$LIST Command

This command is used to toggle the listing of source from the
compiler off/on. Listing is at first on. When $LIST is
encountered in the source program, the list toggle is flipped.
Thus, $LIST is used to change the listing of a progra~, first
off, then, on, then off, then on ...

This statement is often used with $INCLUDE to prevent the listing
of included source.

$LIST
$INCLUDE PROGR
$INCLUDE ISAM INSERT
$INCLUDE ISAM HASH
$LIST

$LIST [ON/OFF)

$LIST can also be followed by one of the words, ON or OFF.

ON turns listing on. OFF turns the listing off.

$STACK Command

The $STACK command is used with the $LOADPT command (given below)
to set the run-time stack location when the stack location must
be set by the programmer. Its form is:

$STACK <INTEGER CONSTANT>

126

Ka
yp
roJ
ou
rna
l

$LOADPT Command

This command is used with the $STACK command to change the
location of the compiled code from 100H to another location in
memory. Its form is:

$LOADPT <INTEGER CONSTANT>

where <INTEGER CONSTANT> is a memory address where the run-time
code is to execute.

127

Ka
yp
roJ
ou
rna
l

STATEMENTS FORS-BASIC

In the following, a A indicates where the statement may be
broken with returns.

BEGIN ... END

Where a BASIC statement is called for, the following structure
may be used instead:

BEGIN
(some basic statement, including more BEGINs)

END
i.e., IF TRUE THEN

BEGIN

The statements:

CALL <exp>

(some basic statements)
END

This statement is used to execute assembly language routines.
<exp> is an integer expression that determines the memory address
to be called.

CHAIN <file name>
This statement allows an S-BASIC program to load and execute
another S-BASIC program, where <file name> is the file name to be
loaded and executed.

EXECUTE <file name> [,<expression>]
This statement loads and executes a .COM file.
<file name> is the file name of the desired .COM file.
<expression>, if used, is a string-type valid operating system
command line, which is executed AFTER the .COM file has been
loaded, executed, and control has been returned back to the
operating system.

DATA <ascii data>
This statement stores the <ascii data> in the program for use at
run-time. All DATA statements must appear together in the
program, separated by commas. (See READ, RESTORE.)

128

Ka
yp
roJ
ou
rna
l

READ <name> {,<name>}
This statement reads from a data list of a DATA statement.
Items are read from the beginning to the end of the list.
<name> is a variable to be stored with the current value of data.
As items are read from the data list, a pointer is moved through
the list to determine which is the next item to READ. You can
position the pointer with the RESTORE statement.

RESTORE [<line number>]
Positions the pointer at <line number> of a DATA statement.
If <line number> is not used, then the pointer is set to the
first DATA statement in the program.

OUT <Il,I2>
This statement sends data to an I/0 port.
<12> is sent to <Il>. <Il> is an 8080 I/0 port number.

POKE <Il,I2>
This statement sends data to an I/0 port.
<I2> is sent to <Il>. <Il> is a memory address.

CONTROL.C.TRAP ON/OFF
When a program is executing and waiting for an input to the INPUT
statement, typing a CTRL-C will return to the operating system.
This feature can be turned ON and OFF with the CONTROL.C.TRAP
statement. It is intially ON.

RECORD.SEQUENTIAL ON/OFF
This statement can turn sequential access of a random record ON
and OFF. If it is ON, you can read or write part of a record,
branch off and execute some statements, and return to continue
reading or writing within the record from where you left.

However, you cannot go back and re-read or re-write the same
record. If you try, this will cause a read or write past the end
of record. If it is OFF, then all the variables in the random
record must be read or written with one statement. It is
initially ON.

REPEAT <statement> UNTIL <expression>
A A

This means that <statement> will be executed until <expression>
is true.

WHILE <expression> DO <statement>
A

If <expression> is true, then do <statement> and repeat.

129

Ka
yp
roJ
ou
rna
l

IF <expression> THEN <statement> [ELSE <statement>]
A A A

If the <expression> is true, then do <statement>.
If the ELSE is used, then the ELSE <statement> is done if
<expression> is false.

VAR <namel>[,<namen>J=<type>[:length]
COM " " " "
BASED " " " "

Declare variables and their type.

If the <type> is string, then a length may be given. The default
value is 80.

VAR assigns storage in the data storage field.

COM assigns storage in the common field which remains intact
during CHAINING of programs.

BASED is not assigned a location by the compiler, but may be
assigned a location in memory at run-time using the BASE ... AT
statement.

DIM [COM/BASE] <type> <name>(<arg>{,<arg>})

Declare an array of variable type <type>. The <COM> or <BASE>,
if given, determines where the array is stored. <arg> is the
size of each dimension of the array.

Some examples:

DIM STRING:30 NAMES.FIRST(50} NAMES.LAST(50)
DIM REAL X(l0,10,20,5,3,10) Y.CORD(l0,3)
DIM COM REAL ARRAY.X{l0,10)

BASE <name> AT <integer expression>

The variable <name> that was created by a BASED statement is
located at the memory location given by <integer expression>

LOCATE <array name> AT <integer expression>

The array that was·created with the DIM statement, using a
location of BASE, is located at <integer expression>

130

Ka
yp
roJ
ou
rna
l

LOCATION VAR/ARRAY/FILE <integer type var>=<name>

Sets <integer type var> to the location of the based located
variable or to the location of a FILE buffer. ARRAY returns the
location on the array data field. VAR of a simple data variable.

END

Return to the system.

STOP

Same as END

PRINT <expression list>

Print the value of the expressions.

There may be from 0 to as many expressions as will fit on a line.

Expressions may be separated by a comma (,) or a semicolon (;).

A comma will tab to the print field.

A semicolon will continue in the next character position.

PRINT USING <string exp>;<expression list>

Print <expression list> formatted by <string exp>.

ECHO ON/OFF

Enable/Disable the echoing of characters during input.

INPUT ["prompt string";] <variable list>

Enter the values typed at the console into the <variable list>.

TEXT <channel number>,<delm> <text> <delm>[,/;

The <text> is sent to <channel number> (0 for console).

<text> may be any number of lines and may contain any characters
except <delm>, which is used to frame the <text>.

131

Ka
yp
roJ
ou
rna
l

A comma (,) or semicolon (;) may follow the <delm> and functions
the same as a print statement.

LPRINTER
CONSOLE

Changes back and forth the default print device from console to
the list device. This is a compiler directive and does not
function with transfer of control at run-time.

COMMENT
<any number of comment lines>

END

Allows the insertion of comment lines in the source file.
These comment lines are ignored by the compiler.

REM <a comment>
REMARK <a comment>

One line of remark. It is passed over by the compiler.

ON ERROR GOTO <line number>

In case of a run-time error, control is transferred to <line
number> and not to the system.

GOTO (line number>

Transfer control to <line number>

GOSUB <line number>
RETURN

Transfer control to <line number>.
RETURN returns control to the statement just after the GOSUB.

ON x GOTO <line number list>

ON x GOSUB <line number list>

Goto/Gosub line number indexed by x.

132

Ka
yp
roJ
ou
rna
l

FUNCTION <name>(<var statement>{;<var statement>})=<type>
<any number of statements>

END=<expression>

Define a function <name> with arguments in the <var statement>.

The <var statement> 1s the same as for VAR, except that the key
word, VAR, need not be given.

<type> is the result type of the function and is the type of the
result <expression> that is returned.

Both the argument list <var statement> and VAR statements that
are inside the function are local to the function.

Example:

FUNCTION SQR.PLUS.ONE(ARG.X=REAL)=REAL
VAR Y=REAL
Y=X
END=X*Y=l

FUNCTION SUM(VALUEl=REAL;VALUE2=INTEGER)=REAL
VAR COUNTER=INTEGER
FOR COUNTER=l TO VALUE2

VALUEl=VALUEl=VALUEl
NEXT COUNTER
END=VALUEl

PROCEDURE <name> (<var statement>[;<var statement>}
<body of procedure>
END

Same structure as functions except no value is returned, and the
procedure is called with the form:

<name> <argument list>

Example:

PROCEDURE LPRINT$(A=STRING)
PRINT #1; A

END

LPRINT$ "THIS IS A TEST LINE"

133

Ka
yp
roJ
ou
rna
l

FILES R(x),S(n) ...

Define files.

R stands for random.
S stands for serial.

With R, the X (an integer constant) refers to the number of bytes
per random record.

For S, n specifies the number of sectors in the files buffer.

This statement sets file channel #0 for random file and file
channel #1 for serial.

Up to 32 channels may be defined.

OPEN #n;<string expression>

Opens the file <string expression> on file channel #n

CLOSE #n

Closes the file on channel #n

READ #n,x;<var list> or READ #n;<var list>

WRITE #n,x;<var list> or WRITE #n;<var list>

Read and Write from a random file or a serial file.

INITIALIZE

Reset disk system. Used when disks are changed.

DELETE <string expression>

Delete a file from the disk.

RENAME <string expression> TO <string expression>

Rename a file.

134

Ka
yp
roJ
ou
rna
l

CREATE <stiing expression>

Create a file.

CASE <expression> OF
<expressionl>:<statement>
<expression2~:<statement>

END

Case statement transfers control to the <expression x> that is
equal to <expression>.

FOR <var>=<expressionl> TO <expression2> [STEP <expression3>]
<any number of basic statements>
NEXT

Loops starting at <expressionl> until <var> is greater than or
equal to <expression2>.

A step value may be given.

135

Ka
yp
roJ
ou
rna
l

APPLICATION NOTES

(Ap-Notes)

(The material in this section is used with permission of Digital
Research, holder of the copyright. CP/M is a registered trade­
mark of Digital Research.)

The EXECUTE statement allows for the loading and executing of any
binary file. However, it does not provide for the setting up of
parameters.

In many instances, the binary file which is loaded and executed
expects to find parameters at tfcb and tbuff. It is easy for an
S-BASIC program to set up these areas before the EXECUTE state­
ment is executed. The following program will demonstrate how
this can be done.

In general, binary files to be loaded and executed provide func­
tions such as sorting, merging, and other system utilities.

As to parameters, binary files need:

In general, tfcb (at 5CH) is set up as a file control block with
the ASCII name installed and the extent number cleared.

The first byte represents the drive number to be used: one for
A: two for B:, and so on.

A value of zero signifies that the currently-selected drive is to
be used.

In normal
file name
tfcb+l6.
at tbuff.

processing of a command line by the CCP, if a third
is present, the ASCII representation will be placed at
Additionally, the entire command line should be present

You should consult the operator 1 s manual for a particular utility
file to determine which, if any, of these fields need to be set
up. Experience has shown that some utilities only require the
first file name at tfcb to be set up, while others only use the
image of the command line stored at tbuff. It should be noted
that tbuff also serves the purpose of a disk I/0 buffer for some
utilities.

The EXECUTE statement is able to regain control of the system
after the utility gives control back to the CCP. This is done
through the use of the SUBMIT facility. For this to function

136

Ka
yp
roJ
ou
rna
l

properly, the EXECUTE statement must be executed while the system
disk {A:) is selected. Please note that the EXECUTE statement
will nest the submit file.

0001:
002:
0003:
0004:
0005:
0006:
0007:
0008:
0009:
0010:
0011:
0012:
0013:
0014:
0017:
0018:
0019:
0020:
0021:
0022:
0023:
0024:
002 5:
0026:

0027:
0028:
0029:
0030:
0031:
0032:
0033:
0034:
0035:
0036:
0037:
0038:
0038:
0040:

VAR FILE.NAMEl, FILE.NAME2, COMMAND LINE= STRING
VAR DRIVE.CODE= CHAR
FILE.NAMEl="X.ZOT"
FILE.NAME2="Y.ZAP"
COMMAND.LINE=" X.ZOT Y.ZAP"
DRIVE.CODE=0

Based File.control.block, Second.file.name =String
Based Command.buffer +String
Based Drive.number, Buffer.length =Char
Based Extent.number, Record.number =Char

Rem The file control block at SCH
$Constant tfcb = 80H

Base File.control.block at tfcb
Base Second.file.name at tfcb+l6
Base Command.buffer at tbuff
Base Extent.number at tfcb+l2
Base Record.number at tfcb+32
Base Drive.number at tfcb
Base Buffer.length at tbuff

Rem Place file name into FCB.
Note: FCB$ sets up ASCII only.

File.control.block= Fcb$(File.namel)
Second.file.name = Fcb$(File.name2)
Rem Zero extent number and record number
Extent.number =0
Record.number =0

Rem The byte at 5CH is the drive number. This byte was
Rem also the count byte of the string File.control.block
Driive.number = Drive.code

Command.buffer
Buffer.length

= Command.line
= Len(Command.line)

****** End of program ******

In addition to the default fcb which is set up at address tfcb,
the CCP also constructs a second default fcb at address tfcb+l6
(i.e., the disk map field of the fcb at tbase).

137

Ka
yp
roJ
ou
rna
l

Thus, if the user types:

PROGNAME X.ZOT Y.ZAP

the file, PROGNAME.COM, is loaded to the TPA, and the default fcb
at tfcb is initialized to the filename, X, with filetype, ZOT.

Since the user typed a second file name, the 16-byte area begin­
ning at tfcb + 16(10[is also initialized with the filename, Y,
and filetype, ZAP. It is the responsibility of the program to
move this second filename and filetype to another area (usually a
separate file control block) before opening the file which begins
at tbase, since the open operation will fill the disk map
portion, thus overwriting the second name and type.

If no file names were specified in the original command, then the
fields beginning at tfcb and tfcb + 16 both contain blanks (20H).
If one file name was specified, then the field at tfcb + 16 con­
tains blanks.

If the filetype is omitted, then the field is assumed to contain
blanks. In all cases, the CCP translates lower-case alphabetics
to upper case to be consistent with the CP/M {R) file naming
conventions.

As an added programming convenience, the default buffer at tbuff
is initialized to hold the entire command line past the program
name. Address tbuff contains the number of characters, and
tbuff+l, tbuff+2, ... , contain the remaining characters up to,
but not including, the carriage return. Given that the above
command has been typed at the console, the area beginning at
tbuff is set up as follows:

tbuf f:

+0 +l +2 +3
12 b X

+4
z

+5 +6 +7
0 T b

+8
y

+9 +10 +11 +12 +13 +14 +15
Z A P ? ? ?

where 12 is the number of valid characters in binary, and b
represents an ASCII BLANK.

Characters are given in ASCII upper case, with uninitialized
memory following the last valid character.

Again, it is the responsibility of the program to extract the
information from this buffer before any file operations are
performed, as the FOOS uses the tbuff area to perform directory
functions.

138

Ka
yp
roJ
ou
rna
l

In a standard CP/M system, the following values are assumed:

boot:
entry:
tfcb:
tfcb+16
tbuff
tbase

0000H
0005H
0005CH
006CH
0080H
0!00H

bootstrap load (warm start)
entry point to FDOS
first default file control block
second file name
default buffer address
base of transient area

139

Ka
yp
roJ
ou
rna
l

MERGING ANO OSIRG ASSEMBLY LANGUAGE ROUTINES

In this section, we shall discuss merging assembly language
routines with the the compiler's output, and then accessing those
routines, using the S-BASIC CALL statement.

The basic technique is to utilize the common storage area as a
safe location within the compiled code where the assembly
language routine may be located. By referring to the System Load
Map given elsewhere in this manual, it can be seen that the
common storage area directly precedes both the program storage
area and the data storage area. Therefore, if some common
variable is declared before all other common variables, its
position will remain constant in the code production, regardless
of changes in the program and data structures. If this common
variable is an array of type CHAR (a byte value), then the size
of reserved space is directly related (in bytes) to the size of
the array. For a one-dimensional array of type CHAR, the
absolute address where the common data field can be found is
llAH. Additionally, the location of any common structure may be
found programatically by utilizing the LOCATION statement. It
should be noted that the common storage area is not disturbed
during CHAINing operations.

There are essentially two methods by which the assembly language
routine may be placed into the character array.

1. Assemble the assembly language routine to produce a HEX file
with its source at llAH or whatever the determined value is.
The compiled code or COM file is loaded into memory under
control of DDT or some other system resident debugger. The
HEX file is then overlayed on top of the COM file in memory
{i.e., where the common data field of the array is). Exit
DDT, and save the memory image.

We now have the assembly language routine bonded with the
compiler-produced code. Thus, whenever the COM file is
executed, the assembly language routine will be resident and
ready for use.

2. As the assembly language routine will actually reside within
a character array, it is possible to load it from a disk into
the array at run-time. First, the assembly language routine
is assembled to produce a HEX file. Then, under control of
the debugger, it is read into memory and moved, so that the
first byte of the routine is at 100H (the base address of
files saved under CCP). Exit the debugger, and save the
memory image. What we now have is our assembly language

140

Ka
yp
roJ
ou
rna
l

routine as a binary image in a disk file. It is from this
file that the assembly language routine will be drawn at
run-time.

In general, the run-time procedure is as follows:

1. A sequential file channel is used.

2. Our disk file containing the binary image is opened on that
sequential file channel.

3. Bytes (using a variable of type CHAR) are read from the
sequential disk file and placed one by one into the character
array. Remember that, in this context, the terms, character
and byte, are interchangeable.

It is vital, during this operation, to know the number of
bytes to read from the disk file and place into the array, so
as to avoid not reading all of the routine or generating an
end-of-file error.

This method allows different routines to be loaded at runtime, as
needed.

The following programs are used to demonstrate these techniques.
The basic idea of these programs is to read an ASCII text file
and produce a listing on the system list device. The assembly
language program, STRINGIN, is used to capture text lines from
the text file and place them into an S-BASIC simple string
variable. The S-BASIC program calls STRINGIN to get each string.
It then prints these strings on the list device, adding a title
and page number.

You may find the following publications helpful:

Digital Research manual, CP/M INTERFACE GUIDE, section 3.2
"File Control Block Format'', pages 10 and 10a

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES, section on
the SAVE command

DDT USER'S GUIDE

141

Ka
yp
roJ
ou
rna
l

0014 =
000F =
001A =
0000 =
0001 =
0002 =
00FF =
005C =
0080 =
0005 =
001A =
000D =

011A

011A B7
011B C23701
011E 3E80
0120 329B01

;ROUTINE TO READ AN ASCII SOURCE FILE INTO
;STRINGS USED BY THE S-BASIC COMPILER
;AN ASCII SOURCE FILE IS ASSUMED TO BE IN THE FOLLOWING FORMAT
; ASCII SOURCE LINE

CARRIAGE RETURN & LINE FEED
; REPEAT ABOVE AS NEEDED FOR EACH LINE OF TEXT
; END OF FILE GIVEN BY A CONTROL-Z OR
; PHYSICAL END OF FILE
;
;THIS ROUTINE RESIDES IN A COMMON ARRAY OF TYPE CHAR {BYTE)
;IT IS CALLED WITH THE BASIC 'CALL' STATEMENT . . ,
;THE FILE CONTROL BLOCK AT SCH IS USED AS THE PROGRAM'S FCB.
;IT IS ASSUMED THAT THE FILE NAME HAS BEEN PLACED IN IT
;AND THAT THE PROPER DISK NUMBER IS INSTALLED.
;THE DISK 1/0 BUFFER IS AT 80H <THE DEFAULT BUFFER>

;THE ROUTINE IS CALLED WITH THE FOLLOWING VALUES:

;
;
;
;

A = 0
A <>0
HL =

THE FILE NEEDS TO BE OPENED
THE FCB HAS BEEN OPENED
THE LOCATION OF THE STRING TO
WITH TEXT FROM THE DISK FILE

BE FILLED

;A CALL TO OPEN RETURNS NO DATA

;RETURN WITH THE FOLLOWING VALUES: .
I .
I . ,
;
;
;

READF
OPENF
SETDMA
GOOD
EOF
BAD
BADOPEN
FCB
!BUFF
BOOS
EOT
RETURN

,

A= FUNCTION RETURN
0 = OK
1 = EOF
3 = NO SUCH FILE

DE= NUMBER OF CHARACTERS TRANSFERRED

EQU 20
EQU 15
EQU 26
EQU 0
EQU 1
EQU 2
EQU 255
EQU SCH
EQU 80H
EQU 5
EQU lAH
EQU ODH

ORG llAH

;CP/M READ NEXT RECORD
;CP/M OPEN A DISK FILE <FCB>
;SET OMA DISK BUFFER ADDRESS
;GOOD READ FUNCTION RETURN
;END OF FILE
;READ PAST EOF
;BAD OPEN FUNCTION
;USING THE DEFAULT FCB
;INPUT DMA BUFFER FOR DISK I/0
;ENTRY POINT TO DOS
;CONTROL-Z
;ASCII RETURN

;LOCATION OF COMMON DATA

STRINGIN:ORA A ;DOES THE FILE NEED TO BE OPENED

;SET UP INDEX SO GETSTR
JNZ GETSTR
MVI A,128
STA INDEX

142

;WILL START WITH A DISK READ

Ka
yp
roJ
ou
rna
l

0123 0EOF
0125 115C00
0128 E5
0129 CD0500
012C El
012D FEFF
012F 3E03
0131 110000
0134 CB
0135 AF
0136 C9

MVI
LXI
PUSH
CALL
POP
CPI
MVI
LXI
RZ
XRA
RET

C,OPENF
D,FCB
H
BOOS
H
BADOPEN
A,3
D,0

A

;OPEN THE FILE AT FCB

;SAVE STRING POINTER

;OPEN OK?
;FUNCTION RETURN TO BASIC
;NO CHARACTERS TRANSFERRED
;RZ == BAD OPEN
;A== 0 =>OPEN OK

;FILL UP THE STRING IN MEMORY
;TRANSFER CHARACTER TILL CR/LF IN SOURCE
;OR MAX STRING LENGTH REACHED
;IF THE MAX STRING LENGTH IS REACHED ASSUME CR/LF SEQUENCE

0137 56 GETSTR:
0138 1E00
013A 23 Ll:
013B CD6101
013E FElA
0140 CA5201
0143 FE0D
0145 CA5901
0148 77
014 9 lC
014A 7B
014B BA
014C DA3A01
014F AF BYE:
0150 57
0151 C9
0152 3600 L2:
0154 1600
0156 3E01
0158 C9
0159 CD6101 L3:
015C 3600
015E C34F01

;

MOV
MVI
INX
CALL
CPI
JZ
CPI
JZ
MOV
INR
MOV
CMP
JC
XRA
MOV
RET
MVI
MVI
MVI
RET
CALL
MVI
JMP

D,M
E,0
H
GETBYTE
EOT
L2
RETURN
L3
M,A
E
A,E
D
Ll
A
D,A

M,O
D,0
A,EOF

GETBYTE
M,O
BYE

;PICK UP MAX STRING LENGTH
;NUMBER OF CHARACTER TRANSFERRED
;PAST COUNT BYTE/ TO NEXT CHAR
;GET A CHAR FROM FILE
;CONTROL-Z?

;END OF TEXT LINE?

;SAVE CHAR INTO STRING
;UP COUNT OF CHARS TRANSFERRED
;PHYSICAL END OF STRING

;END OF CALL RET==0 (OK)
;DE==COUNT OF CHARS XFERED

;END OF STRING MARKER
;DE=COUNT OF CHARS XFERED
;END OF FILE

;WAIST LINE FEED
;END OF STRING MARKER

;THIS ROUTINE GETS BYTES SEQUENTIALLY FROM THE DISK FILE

0161 ES
0162 D5
0163 3A9801
0166 FE80
0168 C28C01
0168 118000
016E 0ElA
0170 CD0500
0173 115C00

GETBYTE:PUSH
PUSH
LOA
CPI
JNZ
LXI
MVI
CALL
LXI

H
D
INDEX
128
ABYTE
D,IBUFF
C,SETDMA
BOOS
D,FCB

143

;SAVE STRING POINTER
;SAVE COUNTS
;INDEX INTO OMA BUFFER
;128 BYTES PER BUFFER

;INPUT BUFFER

;READ A SECTOR

Ka
yp
roJ
ou
rna
l

0176 0El4 MVI ;CREADF
0178 CD0500 CALL BOOS
017B B7 ORA A
017C CA8C01 JZ ABYTE
017F 218000 LXI H, IBUFF ;END OF FILE. FILL BUFFER
0182 0680 MVI B,128 ;WITH CONTROL-Z
0184 361A Gl: MVI M,EOT
0186 23 INX H
0187 05 DCR B
0188 C28401 JNZ Gl
018B AF XRA A ;NEW INDEX VALUE
018C 4F ABYTE: MOV C,A
0180 3C INR A ;BUMP COUNTER
018E 329801 STA INDEX
0191 0600 MVI B,O ;INDEX INTO !BUFF TO GET CHAR
0193 218000 LXI H, IBUFF
0196 09 DAD B
0197 7E MOV A,M
0198 01 POP D ;RECOVER COUNTS
0199 El POP H ;RECOVER STRING PONTER
019A C9 RET

;
019B 80 INDEX: 08 128 ;INDEX INTO BUFFER

;
0082 = LENGTH EQU $-STRINGIN

019C END

144

Ka
yp
roJ
ou
rna
l

·0001
0002:
0003:
0004:
0005;
0006;
0007:
0008:
0009:
0010:
0011:
0012:
0013:
0014:
0015:
0016:
0017:
0018:
0019:
0020:
0021:
0022:
0023:
0024:
0025:
0026:
0027:
0028:
0029:
0030:
0031:
0032:
0033:
0034:
0035:
0036:
0037:
0038:
0039:
0040:
0041:
0042:
0043:
0044:
0045:
0046:
0047:
0048:
0049:
0050:
0051:
0052:

$LINES
COMMENT

END

CODE.SIZE IS THE SIZE OF THE ASSEMBLY LANGUAGE ROUTINE
GET STRING IS SET TO POINT AT THE LOCATION OF THE COMMON
DATA FIELD. THIS FIELD WILL NOT CHANGE POSITION PROVIDED
NO OTHER COMMON DATA ITEMS ARE CREATED BEFORE IT.

$CONSTANT
$CONSTANT
$CONSTANT
$CONSTANT
DIMENSION

CODE.SIZE
GET.STRING
LINE.LENGTH
TBUFF

= 81H
= llAH

= 132
= 80H

COMMON CHAR ASSEMBLY LANGUAGE ROUTINE <CODE SIZE>

FUNCTION STRING IN <HL =INTEGER>= INTEGER
VAR A PSW, DE, BC= INTEGER
IF HL=0 THEN A.PSW=0ELSE A.PSW = OFF00H
CALL< GET STRING, HL, DE, BC, A.PSW >
END= A.PSW / 256

VARIABLE LINE= STRING :LINE LENGTH
VARIABLE TEXT.LINE, PAGE= INTEGER
VARIABLE BUFF.LENGTH= CHAR
VARIABLE FILE.NAME= STRING:14
BASED BUFF.NAME= STRING

LOCATION VAR TEXT.LINE= LINE
BUFF.LENGTH= PEEK<TBUFF>
BASE BUFF.NAME AT TBUFF
POKE TBUFF, BUFF. LENGTH
FILE.NAME= BUFF.NAME

REM ASSUME FAB SET UP BY THE CCP. FIRST OPEN FILE
IF STRING. IN<0><>0 THEN

BEGIN
PRINT "FILE NOT FOUND."
STOP

END

REM PRINT THE FILE TO THE SYSTEM LIST DEVICE
LPRINTER
PAGE= l
WHILE STRING.IN<TEXT LINE>=0 DO
BEGIN

IF POS<-1>>60 OR PAGE=l THEN
BEGIN

IF PAGE>l THEN PRINT CHR<OCH> ELSE PRINT
PRINT :FILE:"; FILE NAME, TAB<70>; "PAGE:'; PAGE
PRINT
PRINT
PAGE -· PAGE + 1

END

145

Ka
yp
roJ
ou
rna
l

0053:
0054:
0055:

PRINT LINE
END
****** END OF PROGRAM******

146

Ka
yp
roJ
ou
rna
l

0001:
0002:
0003:
0004:
0005:
0006:
0007:
0008:
0009:
0010:
0011:
0012*
0013*
0014*
0015*
0016*
0017*
0018*
0019*
0020*
0021*
0022*
0023*
0024*
0025:
0026:

REM CODE SIZE IS THE CODE SIZE -1 <ARRAY INDEX STARTS AT 0>
$CONSTANT CODE.SIZE= 81H
$CONSTANT !CHANNEL= 0

DIMENSION COMMON CHAR ASSEMBLY LANGUAGE.ROUTINE <CODE.SIZE>
VARIABLE MODULE= STRING
FILES S<l>
MODULE= "STRINGIN"

REM INCLUDE ROUTINE TO READ MODULE INTO THE ARRAY
$INCLUDE CODEGET
REM CODE SIZE IS THE SIZE OF THE ASSEMBLY LANGUAGE ROUTINE
REM !CHANNEL IS THE SERIAL CHANNEL TO USE FOR READING
REM MODULE IS THE FILE NAME TO READ

OPEN #!CHANNEL, MODULE, 1
VARIABLE BYTE =CHAR
VARIABLE INDEX =INTEGER

FOR INDEX= 0 TO CODE SIZE
READ #!CHANNEL; BYTE
ASSEMBLY.LANGUAGE ROUTINE<INDEX> = BYTE

NEXT INDEX

REM THIS PROGRAM IS JUST TO SHOW HOW TO USE CODEGET
****** END OF PROGRAM******

147

Ka
yp
roJ
ou
rna
l

DDT VERS 2.0
-@ FIRST METHOD 1
?
-@ READ IN THE COMPILER PRODUCED
?
-@ CODE "PRINT.COM"
?
-!PRINT.COM
-R
NEXT PC
1000 0100
-@ NOW GET THE hex FILE
?
-ISTRINGIN.HEX
-R
NEXT PC
1000 0000
-@ EXIT AND SAVE
?
-"'c
A>SAVE 15 PRINT.COM

DDT VERS 2.0
-@ NOW METHOD 2
?
-@ PREPARE MEMORY
?
-Fl00,2000,0
-@ FIND DISPLACEMENT
?
-Hl00,11A
021A FFE6
-@ GET THE FILE
?
-ISTRINGIN.HEX
-RFFE6
NEXT PC
0182 0000
-@ EXIT TO CCP AND SAVE
?
-'"'c
A)SAVE 1 STRINGIN
A>

148

Ka
yp
roJ
ou
rna
l

INDEX FOR BEGINNER'S SECTION

BEGIN ... END 20

CASE 26
CHAR variable type 15, 17
clearing the screen 30
COMMENT 10
compiler 4

extent 3

filenames 3
FIXED variable type 15
FOR ... NEXT 27
FOR ... NEXT STEPS 28
FUNCTIONS 29

GOSUB 22
GOTO 22

IF ... THEN 19
IF ... THEN ELSE 20
INPUT 7
INPUT options 17
INTEGER variable type 15

LET 6, 13

multiplication 8

precedence table 14
PRINT 9
PRINT strings 11
PROCEDURES 30

REAL variable type 14
REAL.DOUBLE variable type 14
REMARK 10

Ka
yp
roJ
ou
rna
l

REPEAT ... UNTIL 24

S-BASIC program files 1
scrolling {stopping) 27
STRING variable type 15

tracing 27

VARiables 14

WHILE ... DO 24

Ka
yp
roJ
ou
rna
l

INDEX FOR REFERENCE SECTION

arrays 47
array control structure 49
ASCII files 102-105
assembly language routines, merging and using 140

base located storage area 47
BEGIN •.. END 37, 52
block structures 51-53
built-in functions 114-119

CALL 128, 140
CASE 66
CHAIN 71
CHAR 44, 140
CLOSE 95, 97
COMMENT 3 5, 40
common storage area 47
compiler 32, 120
$CONSTANT 124
CONTROL.C.TRAP 77
CREATE 92

DATA 88
data storage area 45
data types 41, 54
DELETE 92
DIM/DIMENSION 48
disk files 90

ECHO 77
$END.MODULE 125
error codes 63-64
EXECUTE 71-72, 136

FILES 91, 97-99, 102
files, random 34, 90, 96, 98
files, serial 90, 96
FIXED 42
FOR ... NEXT loops 68
FUNCTION 106-108

Ka
yp
roJ
ou
rna
l

getting started 36
GOSUB 61
GOTO 61

IF ... THEN ... ELSE 67
$INCLUDE 125
INITIALIZE 93
INPUT 74-76
INPUT/OUTPUT 74
INTEGER 43
intrinsic functions 114-119

line numbers 37
$LINES 122
$LIST 126
LOCATION 49, 99, 140
logical functions 58
logical functions truth table 59-60

machine language 31
MID 57
$MODULE 125

numeric fields 83-85

OPEN 91, 93
OUTPUT 78-80

$PAGE 124
precedence table 57
PRINT 78
PRINT USING 81-88
PROCEDURE 109-110

random files 34, 90, 96, 98
READ 89, 93-94, 99
REAL 41
REAL.DOUBLE 41
RECORD.SEQUENTIAL 129
recursion 111-112
REM/REMARK 39
RENAME 92
REPEAT ... UNTIL 65

S-BASIC files 36
S-BASIC statements 128-135
serial files 90, 96
statements 37
STEP 68-70
STRING 43
string fields 82-83
system load map 50

TEXT 80-81
$TRACE 123
tracing 123

variables 45, 52
variable types 41, 54

WHILE ... DO 65
WRITE 94, 100

