
Ka
yp
roJ
ou
rna
l

---- ___, ~-­---- ---.. --

Ka
yp
roJ
ou
rna
l

I
!

i
r
I SuperSort .. 1.6

Operator's Handbook
And Programmer's Guide

9/30/81

Copyright ©1981
MicroPro International Corporation

33 San Pablo Avenue
San Rafael, California 94903 U.S.A.

All Rights Reserved
Worldwide

Ka
yp
roJ
ou
rna
l

OOPDIGIIT

Copyright 1981 by HicroPro International
corporation. All Rights Reserved worldwide. This
publication has been provided pursuant to an
agreement containing restrictions on its use. The
publication also is protected by federal copyright
law. No part of this publication may be copied or
distributed, transmitted, transcribed, stored in a
retrieval system, or translated into any human or
computer language, in any form or by any means,
electronic, mechanical, magnetic, manual, or
otherwise, or disclosed to third parties without
the express written permission of MicroPro
International Corporation, 33 San Pablo
Avenue, San Rafael, California 94903 USA.

'l'ltADIIIIA1II

MicroPro, Wordstar, wordMaster, calcStar,
MailMerge, SpellStar, StarBurst, and SUperSort are
registered trademarks of MicroPro International
Corporation. AllStar, Datastar, InfoStar,
PlanStar, Reportstar, and Starindex are trademarks
of MicroPro International Corporation.

DISCLAIIIBR

MicroPro International Corporation makes no repre­
sentations or warranties with respect to the
contents hereof and specifically disclaims any
implied warranties or merchantability or fitness
for any particular purpose. Further, MicroPro
International Corporation reserves the right to
revise this publication and to make changes from
time to time in the content hereof without obliga­
tion of MicroPro International Corporation to
notify any person or organization of such revision
or changes.

Ka
yp
roJ
ou
rna
l

I
♦

supersort Manual Table of Contents

I.

TABLE OF CONTENTS

INTRODUCTION

A.

B.

c.

Feature Summary

supersort I and II

How to use This Manual

II. SYSTEM REQUIREMENTS AND INSTALLATION

A. Hardware Requirements and Options •..

B. Software Requirements and Options

c.
D,

E.

Packing List

The Distribution Diskette

Installation

III, OPERATOR'S HANDBOOK

A.

B.

GETTING STARTED

CONCEPTS AND FACILITIES.

1. Files, Records, Fields, and Data Types
2. Sorting and Merging
3. File Record Types
4. End-of-File Indication Considerations
5. Fields
6. Field Test Attributes. . . .
7. BASIC Compatability,
8. Collating Sequences
!I. Output Options . . .
10. Tagsort
11. Diskette Changing . .
12. Record Selection .
13. Message Control ..•..
14. Main Program and Subroutine
15. user-exit Routines
16. Load Options

. .I-1

. .I-2

.. I-7

.. , • ,I-8

.

. II-1

• II-1

II-1

II-2

II-2

II-3

III-1

III-2

III-4

III-4
III-5
III-5
III-7
III-7
III-B

III-11
III-11
III-12
III-14
III-14
III-16
III-17
III-18
III-18
III-19

i

Ka
yp
roJ
ou
rna
l

SuperSort Manual Table of Contents

c.

ii

OPERATING THE SUPERSORI' PROGRAM .• III-20

1. Introduction to SORT Usage III-20
2. cormnand Format and Abbreviation . . III-21
3. Order of Command Entry III-21
4. Changing versus Adding Comnands III-22
5. Command Lines. • III-22
6. Conmand Description Rotation .•••••• III-22
7. Specifying the Input File(s) 111-23

lNPUT-A'l"l'RIBUTES connand
SORT-FILES connand
MEBGE-FILES cOllllland

s. Specifying the output Files(s) •.....• III-26

OUTPUT-FILE conanand

9. Specifying the Key(s) .•..••..... lII-28

KEY camumd

10. Starting Execution ...••••..••• III-32

GO c011111and

11. Using Command Files, .•...••.... III-33

CFILE cOll'llla1ld

12. Specifying the Work Drive .•......• III-33

WORK-FILE coomand

13. Using Tagsort ... ,•.. III-34

TAGSORT Comnand

14. Specifying Degree of Message Printout ... III-34

PRINT-LEVEL Conm.nd

15. Miscellaneous Commands ••.•...••• III-35

CANCEL COnlnand
BYE Command
NO-ERROR-MESSAGES COmmand
ERROR-MESSAGE COnmand
RE'l'URN-'1'0-CSOLE Command
CEANGE

16. Introduction to Record Selection ...•. 111-35

SELECl' COJllllaJld
EXCLUDE Command

Ka
yp
roJ
ou
rna
l

Supersort Manual Table of Contents

D.

E.

17, Range Testing in Record Selection ..

18. More Record Selection Features

19. Record selection with Non-ASCII Data

20, SELECT/EXCLUDE summary

21. Specifying Alternate Collating Sequences

COLLATING-SEQUENCE Command

. . III-38

III-38

. III-39

. III-44

III-45

22, Invoking User Exits , , III-48

USE-USER-EXIT CoIIUlland

UTILIZATION HINTS. , , , .. . III-50

I.
2,
3.
4.
5.
6.
7.
8.
9.
10,

Creating Sort Procedure Command Libraries
'l'he One-Input Merge -- The Non-Sort

III-50
. III-51

III-51
. . III-54

III-55
. III-55
, III-56

III-56
III-57
III-58

Non-Sorting Uses
Use with Microsoft MBASIC
Use with BASIC-E and CBASIC. , , .
use with Microsoft FORTRAN
Use with Microsoft COBOL
Considerations Relating to Large Sorts
Minimizing Work File Disk Space Usage
Maximizing Sorting speed

EXECUTION MESSAGES

F. WARNING AND ERROR MESSAGES

III-59

, III-64

III-64
, III-65

. , III-76

. . III-77

1,
2,
3.
4,

Warning Messages
Error Messages . .
NOERR Load Option Messages ..
NOREPORT Load Option Messages .

IV. PROGRAMMER'S GUIDE. IV-1

IV-2 A,

B.

File and Record Formats.

1. CR-DELIMITED Record Files IV-2
2. FIXED-LENGTH Record Files IV-3
3. VARIABLE Record Files. . IV-3
4. RELATIVE Files , , , . . IV-4
5. End-of-File Indication Considerations. IV-5

Field Formats

l. Positional Fields
2. Comma-Delimited Fields

IV-7

IV-7
IV-7

iii

Ka
yp
roJ
ou
rna
l

supersort Manual Table of Contents

iv

c.

D.

E.

Data Formats • • • • II- • • • • • • • • • •

1.
2.

NUMERIC-ASCII.
PACKED-BCD • •

Optional Output File Formats

1. Output Options -- General
2. K~
3. R-OUTPUT . .
4. P-OO'l'PUT
s. KR-OUTPU'l'
6. KP-OO'l'PUT

. . . .

.
subroutines and Calling sequences.

.

1. Introduction .•.••.....

.

. .

.

2. The sort/Merge Subroutine (SORSTJB) ••••
3. The SORSUB Parameter Block ••.•..
4. SORSUB Rec:ord selection Specifications • •
s. The SORMSG SUbroutine ..•.••...
6. The SORCN'I' subroutine•••..
7. User-Exit Routines (XITl, XIT2)
a. Collating sequence Tables (COLTAB, EBC'l'AB)
9. Memory Requirements •.••.....•••

IV-8

IV-8
IV-9

IV-11

IV-18
IV-11
IV-12
IV-12
IV-12
IV-12

IV-13

IV-13
IV-13
IV-18
IV-28
IV-36
IV-37
IV-38
IV-41
IV-41

F. Load Options and Loading Procedures •..... IV-42

1.
2.

Load Options ••..
Loa.ding Procedures •.

Appendix A: ASCII and EBCDIC .

Appendix B: SELECT and EXCLUDE Syntax Sunnary

Appendix C: superSOrt Differences

IV-42
IV-44

A-1

B-1

c-1

Appendix D: Infostar File sorting • • • • • D-1

ConlMnd Reference Summary ••••. inside back cover

Ka
yp
roJ
ou
rna
l

SuperSort Manual Introduction

I. INTRODUCTION

Super Sort represents the implementation of ideas gathered from
many years of data processing experience by the authors. The advent of
low cost microprocessing equipment has placed computing power within
the reach of many. we at MicroPro are endeavoring to contribute to
this new and burgeoning field by providing a commonly required set of
facilites in an easy to use yet comprehensive manner without compro­
mising professional quality. As data processing professionals, we have
had many experiences of inadequate hardware manufacturer's software
documentation. we have attempted to rectify this with an approach to
technical manual preparation that addresses readers with differing
needs. We hope you like the result. Please feel free to contact us
with your comments as we intend to provide the highest quality possible
with regard to our products.

I-1

Ka
yp
roJ
ou
rna
l

SuperSort Manual Introduction

A. SUPBRSOlt'l' l.fi FEM'ORB SUMIWtY

SuperSort combines high performance and operational flexiblity to
perform sorting, merging, and record selection functions on data files
compatible with BASIC, FOR'l'RAN, COBOL, and Assembler applications pro­
grams, and with text editors, on 8181/8885/Z-H microcomputera
employing CP/M or a similar operating system.

SORr/NDGB OPBRH1(l1

• SORTS up to 32 input files into a single output file, automatical­
ly using external merge as necessary, depending on amount of data
and amount of memory.

* MERGES up to 32 pre-sorted files all of which (memory permitting)
are read in parallel for efficient true merge operation.

* sort and merge input files can be specified IN THE SAME RUN.
Thus, sorting new detail records and integrating them into an
already-ordered master file is a simple and efficient SUperSort
operation.

* Record selection, file conversions, and other features can be used
independent of the sort/merge process (by specifying a single
input merge).

PLIIIBLB FILE MID RBCX>ID IOBIIA!r&

* Handles CP/M diskette files compatible with BASIC, FORTRAN
(formatted or binary I/0), COBOL, assembler, and text editors.

• Handles files up to the CP/M file size limit (8Megabytes).

* Handles up to 65K logical records per file.

* Files may contain ASCII, BCD, and/or BINARY data.

* Handles LOGICAL RECORD LENGTHS to 4996 characters.

* Files may contain FIXED LENGTH records, varying length CARRIAGE­
RETORN-DELI M ITED records, or COBOL-style VARIABLE-LENGTH records
with length at beginning; COBOL RELATIVE FILES are al.so supported.

• FIELDS used as sort keys or in record selection tests may have
fixed COLUMN-SPECIFIED position and length, or variable COMMA­
DELIMITED position and length.

I-2

Ka
yp
roJ
ou
rna
l

Supersort Manual Introduction

*

*

*

MOLTIPLE SORT DYS WITB MANY OPTIONS AND DATA TYPES

One to 32 key fields may be specified, each with an independent
ASCENDING/DESCENDING indicator, collating sequence options, and
data type attributes,

Key data may be ASCII STRING text, ASCII NUMERIC, BCD (COBOL
packed decimal), or BINARY.

NUMERIC-ASCII option sorts on free-format numbers (including expo­
nential notation) as typically output by the PRINT statement of
BASIC or D, E, FI or G format in FORTRAN.

BINARY data types handled include FIXED POINT of any length,
signed or unsigned, stored low-high or high-low, and Microsoft
FLOATING POINT, single or double precision. This includes the
INTEGER, SINGLE PRECISION (REAL), and OOUBLE PRECISION data types
of Microsoft MBASIC and FORTRAN.

User-command-specified ALTERNATE COLLATING SEQUENCE and EBCDIC
collating sequence provided on an individual field basis.

Additional options include treating lower case as upper case,
treating last rather than first character of key as most signifi­
cant, and ignoring the high order (parity) bit.

PCliERFtlL RECORD SELECTION

Desired records can be extracted from a file via SELECT and
EXCLUDE commands which act on both sort and merge-only inputs.

Selection is specified via ANY NUMBER OF CONDITIONAL TESTS of a
field against a specified fixed value or range of fixed values or
against another field in the same record,

VALUES to test against are usually specified as 'I'EXT STRINGS, but
may also be specified as BCD numbers or as binary values expressed
in OCTAL, DECIMAL, or HEXADECIMAL.

Test OPERATORS include the usual LESS THAN, EQUAL 'l'O, etc, and
also BETWEEN and NOT BETWEEN. Tests may optionally be combined
with AND, OR, and EXCLUSIVE OR operations.

Record selection tests can use fixed postion or comma-delimited
fields, and all the data types and attributes specified above for
keys - ASCII, binary, numeric-ASCII, BCD, Floating point, alter­
nate collating sequences, etc,

I-3

Ka
yp
roJ
ou
rna
l

superSort Manual Introduction

ADDl'l'IOHAL FEM.'URES

EXTRACTION BY RECORD NUMBER: Starting and/or ending record numbers
may be specified for each sort input file.

OUTPUT DISKETTE CHANGE option makes it possible in most cases to
sort an entire diskette of data in a two-drive system without
writing over the input file.

TAGSORT option reduces work file diskette space requirements by
using pointers to records, rather than full records, during
sorting and merging, then retrieving the input records via a high
speed random access algorithm while writing the output file.

CONSOLE PRINTOUTS: user can select five degrees of message print­
out including none, a brief message giving number of records
processed, or a detailed breakdown showing numbers of records
input, sorted, merged, output, inserted, deleted, etc. Printout
of disk space usage may also be requested.

UTILITY FUNCTIONS: Supersort can perform many useful functions
such as converting files to a different record type, changing
record lengths, converting records with comma-delimited fields to
fixed-position fields, and extracting or rearranging (positional)
fields within the record. Data may be simultaneously sorted, or
kept in input order.

OPl'IOHAL 001'PU1'S

* KEYS-ONLY OUTPUT: With this option, the output file receives the
specified KEYS as extracted from the input records, rather than
the sorted input records. This permits building an index to a
file, extracting fields in order to print a summary, or selecting
and rearranging (positional} fields to form a new data base.

* RECORD NUMBER OUTPUT: The output file receives the record numbers
of the input records, in either ASCII or binary format. The
extracted keys may accompany the record numbers, or not. This
permits building MULTIPLE INDICES into a file, ordered on various
keys, without duplicating the data, so that another program may
retrieve the records by key value or in key order.

* POINTER OUTPUT: The output file receives the sector number and
byte offset at which each record begins, with or without the keys,
This provides another method of building indices whereby another
program may retrieve the records from the original file.

I-4

Ka
yp
roJ
ou
rna
l

Supersort Manual Introduction

<XlllPATIBLE WITH IHPOS'lAR

* Does File Maintenance on InfoStar Files. (See Appendix)

* Can create an index file for use by InfoStar from files created by
other programs.

* Can sort InfoStar files into any desired order.

<XlllPA'lIBLB WITH BASIC

* Handles CARRIAGE-RETURN-DELIMITED RECOBDS of varying lengths.

* Handles COMMA-DELIMITED FIELDS, with or without spaces surrounding
the data. QUOTES may be used to embed commas or leading or
trailing blanks.

* FREE FORMAT NUMBERS can be used as keys or in record selection
tests. SuperSort correctly interprets the value of variable
length signed or unsigned numbers with varying point position (or
omitted decimal point) and the optional use of exponential (E)
notation.

* It is unnecessary to use special programming techniques to produce
fixed record lengths or field positions or to align decimal points
in numeric data.

* variable length records and variable length fields can REDUCE DISK
FILE SIZES whether or not the file is to be processed by BASIC.

* Also handles binary INTEGER, SINGLE PRECISION, and DOUBLE
PRECISION data as in Microsoft MBASIC random files.

CXIIPATIBU!: WITH Microsoft l'ORl'RAII

* Handles FORMATTED files and data in A, D, I, E, F, G and L formats.

* Handles UNFORMATTED (BINARY) files and LOGICAL, INTOOER, REAL, and
DOUBLE PRECISION data.

* superSort may be called as a subroutine from a FORTRAN program.

I-5

Ka
yp
roJ
ou
rna
l

supersort Manual Introduction

<XlllPA'rIBLE WI'l'B Microsoft <X>BOL

* Handles SD;JUENTIAL Files (LINE, VARIABLE-LENGTH, or FIXED-LENG'l'H)
and REIATIVE files.

* Accepts DISPLAY, COMPUTATIONAL, or COMPUTATIONAL-3 data.

* Can convert file types, or convert records with comma-delimited
fields to positional fields, to make a file originally intended
for use with another language readable by COBOL, or vica versa.

* May be called as a subroutine from a COBOL program.

*

USER-EXIT RJOTINES

Users with minimal programming knowledge may optionally install
subroutines to inspect, replace, insert, or delete input records
and/or output records.

Once installed, these subroutines are active only when invoked by
operator command.

Typical uses of user-exit routines include:

specialized record selection during input
insertion of summary records or headings in the output
reformatting the output, e.g. to produce a report

EASY OPERATION

* INTERACTIVE KEYWORD COMMAND INPUT for easy operator entry of
sort/merge specifications and easy error correction.

* COMMAND FILES may be used to simplify operator invocation of
regularly-used supersort procedures.

* ERROR MESSAGES contain explicit and understandable text.

I-6.

Ka
yp
roJ
ou
rna
l

Supersort Manual Introduction

*

*

*

*

*

FLEXIBLE O'l'ILIZATION

Supplied as a ready-to-run main program

RELOCATABLE OBJECT CODE also supplied, permitting:

* calling as a SUBROUTINE from FORTRAN, COBOL, or Assembler
programs;

* INSTALLATION OF USER-SUPPLIED MODULES, such as user-exit
routines and custom collating sequence tables;

* DELE.'TING UNNEEDED FEA'l'URES to reduce memory requirements.

HIGH PERFORMANCE

uses fast HEAPSOR'l' algorithm with ,''sort-stretch'' modification,
dynamic merge optimization, and I/0 buffering strategies designed
to maximize throughput in a floppy disk environment.

ADJUSTS its internal memory allocation, I/0 buffer sizes, and
other variables in response to various numbers of inputs, record
lengths, options invoked, and amount of RAM memory available.
usable in a minimal system; runs faster and uses less disk work
space in systems with additional RAM.

SPEED: Benchmarked at over 560 records per minute under CP/M with
single density diskettes. (48K system; input file containing 1000
80-character records; one 10-character key,}

8. SOPERSORT I, and II

SuperSort is available in two versions, to meet the needs of users with
various requirements, as follows:

SuperSort I

SuperSort I is the complete version, with all features and
capabilities described in this manual,

superSort II

supersort II is SuperSort supplied without the relocatable code
files, With SuperSort II you cannot use SuperSort as a subrou­
tine, nor invoke load options or install custom modules such as
user-exit routines. All capabilities of the main program, as
described in this manual, are provided.

I-7

Ka
yp
roJ
ou
rna
l

Supersort Manual Introduction

C. H<M TO USE ':l'BIS MAlilUAL

00 not let the size of this manual intimidate you. You will find many
suggestions in the text as to what not to read. Read the rest of this
page, then continue with section II or skip to section III.

If you read the preceding feature summary and thought SuperSort looked
complicated, have patience. The "Operator's Handbookh tells how to use
Supersort's basic features in a much more instructional manner.

The rest of this manual consists of three sections: .''Installation",
''Operators Handbook", and ''Programmers Guide'".

The ."Installation" section is intended primarily for the individual who
receives the superSort product, ascertains that his computer and system
software are suitable, and installs SuperSort by creating backups of
the distribution diskette and moving files to be used to working
diskettes. Readers who are not performing this function may skip to
the .''Operators Handbook'".

The "Operator's Handbook" defines sorting concepts, describes superSort
facilities, and gives operating instructions for the Supersort program.
New users should read this section from the beginning, then use it as a
reference as required. Programming knowledge, in general, is not
assumed by this section.

At the end of the "Operator's Handbook,'' is a "Utilization Hints•
section describing utility uses of SuperSort, application to data
produced by various languages, and optimization techniques.

The "Programmer's Guide" gives additional information needed by pro­
grammers who wish to install custom modifications in SuperSort or to
use superSort as a subroutine. Additional detail on file and data
formats, that will be needed by some systems designers, is also given,
This section is written primarily for those with programming knowledge.

This manual assumes familiarity with the use of the CP/M operating
system or whatever similar operating system is in use at their instal­
lation. Before attempting to install or use SuperSort, readers without
such familiarity should read their systems documentation, particularly
with regard to entering console commands and copying files with PIP.
Familiarity with the CP/M editor, or an alternate editor such as Micro­
Pro's WORDMASTER, is also useful, for entering {optional) command files
and for inspecting and correcting ASCII data files.

I-8

Ka
yp
roJ
ou
rna
l

SuperSort Manual System Requirements and Installation

II. SYS'l'EM ~IREMEH'l'S AND INSTALLATION

This section is intended primarily for the individual who
receives and installs the SuperSort product. If another indi­
vidual has already performed this function for your system, and
provided you with a diskette containing the files SORT.COM and
SAMPLE.DAT, we suggest you skip to the beginning of section III,
~Operator's Handbook~.

A. BARDfARE RBQOlRENENTS ARD OPl'IONS

SuperSort runs on microcomputer systems with 8080/8085/Z-80 processors,
a console device (CRT or hardcopy terminal), one (preferably two)
floppy disk drives, and an adequate amount of RAM memory.

The RAM requirements vary from 26K up:

26K is the minimum to operate superSort as distributed.

32K is sufficient to use all features on files of moderate record
lengths (up to about 512 bytes), and most features on files of
moderate size with longer records (to 2048 bytes).

36K is necessary to load (link) SuperSort (required only by users
who wish to use the subroutine version or to install custom
modifications) .

48K to 64K is necessary for files with extremely long records (to
4096 bytes), and provides maximum speed and minimum disk work
space requirement in all cases.

B. SOF'lWARE REQUIREMEN'l'S AND OPTIONS

supersort requires the CP/M operating system. The operating system must
be installed and functional on your hardware before SuperSort can be
installed or used.

Before the SuperSort program can be used, the operating system must be
relocated (with the ''CPM'' command or equivalent, see your system docu­
mentation) to use at least 26K of RAM. we suggest relocating your
system for all of the RAM you have available and recording (with SYSGEN
or equivalent) this version of the system image on all system diskettes
with which Supersort will be used.

II-1

Ka
yp
roJ
ou
rna
l

SuperSort Manual System Requirements and Installation

Most users will use the Supersort stand-alone program as supplied and
no specific other software is needed. However, users with programming
knowledge who wish to use the subroutine version or to install custom
modifications will also require the Microsoft linking loader, 180. Use
of the subroutine version also requires the Microsoft FORTRAN compiler,
COBOL compiler, or assembler to write the calling program.

C. PACKI}I; LIST

Upon Purchasing a Supersort End User license you should receive:

1 copy of this manual
1 supersort distribution diskette
1 copy of the licensing agreement

D. mE DISTRIBU'l'Iaf DISlEftB

The distribution diskette containing SuperSort is single density, IBM
compatible, CP/M format and contains the following files:

II-2

Most users will be initially interested primarily in the following
two files. These files are supplied with superSOrt I and II.

SORT.COM

SAMPLE.DAT

SuperSort as a ready-to-run program

sample data file, used in examples in this
manual

The remaining files are supplied with Supersort I only. The
following are relocatable object files, compatible with the
Microsoft loader (L80). Usage is described in the Programmer's
Guide:

SORLIB.REL

SORT.REL

Sort library, containing SORSUB, SORMSG,
SORCNT, and most of SORT main program.

SOR!' main program root.

NOERR.REL, NOREPORT.REL, NOSEL.REL, NOCOL.REL
toad options.

Ka
yp
roJ
ou
rna
l

supersort Manual System Requirements and Installation

Source files, in Microsoft assembler (M80). usage described in
Program mer' s Guide:

SUBRDEMO.MAC Sample program that uses SORSUB

COLTAB,MAC, EBCTAB.MAC Collating sequence tables

SYSEQA.MAC defines system addresses

E. INSTALLATION

1. verify that you can read the distribution diskette

TUrn on your system, cold-start ("boot'') your operating system and
insert the distribution diskette in a drive. You should be able
to list its file directory (with the DIR command), and to TYPE the
file SAMPLE.DAT.

2. Make backup copies of the distribution diskette

Prudent data processing procedure dictates that you should always
have one or more extra copies of data that you can not easily
regenerate.

The following procedure is suggested for a two-drive system:

a. prepare a diskette containing at least the operating
system image and PIP.COM. Put this in drive A.

b. put the distribution diskette in drive B.

c, enter the command:

A>PIP A:= B:*.*[V]

This copies all files on drive B to drive A, and veri­
fies them, (With older versions of PIP, it will be
necessary to enter a separate command for each file).

d. put the distribution diskette away safely.

II-3

Ka
yp
roJ
ou
rna
l

SuperSort Manual System Requirements and Installation

3. Move files to be used to working diskettes

II-4

To use the SuperSort main program, and do the demonstration e~er­
cises given in the ''Operator's Handbook'', you need the following
files from the supersort distribution diskette:

a.

SORT.COM
SAMPLE. DA'l'

have your working diskette in drive A.
should contain the system image, PIP.COM,
other useful transients such as STAT, and
WORDMASTER.

This diskette
and, normally,
ED or MicroPro

b. insert a copy of the Supersort distribution diskette in
drive B.

c. enter the commands

A>PIP A:SORT.COM=B:SORT.COM
A>PIP A:SAMPLE.DAT=B:SAMPLE.DAT

d. put the disl:ette from drive B away safely.

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

III. 0 P E RA TOR 'S HAN DB O OK

The "Operator's Handbook'' defines sorting and merging con­
cepts, describes supersort's capabilities, and gives opera­
ting instructions for the superSort program. Read from the
beginning (initially skipping some sections as suggested in
the text}, it serves as a tutorial introduction: the later
sections are also organized to function as a reference
manual.

The novice in data processing, without programming knowledge,
can learn how to use most SuperSort functions by reading this
Operator's Handbook through from the beginning, skipping
sections relating to binary files and some of the more
advanced features.

Your attention is called to three other reference aids: the
command reference card that is in the back of the manual, the
command keywords listed after the relevant section titles in
the table of contents at the front of the manual, and the
phrases in the upper eight corner of each page.

In addition to the stand-alone main program, SORT.COM,
SuperSort is also supplied in the form of a subroutine, which
a programmer can incorporate directly into an application
program. Usage of the subroutine form and a number of
options and possible modifications to the main program form
ace described in the "Programmer's Guide'". The Programmer's
Guide assumes familiarity with this Operator's Guide at least
through the "Concepts and Facilities'' section.

III-1

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

A. GE'ft'IIC S'l'.AR'l'ED

This section leads you through using supersort to sort the sample file
supplied. Thus, you can gain an overview of SuperSort operation and
function, as well as test your copy of the program.

This example assumes that Supersort (file SORT.COM) is installed on a
diskette: the diskette should contain a 26K or larger CP/M system, and
the files SORT.COflJ and SAMPLE.DAT. Refer to the installation section,
preceding, if necessary.

Bring your computer system up and examine tbe contents of SAMPLE.DAT by
typing:

A>TYPE SAMPLE.DAT

The computer should respond with

''DEFG'' ,1, '"D'', "071278",,, "05090'' ,58.29,3800 ,1
"RBST,. ,1, ''D'', "071278'",,, '"05091" ,10 .92 ,3800 ,1
''NEWl '' ,1, ''D'', "071278'',,, "05092" ,43 .28,3800 ,1
''HAFH'' ,1, "D'', '"071278'',,, '"05094'' ,106 .35 ,3800 ,1
''HEFF" ,1, "D", ''071278'',,, "05095" ,2 ,3800 ,9
''HAFH'' ,1, ''D", ''071278",,, "05096'' ,129 .35 ,3800 ,9
''HAFH" ,1, "D", ''071278",,, "05097" ,45.5 ,3800 ,9
''HAFH'" ,1, "D'", "071278",,, ''05098" ,24.25,3800 ,9

You can terminate the typeout by hitting any key.

Note that each line (commonly called a record) contains 9 commas. The
sequences or strings of characters between commas, as well as the
beginning and ending strings, are each referred to as a field. Note
that some fields are bracketed by quotes while others are not. This is
one typical file format for use with SuperSort~ other possibilities are
described later.

This file might be used in an accounting system, with some of these
fields having meanings as follows:

Field 1:
Field 4:
Field 8:

Field 9:

firm number, 1-4 characters (enclosed in quotes)
date, in form YYMMDD (enclosed in quotes)
amount of transaction, up to 14 digits with minus sign
and variable decimal point position allowed
general ledger account number, 1-4 digits

We will now use Supersort to create another file containing the same
records as SAMPLE.DAT, but rearranged according to date, with the most
recent date first.

First, invoke SuperSort by entering the command:

A>SORT

III-2

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

followed, of course, with a carriage return, After a few seconds, SORT
should type a sign-on message and an*· The* is the prompt,
signifying readiness for command entry.

Enter the command: INPUT= 62, CR-DEL

This tells SORT that the input records are lines, separated by carriage
returns, not longer than 62 characters. Aga.in, terminate the command
line with carriage return. Another* should be appear. If an error
message occurs, look for a typing error ~nd carefully re-enter the
line.

Enter the commands: SORT-FILE= SAMPLE.DAT
OUTPUT-FILE= OUTPUT.DAT

These tell sort the names of the input and output files, respectively.

Typing errors during command input may be corrected with your system's
regular editing characters, including rubout to delete the preceding
character, and control-U to delete the entire line.

Enter the command: KEY= i4,6,DESCEND

This tells SuperSort to generate an output file in the descending
sequence of field 4, of maximum length 6, so that the most recent date
is first. The# indicates reference to a field by field number, rather
than by column position.

Our sort is now completely specified. To start it, enter:

GO

This time no * appears. Instead, sorting begins. After a minute or
two, a completion message should appear:

645 RECORDS SORTED
OUTPUT FILE SIZE 34K
WORK FILE DISK SPACE USAGE 34K
*** SORT/MERGE COMPLETE***

Check the sorted output file by entering

A>TYPE OUTPUT.DAT

The computer should respond with:

"HAFH" ,1, "R", "780809'',"
"HAFH" ,l, hR", "780809", ,.
''HAFH'' ,1, "R", "780809'',"
"HAFH" ,l, ''R", "780809","
''HAFH '' ,1, ''R", "780809","
''HAFH" ,l, ''R", "780809","

,, " ,
11 h ,
h II ,
•• 'ii ,
" ,, ,
11 •• ,

", "NOREF'' ,-7 ,2 ,8600 ,2
0 ,"NOREF",-6.45,8600,l
'', "NOREF'' ,-22 .89 ,8600 ,l
", ''NOREF'' ,-48 .97, 8600 ,l
","NOREF",-79.16,8600,l
", ''NOREF'' ,-0 .6 ,8600 ,1

III-3

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

B. CCH'.:EP.l'S AND FACILITIES

This section describes the SuperSort functions, and define
terms used in the rest of this manual.

1. FILES, RECORDS, FIELDS, AND DP.TA TYPES

A FILE is a set of data consisting of zero to several million bytes
(characters), stored with an associated name on a diskette.

A RECORD is the unit of information at the rearrangement level, i.e. a
record is the amount of information which stays together through the
sorting and merging process.

In this manual RECORD always means LOGICAL RECORD, or the unit of
information meaningful at the user's application level, as opposed to
the hphysical records'' or hsectors" in which the information is
recorded on the diskette.

Records processed by SuperSort can be up to 4096 bytes long.

A FJELD is a portion of a record -- normally a single data item. One
or more fields are specified as KEYS, that is, the data items which
determine the order into which the records are sorted. Fields are also
used in record selection tests.

The data in a file may be either ASCII or binary. ASCII data is
readable text - each byte contains a character in the ASCII (American
Standard Code for Information Interchange) code or some other code, or
a control code such as carriage return. Binary data is information
(usually numeric) in one of the computer's internal representations
(such as fixed point, packed decimal, etc).

SuperSort can process both ASCII and binary data; binary data in seve­
ral formats can be used for keys or tested for record selection. In
general, SuperSort needn't know which type of data the file contains,
and there is no provision for overall specification of ASCII versus
binary, However, when a field is being used as a sort key or in a
record selection test, the user must in many cases specify its data
and/or interpretation, via appropriate htest attr~butesh.

ASCII data is simplest to work with and most likely to be encountered
first in applying SuperSort; the reader may initially skip portions of
this manual relating to binary data.

III-4

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

2. SORl'ING AND MERGING

SORTING means to rearrange input records to form an ordered output file
according to a specified key or keys within the records. From one to
32 files can be sorted into a single output file: selection of records
according to user-specified tests can be done at the same time,

The sort process reads the input files one after another. The data is
sorted in batches called SORT BLOCKs. Each sort block is written to a
WORK FILE on diskette. The sort is then completed by merging the
individually ordered sort blocks to the output file. usually, a single
merge run completes the operation, but additional merges will be
performed automatically, if required, due to large files and the
limitations of the available RAM memory.

MERGING means to combine the records from two or more ordered input
files into a single ordered output file. SuperSort can merge up to 32
files in a single run, together with or apart from sorting one or more
additional files in the same run. This gives you an efficient way to
combine files of unordered records with already ordered files, to
produce a new ordered file containing all the records.

Merge input files are read in parallel. In most cases, no work file
space is used on diskette and each record is read and written only
once, resulting in fast, efficient merge execution.

A merge run with one input file only is a useful way to apply features
such as record selection without reordering the data.

superSort does not check for sequence errors in merge inputs. If a
record in a merge input file contains a key smaller than that of the
preceding record in the same file, the out of sequence record is output
immediately after the preceding record and merging continues.

In both sorting and merging, superSort outputs records with equal keys
in an unspecified order. Exception; in a single-input merge the
records are always kept in the original order.

3. FILE RECORD TYPES

supersort can handle files containing three types of records, called
FIXED-LENGTH, CR-DELIMITED, and VARIABLE. In addition, it can handle a
special COBOL-compatible type of fixed length record file called a
RELATIVE file. Initially, the reader will probably want to concern
himself only with FIXED and CR-DELIMITED record files.

III-5

Ka
yp
roJ
ou
rna
l

superSort Manual Operator's Handbook

FIXED-LENGTH Record Files

Every record in a FIXED-LENGTH record file is of the same length;
the user may specify any length between land 4096 bytes. No
record separator {delimiter) is assumed for fixed-length records
by SuperSort, though any character desired by the user may be
present in the file as long as they are allowed for in the record
length specification.

Fixed-Length records may contain data of any type.

The length of fixed-length records bears no particular relation­
ship to the physical sector length used on the diskette; data is
recorded continuously in the disk file, spanning sector
boundaries.

CR-DELIM.I'I'ED :Record Files

CR-DELIMI'l'ED records are records of varying length delimited by
carriage returns (actually, the file normally contains both an
ASCII kcarriage return'' character and a .'"line feed. 0 character
between records, per CP/M convention).

For a CR-DELIMITED record file the user specifies a maximum record
length between land 4096; each record in the file may contain
from 1 to this many data characters, plus the record delimiters.
An attempt to input a CR-DELIMITED record longer than the
specified length causes the record to be split into two records
and a warning message printed.

CR-DELIMI'l'ED files normally contain ASCII text data only, as
binary data isn't necessarily distinct from the codes for carriage
return and line feed.

NOTE

Files written by most BASIC programs are CR-DELIMITED.

VARIABLE Record Files

III-6

VARIABLE records are records of varying length in which the length
is storeo in the first two bytes of the record. Usually, such
files are created by COBOL programs,

For a VARIABLE record file the user specifies a maximum record
length between 3 and 4096. Each record can contain from 1 to the
maximum length less 2 bytes of data, Note that the bytes in which
the length is stored must be allowed for in specifying the maximum
length to super Sort, al though these bytes are not counted in the
individual record lengths as stored in the file. An attempt to
input an overlong VARIABLE record causes an error.

Since the length of each record is stored separately from the
data, VARIABLE records may contain any data type.

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

CAUTION

Do not confuse VARIABLE with CR-DELIMITED. In SuperSort
files consisting of printable lines of text are always
called CR-DELIMI'l'ED, NOT VARIABLE.

RELATIVE files

A RELATIVE file is a file type produced by COBOL programs which
contains fixed length records and has provisions for non-existent
(never written, or deleted since written) records~ it also has a
"header'' recorded on the disk which specifies its record length
and maximum active record number. (In FIXED, CR-DELIMITED, and
VARIABLE files, there is no header and all records present are
stored contiguously from the beginning of the file to the end.)

For a relative file, the user specifies a record length of I to
4096 bytes, Each record contains this many bytes of data, and may
contain any data type, provided the entire record is not binary
zero. For an input file, the user-specified record length must
match that with which the file was written,

When SuperSort processes a relative file, all non-existent record
spaces are skipped overi the output file will contain only the
active records, written contiguously from the beginning.

While it is usual for the input and output records to be of the same
length and type, SuperSort allows specification of a record length and
file type for the output file that is different than the input file(s).
In the case of record length differences, too-long records are
truncated, and too-short records are extended with blanks.

If the output type is specified as different from the input, appro­
priate conversions will be performed. Thus, superSort can be used to
convert from one file type to another, for instance from CR-DELIMITED
to VARIABLE, RELATIVE to FIXED, or FIXED to CR-DELIMITED. Recall that
a single-input merge can be used to process a file without reordering
the records.

4. END-OF-FILE INDICATION CONSIDERATIONS

Users of FIXED-LENGTH record files containing binary data need to give
special consideration to the method of indicating the (logical) end-of­
file in the design of such files and in applying superSort to such
files, Information on this subject is given in the "Programmer's
Guide'' section entitled '"File and Record Formats'',

5. FIELDS

There are two ways of specifying the location of a field (data item)
within a record to superSort:

III-7

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Positional Fields

For a POSITIONAL FIELD the user specifies the starting and ending
positions (columns) for the field. Positional fields have fh::ed
length and use no delimiting characters. The first character in
the record is position 1.

NO'I'E

For VARIABLE records, the length occupies positions 1
and 21 the first data position is position 3.

Comma-Delimited Fields

A COMMA-DELIMITED field is separated from the rest of the record
by commas. The user specifies the field number and (for keys) the
maximum length to be used. Comma-delimited fields are convenient
for use with files written by BASIC programs, as most BASICS write
{and can read) values written variable-length with commas between
them.

commas may be imbedded in comma-delimited fields if enclosed in
quotes {~). For compatibility with those BASICs that quote data
written to files, supersort disregards all "'s in a comma­
delimited fields when using it as a sort key or for a record
selection test. Also, any leading and trailing blanks not
enclosed in quotes are disregarded.

For example, field t3 is taken from between the second and third
commas in the record1 field tl is from the beginning of the record
to the first comma.

NO'I'E

For VARIABLE records, field il begins at position 3,
i.e. after the record length bytes.

6. FJELD TEST AT'l'RIBOTF.S

SuperSort tests fields in two contexts: when used as sort keys, and
when used in record selection tests. When no specific test attributes
are specified by the user, fields are compared byte-by-byte, unsigned,
left to right.

This default method of comparison sorts ASCII information into ASCII
code order (roughly, alphabetical order: see the ~collating Sequences''
section and Appendix 1). It will-also sort unsigned numbers stored as
text into numeric order, but only if the decimal point positions are
aligned by means of leading zeroes or blanks (in a comma-delimited
field, leading blanks must be quoted), and provided exponential
notation is not used. It will sort binary information correctly only
if the data is unsigned fixed point stored high order first.

III-8

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

However, if the data in the field is a number represented as text in
any but the restricted format specified above, or if the field is to be
treated as BCD information or most types of binary information, the
proper ATTRIBUTE(s) must be specified.

Specific attributes can also cause right-justified testing, right to
left comparison, treatment of lower case as upper case, and masking of
the high order bit. To wit:

NUMERIC-ASCII

Determine the numeric value of the text in the field. Text may be
a number with or without leading sign, decimal point, or exponen­
tial notation, No particular length or point position is re­
quired. Formats written by the PRINT statement of BASIC are cor­
rectly interpreted, as well as FORTRAN I, E, F, and G formats. Up
to 14 significant digits are used; excess digits are disregarded,

Note that NUMERIC-ASCII is only for numbers stored AS TEXT. Other
attributes are described below for other (binary) numeric data
representations.

UPPER-CASE

Treat any lower case letter as the corresponding upper case letter.

RIGHT-JUSTIFY

LOHI

Add leading blanks if necessary to extend length of data from a
comma-delimited field (normally, left justification is done, by
adding trailing blanks). This attribute causes ASCII information
to sort with shortest values first, and causes unsigned ASCII
numbers with fixed point position to sort in numeric order.

Test right to I eft instead of left to right. Intended primarily
for sorting binary data stored with the least significant byte
first (most binary data in 8080/8085/Z-80 systems is stored in
this backwards manner), but may be used to test any positional
field right to left, Not allowed with comma-delimited fields.

MASK-PARITY-BIT

Ignore the high order bit of each byte.

NOTE

CP/M ASCII files normally have this bit clear; this
attribute is intended for use if an unusual input source
put irrelevant information (such as parity) into the
high order bit.

III-9

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

The remaining field test attributes relate to various non-ASCII data
types; the reader may wish to skip them initially.

'IWOS-COMPLEMENT
COMPUTATIONAL

Either of these words means to interpret the field as SIGNED fixed
point binary information. When used alone, the data is assumed to
be stored high order first (see LOHI and INTEGER for data stored
in normal 8080 backwards format), These attributes may be used
with fields of any length: use with a field length of 2 bytes for
COBOL COMPUTATIONAL data,

INTEGER

Treat data as signed, twos-complement, fixed point binary data
stored low order first. Equivalent to the two attributes LOHI and
TWOS-COMPLEMENT used together. Use with a 2-byte field for
FORTRAN INTEGER data in an unformatted (binary) file or MBASIC
INTEGER data in a random (binary) file.

FLOATING-POINT

Interpret data as Microsoft floating point format. Use with a 4-
byte field for FORTRAN REAL data in an unformatted (binary) file
or MBASIC SINGLE PRECISION data in a random (binary) file; use
with an 8-byte field for FORTRAN or MBASIC OOUBLE PRECISION data
in bihary files,

PACKED-BCD
COMPUTATIONAL-3

Treat as packed BCD (Binary Coded Decimal) with two digits stored
in each byte and an optional sign in standard IBM format. See the
''Programmer's Guide~ for details of this data format, Use for
COBOL COMPUTATIONAL-3 data.

CAUTION

The normal abbreviation rules for entering supersort
command keywords (as described below) do not apply to
''COMPUTATIONAL-3'". Spell it out, or read the details in
the description of the KEY command.

In addition, ASCENDING (normal) or DESCENDING (backwards) sequence can
be specified for each key field (intermixed sequence indicators).

Two more attributes, EBCDIC and ALTSEQ, are described later in the
•·collating Sequencesk section,

III-Hl

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

7 . BASIC COMPATIBILI'l'Y

When programs are written in BASIC to generate files that will be
sorted and/or merged, no special programming is required. In particu­
lar, it is not necessary to use PRINT USING nor to generate fixed­
length records.

The PRINT statement can generate ASCII files with carriage returns
between records, commas between fields, and numbers in free format.
Such files use minimal disk space, are easy to program for, and sort
quickly because of the small file size.

To process such files with Supersort, specify CR-DELIMITED records,
comma-delimited fields, and use the NUMERIC-ASCII attribute for numeric
fields.

In some BASICS, such as CBASIC, the commas between fields are supplied
automatically1 in others, such as MBASIC, it is necessary to explicitly
PRINT the commas, Some BAS I Cs quote string data in files, others do
not1 SuperSort handles either format.

Further notes on using SuperSort with BASIC and other programming
languages are given in the ''Utilization Hints" section.

----------------*----------------
At this point, those concepts involved in use of SuperSort's
fundamental features have been defined; the reader may wish
to examine the first few sections of section III-C,
''Operating the SuperSort Program'', and do some trial sort
operations, before continuing with this section,

----------------*-----------

8. COLLATING S~UENCES

A COLLATING SEQUENCE is the order into which various characters are
sorted. superSort's default collating sequence is the unsigned binary
value of each byte. For ASCII textual data, this results in sorting in
the ASCII code order, which goes, briefly as follows:

space, digits 0-9, upper case A-Z, lower case a-z

with the punctuation and special characters scattered between the above
groups. Refer to appendix 1 for details. The order is, of course,
modified by the UPPER-CASE attribute, described previously. Also, the
NUMERIC-ASCII, INTEGER, and PACKED-BCD attributes change the whole
method of comparing fields,

III-11

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

There are two additional attributes which can be specified on a field­
by-field basis to change the collating sequence:

EBCDIC

Sort ASCII data AS THOUGH it were in IBM's "EBCDIC'' code. That
is, test on the value of the EBCDIC code corresponding to the
ASCII code actually in the file. The EBCDIC code goes, briefly,

space, lower case a-z, upper case A-Z, digits 0-9

As with ASCII, the punctuation and special characters are
sprinkled in the gaps, and full details are given in Appendix l.

ALTSEQ

NOTE

If your data is in EBCDIC and you want the EBCDIC
collating sequence, do NOT specify EBCDIC.

use a USER-SPECIFIED alternate collating sequence. The alternate
sequence may be specified to the supersort program by command,
and/or via a custom-installed table (see the "Programmer's
Guide"). For the superSort subroutine, the sequence is specified
by passing a table as one of the arguments. Note that to use a
user-specified collating sequence, it is necessary to both specify
the sequence, AND invoke its with the AL'l'SEQ attribute for EACH
applicable key field and/or record selection test.

Since there are two optional collating sequences, plus the default, it
is possible to apply THREE different collating sequences in the same
run (on separate fields, of course).

9. OO'l'POT OPl'IOIIS

Normally, the output file contains the rearranged input records. This
is referred to as FULL RECORD OUTPUT. In addition, there are three
optional types of output - keys, record numbers, and pointers - and two
combination options: keys plus record numbers, and keys plus pointers.

K-OUTPUT (keys only)

The output file receives the only keys as extracted from the input
records. The keys are concatenated together, in the order that
the key field specifications are given. A carriage return line
feed follows the keys if the output file is specified as CR­
DELIMITED.

Certain transformations are performed on the keys, including
removing quotes from comma-delimited fields and filling them out
to their specified length with trailing blanks (leading blanks if

III-12

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

RIGHT-JUSTIFY is specified), ones-complementing DESCENDING keys,
and conversion of NUMERIC-ASCII fields to an internal format. The
transformations are detailed in the ;"Programmer's Guide.".

uses of K-OUTPUT include:

Extracting fields from a file, to permit printing a summary -
for example, a list of the names of all clients who have
records in the file. Be careful not to use any attributes
(such as DESCENDING or NUMERIC-ASCII) which produce unprint­
able results.

Extracting fields from a file, to produce a compact index
which may be used by a program to quickly locate records for
retrieval from the original file; this is particularly useful
if the records are long and the keys are short. The keys
only file will be in the same order as the input file if it
is produced with a single-input merge.

Rearranging (positional) fields in a file: specify the fields
as keys, in the order you wish them to appear in the output
file.

Converting a file with comma-delimited fields to positional
fields (K-OUTPUT always has a constant length, with quotes
and commas removed).

R-OUTPUT (record numbers)

The output file receives only the record numbers (l=first record)
of the input file, arranged in order according to the specified
keys. This creates a compact file which may be used by a program
to process a fixed length record file in the key order, without
duplicating the entire file. The record numbers will be in ASCII
{text) if the output file is specified as CR-DELIMITED; otherwise,
they will be binary. The output formats are detailed in the
''Programmer's Guide".

P-OUTPU'I· (pointers)

Similar to R-OUTPUT output except that the output file receives
the sector number and displacement into the sector of the start of
each record, instead of the record numbers. such pointers permit
retrieval of records of varying lengths (CR-DELIMITED or
VARIABLE), whereas record numbers are generally only useful with
fixed length records. On the other hand, record numbers are
easier to process in many programming languages.

KR-OUTPUT (keys and record numbers)
KP-OUTPUT (keys and pointers)

These output the keys (see K-OUTPUT) followed by the record
numbers (see R-OUTPUT) or pointers (see P-OUTPUT).

III-13

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

For files with records that are long with respect to the keys, !-.
KP-OUTPUT or KR-OUTPUT file produces a compact index which can be
searched quickly by a program to find a particular record by key
value.

several KP- or KR-OUTPUT files derived from the same input file
can be used to permit retrieving records by various keys. This
uses less disk space than multiple copies of the original data, as
well as saving search time.

Futhermore, in applications that involve update in place of the
non-key portions of the record, use of KR-OUTPUT or KP-OUTPUT
indices eliminates the need to update multiple files or to re-sort
after update.

The above output options, except K-OUTPUT, may be used only with a
single input file: this file may be sorted (to put the output in key
order) or merged only (to maintain the input order}. K-OUTPUT may be
used with multiple sort and/or merge input files.

18. 'l'JIGSOR'.f'

TAGSORT is an optional METHOD of sorting that has no effect on the
contents of the output file. The effect of tagsort is to reduce the
amount of work file space needed on disk, traded against longer proces­
sing times~ Tagsort may be requested when there is one sort input file
and no merge input files.

Tagsort is recommended when the input file is relatively large with
respect to the space available for the work file, when the input file
contains unusually long records, especially if the key length is short
relative to the record length, and when there is relatively little RAM
in the system (or a relatively small caller-supplied working storage
area for the subroutine}.

Tagsort is not recommended for small sorts, when there is plenty of
space for the work file, lots of RAM available, and when maximum speed
is desired.

11. DISD'l"J'E QIARGDI,;

Output Diskette Change

The user may request that the diskette be changed after the input
file is read and before the output file is written. This request
is made by appending a ~;c•• to the output file name. When this is
requested, SuperSort will type a message at the appropriate time
telling the operator which drive's diskette to change, then await
a _carriage return. NO DISKE'l'TE OTHER THAN THE REQUESTED ONE
SHOULD BE CHANGED.

III-14

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

With this option, it is usually possible to sort an entire disk­
ette full of data in a two-drive system, without destroying the
input, by using the same drive for input and output and a scratch
diskette in the other drive for the work file. We say ''usually.''
because if the amount of RAM in use is relatively small, and/or
the records are unusually long, the amount of work file space
required will be larger than the input file(s), and thus larger
than the capacity of a diskette,

When using output diskette change, the user must place the follow­
ing files on drives other than the output drive:

all merge-only inputs, if any;
the input file, if tagsort is being used; and
the work file (the work file defaults to the current drive;

there are provisions to assign it to any desired drive),

Thus, output diskette change is useful primarily when sorting
without tagsort and when there are no merge inputs.

Before-start Diskette Change

After the SuperSort program is invoked but before sorting/merging
has been initiated by operator command, you may change diskettes
in any drive. This means the space that would otherwise be taken
up by the file SORT.COM (from which SuperSort is loaded) can be
made available for data during sorting.

NOTE

When SuperSort is run under MP/M the preceding MBefore­
Start Diskette Change'' rule is not in effect. If it is
desired to change disks under MP/M after Supersort
loads, it is necessary to issue a CHANGE command to
supersort. When the CHANGE command is issued disks may
be changed as described above. Note that this command
is merely redundant when issued under CP/M.

The user is cautioned that the above options are due to special code in
the SuperSort main program, and that in general DISKETTES SHOULD NEVER
BE CHANGED UNDER CP/M without a warm-start (control-Cl. The user is
further cautioned that disregarding the above rule, except for the
clearly documented exceptions such as SuperSort's output diskette
change and before-start diskette change provisions, is likely to
destroy the data in his files.

There is no provision for changing diskettes between input files nor
during the reading or writing of a file.

III-15

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

12. REOORD SELECTION

There are two methods to specify records to be chosen from the input.
In either case, all undesired records ace rejected as they are read;
they do not enter into the sort/merge process and do not appear in the
output.

Extraction by Record Number

A first and last record number (first record=!) may be specified
foe each sort input file. Only records between these numbers,
inclusive, will be included. This feature is not available for
merge-only input files.

Selection based on Conditional Tests of the Data

Record selection may also be based on tests of record fields.

There are eight test conditions (comparison operators) available:
between, not between, less than, less or equal, not equal, equal,
greater or equal, and greater than.

The test (comparison) may be between a field and a constant, or
between fields in the same record.

Constants to test against (compare to) may be quoted text (the
common case), binary (expressed in hex, octal, or decimal radix),
or BCD. There is no practical length limit to quoted texts or
other forms of constants.

In the case of the ,"between,h and "not between." operators, one
value (usually a field) is tested for being in or outside the
range specified by two other values (commonly constants).

All of the field test attributes described previously -- NUMERIC­
ASCII, RIGHT-JUS'l'IFY, PACKED-BCD, FLOATING-POINT, etc. may be
applied to the comparisons used in record selection.

Complex conditions can be expressed by using the logical operators
AND, OR, XOR, and NOT to combine tests. In the SuperSort program,
four levels of nested parentheses may be used to specify grouping
of operands.

F·urthermore, in the Supersort program, up to 32 SELECT and/or
EXCLUDE commands, each utilizing all of the above features, may be
given. (In calls to the subroutine, multiple conditions are
expressed as ''AND'''s.)

Record Selection by tests of the data acts both on sort input
files and on merge-only input files. Thus, if you wish to select
records without reordering them, use a one input merge: specify
one merge input file and no sort input files.

III-16

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

More exposition on record selection by conditional tests of the data is
given in the "Introduction to SELECT/EXCLUDE," section of the "Operating
The Supersort Program" section and following sections.

13. IIBSS1,GB<Dl'l'BOL

SuperSort provides six levels of status information printout, varying
from nothing, through a short printout of number of records processed,
through a detailed breakdown of number of records sorted, merged, not
selected, etc, to during-execution reporting of the phase of processing
(sort, merge, final merge, etc).

The degree of information printout is specified by a number called the
PRIN~ LEVEL. The user can specify print levels from 0 (to print
nothing) to 5 (to print the most), The default print level is 2.

At all levels, the printout is kept as brief as practical for the
particular run by suppressing zero quantities and redundant quantities
(e.g. the number of output records is never printed when it is the
same as the number of sorted records).

Print levels 0 through 5 result in messages as follows:

Level 0: nothing printed

Level 1: number of records sorted if non-0
number of records merged if non-0
number of output records if not redundant
work file space in Kilobytes if non-0

Level 2: this is the default level,
prints as above, plus:
number of sort input records if not redundant
number of merge input records if not redundant
number of records rejected by record selection:

from sort input if non-0
from merge input if non-0

user-exit (see below) insertion and deletion counts,
for sort input, merge input, and output, if non-0

work file space in Kilobytes if non-e

Level 3: as above, plus:
number of sort runs (sort blocks)
number of merge runs

Level 4: as above, and prints as pertinent:
SORTING, ..
MERGING ••.
ADDITIONAL MEBGE •..
FINAL MEBGE,,.

III-17

Ka
yp
roJ
ou
rna
l

superSort Manual Operator's Handbook

Level 5: as above, plus:
number of bytes of working storage
number of input records to each sort run
number of sort blocks input to each merge run

The section entitled '"Execution Messages'' gives examples and more
detailed explanations of these messages,

14. IIAIN PROGRAM AND SCJBBOUTINE FORMS OF superSort

The facilities described above are available in SORT, the Supersort
main program, and are also provided as a subroutine with SuperSort I.

The main program is used by entering COMMANDS to request the desired
sorting and/or merging operations; these commands are the subject of
the next section, ''Operating the superSort Program". The main program
will fill most sorting and merging needs, and can be used without
programming or knowledge of programming,

The superSort subroutine, SORSUB, is utilized via calls from a user­
written program. In addition to SORSUB, subsidiary routines are sup­
plied to print error messages and to return to the calling program the
various counters that SuperSort maintains. Calling sequences and
loading procedures are given in the ''Programmer's Guide~.

15. USER-EXIT ROOTINES

USER-EXIT ROUTINES are subroutines WRI~TEN BY THE USER and installed in
supersort (SuperSort I only). There are provisions for two user exit
routines: XITl, which operates on input records, and XIT2, which
operates on output records. Each is called for each transfered record.
The current record is passed to the routine, which may request that:

*

the record be DELE'l'ED, or

ACCEPTED, or

REPLACED with another record returned by the routine,

or that another record returned by the routine be INSERTED
ahead of the current record, with the current record being
transmitted to the exit routine again on the next call.

The latter two possibilities are not allowed for merge input records,
nor when using tagsort, R-OUTPUT, P-OUTPUT, KR-OUTPUT, or KP-OUTPUT,

The exit routines are called again, with a flag being passed, at end­
of-file, This allows adding one or more records to the end of the sort
input and/or output. Such records might contain summary information
generated during inspection of the individual records.

III-18

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Since the user-exit routines allow custom user code to be combined with
all of Supersort's features and options, installing user-exit routines
in Supersort can produce powerful special-purpose application programs
with relatively little programming effort. Possible uses of user-exit
routines include:

*

*

*

*

to select records in a special manner;

to reformat the records before or after sorting, for example,
to make mailing labels from an address file;

to accumulate summary information;

to detect control breaks and insert headings or summary
records;

to "pipeline'' input and/or output data directly from/to the
user's program, without going via a file (by using dummy one­
record files).

Once installed (linked), the user-exit routines can be individually
invoked or not in a given run of the sort program or subroutine.

The calling sequence for the user-exit routines is such that they can
be coded in Microsoft Assembler or l''ORTRAN. Calling Sequences and
Installation procedures for user-exit routines are given in the
''Programmer's Guide".

16. LOAD OPTIClilS

LOAD OPTIONS are options the user may specify when loading SuperSort
(Supersort I only). The load options provided include:

* User-exit routines (previous section);

* custom collating sequence tables:

*

the EBCDIC table may be changed to any desired sequence;
the default ALTSEQ table for the main program may also
be changed to any desired sequence;

Options to reduce memory requirements:
by reducing the amount of message text, or
by eliminating code for unneeded functions, such as
record selection or alternate collating sequences.

There are provisions for reloading the program version in order to
specify load options, as well as for invoking load options when loading
the subroutine with your program.

See the ~Programmer's Guide'' for cletails.

III-19

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

C. OPERATING THE SUPERSORI' PROGRAM

This section describes the standard stand-alone program ver­
sion of supersort. Topics covered include invoking the pro­
gram, command entry in general, entering commands via console
or command file, and the specific commands required to invoke
all of the superSort functions.

Refer back to the ''Concepts and Facilities'' section as neces­
sary for additional descriptions of the SuperSort functions,

1. INTBODUCTION TO SORT USAGE

The SuperSort program, SORT, performs sorting, merging, and record
selection operations as requested in COMMANDS specified by the user.
The commands may be interactively input from the console, pre-stored in
a command file, and/or included in the CP/M command line that invokes
SOR'l'.

In the simplest case, the Supersort program is invoked with the system
command 1 ine

A>SORT

The "A>'' shown is the system prompt, which will already be displayed
when the system is ready to accept a command. The line must be termi­
nated with a carriage return, as are all lines entered by the user.

If a system message LOAD ERROR or TOO BIG occurs in response to the
above command, you are not using a 24K or larger CP/M, To correct this
situation, use the ,''CPl-1'' or equivalent command, as explained in your
CP/M system documentation.

When thus invoked, the superSort program prints a sign-on message, then
prints an* as a prompt to signify that it is ready to accept input.
The user then enters the desired commands -- as described in the rest
of this section. For an example, see the ''Getting Started'' section.

When entering command lines, terminate each line with carriage return.
Your system's regular editing characters may be used to correct typing
errors, including RUBOUT to delete the preceding character, and CTRL-U
to delete the entire line.

Some or all of the commands may be entered on the system command 1 ine,
after the word ''SORT". An example, using commands which will be
explained later:

A>SORT INP=80,CR; SO=A.DAT; OUT=O.DAT; KEY""U,5; GO

III-20

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

If the SuperSort commands on the system command line are sufficient to
completely specify and start the sort/merge operation, SORT starts
immediately with no sign-on and no console input.

NO'l'E

It is permissable to change diskettes after SORT is invoked
but before execution is started (hGO" command).

2. COIIIIAND FORMAT AND ABBREVIATION

Each supersort command consists of a keyword, identifying the type of
command, followed, usually, by parameters. Depending on the command
type, the parameters include such things as filenames, numbers, and
attribute keywords.

Keywords are formed of letters and -•sand possess both long and short
(abbreviated) forms. The letters may be entered in upper case or lower
case.

The command descriptions that follow show the keywords in their long,
self-documenting form. While this form is easy to read, it can be
inconvenient to type in. Hence, abbreviating is allowed as follows:
letters may be omitted from the end of the keyword, and/or any -•scan
be omitted.

A minimum number of letters at the beginning of the keyword must be
typed: ONE, for the most commonly used commands, 'l'WO, in most other
cases, THREE if the word begins with hNO". Three or more letters are
always accepted. A few exceptions are noted below.

The examples of abbreviated entry shown below are all equivalent:

INPUT-ATTRIBUTE
INPUT
IN
I

To further simplify entering commands, spaces may be used instead of
commas, and in place of the equal sign after the command keyword.
Spaces may be used freely between items, but should not be embedded in
a keyword or parameter.

Examples of commands abbreviated to various degrees will be given in
the command descriptions.

3. ORDER OP COMMAND ER'l'R!

The several commands necessary to specify a sort/merge operation may be
entered in any order. There are two exceptions: keys must be specified
in the desired order, and GO, which starts execution, must be last.

III-21

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

4. CHANGING VERSOS ADDING OOMMANDS

In general, commands may be repeated, with only the last occurrence
effective, This allows you to change your mind and alter previous
entries.

However, certain commands which can have multiple entries (e.g. KEY=)
may be repeated using a+ instead of an= to indicate additional rather
than replacement entries. (Note: in this context, a space used instead
of an equal sign is treated as the equal sign. The plus sign therefore
must be used when specifying additional entries.)

5. COMNAND LINES

supersort commands are commonly entered one to a line. However, the
following variations are also permitted:

Multiple commands on one line

separate the commands with SEMICOLONS.

Continuation of same command on next line

Comments

type an AMPERSAND(&) before the carriage return.

a VERTICAL BAR (I) means the rest of the line is a
comment.

6. COMMAND DF.SCRIP'l'ION NOTATION

In defining commands, we will use the following notational convention:

UPPER CASE

lower case

[l

{ }

enter as shown1 keywords may be abbreviated.

substitute as required: filename, number, etc,

enter one of the choices shown one above another,

optional: enter or omit

enter none or any number of the column of alterna­
tives, in any order, separated by commas or spaces.

repeat preceding parameters if desired, as many
times as desired.

This notation will be clarified via examples in the following command
descriptions.

III-22

Ka
yp
roJ
ou
rna
l

superSort Manual Operator's Handbook

7. SPECIFYING '!'BE INPUT FILE(S)

Three commands are used to define the input files:

INPUT-ATI'RIBUTES

SORT-FILES

MERGE-FILES

specifies record length, file record type, and
other common attributes for all input files. Must
always be given

names files to be sorted, and optionally gives
record number of first and last record to extract
from each file

names files to be merged

Either a SORT-FILES or a MERGE-FILES command must always be given1 both
may be used, if desired, in the same run.

INPUT-ATTRIBUTES command

The form of the INPUT-ATTRIBU'l'ES command is as follows {recall that a
column of alternatives enclosed in { }'s means that none, one, or
several of them may be entered, in any order, separated by commas or
spaces):

INPUT-ATTRIBUTES= record-length { FIXED-LENGTH }
{ CR-DELIMITED }
{ VARIABLE }
{ RELA'l'IVE }
{ NO-SINGLE-Z J
{ NO-ZZZ }
{ FFZZZ }

record-length is a number between 1 and 4096 specifying the
length in bytes of fixed length records, or the
maximum length of CR-DELIMITED or VARIABLE records.

One of the following four attributes may be given to specify the file
record type for all of the input files. If none is given, the default
FIXED-LENGTH is assumed. See the '"Concepts and Facilitiesh section for
further description of each type.

FIXED-LENGTH input file(s) contain fixed-length records.

CR-DELIMITED input file(s) contain records separated by carriage
return and/or line feed characters, usually of
varying lengths.

VARIABLE input file(s) contain hvariable length records~
with the length in the first two bytes of each
record. Note that record length must be specified
2 greater than the maximum number of data types in
a record. Don't confuse this with CR-DELIMITED.

III-23

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

RELA'l'IVE input file(s) are COBOL ''relative'' files.

we will describe the rest of the attributes after the following
examples of valid INPUT-ATTRIBUTES commands:

INPUT-ATTRIBtJI'ES 128 (fixed-length assumed)
INPUT-ATTRIBUTES= 67, RELATIVE
INPUT-ATTRIBUTES= 80, CR-DELIMITED
INPUT-ATTRIBUTES= 293, FIXED-LENGTH
INPUT= 293, FIXED
I 293 FI (minimum abbreviation)

The last three examples are equivalent: they show full entry, partial
abbreviation, and full abbreviation.

The remaining three input attributes relate to end-of-file detection in
FIXED-LENGTH record files containing binary data1 they need not concern
users of other file and data types. see the ~Programmer's Guide" for
further information.

NO-SINGLE-Z

NO-ZZZ

FFZZZ

do NOT end FIXED-LENGTH record input file upon
encountering a single IA hex byte (control-Z).

do NOT end FIXED-LENGTH record input file upon a
record length of hex lA's. Implies NO-SINGLE-Z.

DO end input file upon reading a record beginning
with two FF hex bytes, followed by enough lA's to
fill the record.

Additional examples of INPUT-ATI'RIBUTES Conmands:

INPUT-ATI'RIBUTES c 1024, FIXED-LENGTH, NO-SINGLE-Z
INPUT s 200, FIX, NOZZ, FFZZZ
I 200 FI NOZ FF (abbreviation of preceding)

SORT-FILES Conmand

The SORT-FILES command specifies names of files to be sorted, plus
optional start and end record numbers for each. Its form is as follows
(recall that a column of alternatives in () 's means to enter one of
them, and that I J's enclose optional items):

SORT-FILES (s) filename [(start-record, end-record)] , ...
{+)

+

III-24

means forget any sort input files previously speci­
fied. Assumed if neither+ nor= given.

means use the file(s) specified in this command in
addition to any previously specified. Up to 32
sort input files may be used in one run.

Ka
yp
roJ
ou
rna
l

supersort Manual Operator•s Handbook

filename is CP/M file name, with optional drive and type
fields, in accordance with standard CP/M file
naming conventions.

start-record number from l to 65535 indicating first record to
include in the sort input: 8 or l means begin at
the beginning of the file

end-record number of last record to include1 0, 65535, or
omission signifies including all records to end of
file.

The start and end record numbers are enclosed in parentheses after the
filename they apply to: the record numbers and parentheses may be
omitted to sort the entire file.

CP/M file names consist of1

optional drive name: A, B, C, ••• followed by colon. If
omitted, file is on current drive

file name: l to 8 letters or digits: some punctuation
characters also accepted.

optional file type: period and 1 to 3 letters or digits

Examples of SORT-FILES conmands:

SORT-FILE= SAMPLE.DAT
SORT-FILE• B:SAMPLE.DAT (100, 200)
SORT-FILES• FILEl.ABC, FILE2.XYZ, FILE3.001
SORT= B:AAA(l,234), C:XXX.Y(l00,65535)
SORT-FILES+ DDD, EEE(3,73), FFF
s SAMPLE.DAT (minimum abbreviation)

MERGE-FILES Command

The MERGE-FILES command names files to be merged without being sorted:

MERGE-FILES(=) filename, filename,
(+)

filename is a CP/M file name

+

replace any previously specified merge file names
with those in this command. Assumed if neither =
nor + given.

use the merge file names specified in this command
in addition to any previously specified. Up to 32
merge files are allowed.

III-25

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Examples of MERGE-FILES Co1ll!lrulds:

MERGE-FILE= OLDATA.DAT
M OLDATA.DAT (minimum abbreviation)
MERGE+ A:FILEl.DAT, B:FILE2.DAT, C:FILE3.DAT

When a SORT-FILES or MERGE-FILES command is entered, superSort immedi­
ately checks that the file(s) exist. An error message is printed if a
file is not found. Re-enter the command to correct a typing error.

8. SPECIFYING THE OU'rPl1.l' FILE

The OUTPUT-FILE command names the output file, specifies its attributes
(if it is desired to specify different attributes from the input
files}, and output options:

OUTPUT-FILE= filename[/C) [,rec-len] {FIXED-LENGTH }
{CR-DELIMITED }
{VARI/\BLE }
{RELATIVE }
{K-OUTPIJT J
{R-OUTPUT }
{P-OUTPIJT }
{KR-OUTPUT }
{KP-OUTPUT }
{FFZZZ }
{NO-FFZZZ }

filename is the name of the CP/M file to receive the sorted
and/or merged output. The output file must be different
from all merge input files: it may be the same as a sort
input file, but outputting to an input file should be
used with great caution.

/C indicates that you wish to change the diskette before
the output file is written. SORT will type a message
and await a carriage return at the appropriate time.

The following parameters of the OUTPUT-F"ILE command may be omitted
unless you wish to specify values different than those specified in the
INPUT-A'l"l'RIBUTES command:

rec-len number from 1 to 4096 specifying record length in bytes,
or maximum for CR-DELIMITED or VARIABLE records.
Ignored if an output option (K-OUTPUT, etc) is specified
- the optional forms of output have predetermined
lengths.

FIXED-LENGTH
CR-DELIMITED
VARI/\BLE
RELATIVE

III-26

file records types. See
~concepts and Facilities"
section and description of
INPUT-A'l"l'RIBUTES command.

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Examples of OUTPUT-FILE commands using the preceding descriptions:

OUTPUT-FILE= SAMPLE,SR'l'
O SAMPLE,SRT (minimum abbreviation)
OUTPUT= B:SAMPLE,SRT/C
OUTPUT= FOO, FIXED
OUTPUT= FOO.DAT, 2000, RELATIVE

The following notes are significant only when the output file record
type and/or record length is specified as different from the input,
i.e. when using superSort to convert from one file type to another or
to a different (maximum) record length:

1, If the output file record type is different and the (maximum)
record length is not specified, it defaults to the input
record length specification except as follows:

a, If the input is VARIABLE but the output is not, the
output record length defaults to two less than the input
record length, because the length bytes are deleted.

b. If the input is not VARIABLE but the output is, the
output record length defaults to two greater than the
input, but not greater than 4096.

2. If the output record length is too small to receive a given
record, the record is truncated at the right. The length
bytes for VARIABLE records are suitably adjusted.

3. If the output is FIXED or RELATIVE, records are extended with
blanks if necessary to make up the specified length.

The following output options produce output files with special data in
them, as opposed to rearranged input records. The motivations for them
are described in the "Concepts and Facilities'' section and exact speci­
fication of the data formats produced and their record lengths is given
in the "Programmer•s Guide'·.

K-OUTPUT output file is to receive only the keys, as extracted
from the input records, with certain attributes already
applied. Record length is total key length, with modi­
fication for certain attributes.

R-OUTPUT output file is to receive the sorted record numbers
only, If output file is CR-DELIMITED, numbers will be
in ASCII text with six digits each~ other file types
receive 3-byte binary record numbers.

P-OUTPUT output file is to receive only pointers to the input
records. Each pointer consists of the sector number in
the file where the record begins and the byte offset to
the beginning of the record. The numbers are ASCII,
with a comma between them, for a CR-DELIMITED file, or
binary, 2 bytes each, for other file types.

III-27

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

KR-OUTPUT output file receives keys, as above, followed by record
numbers, as above.

KP-OUTPUT output file receives pointers, as above, followed by
record numbers, as above.

RECORD-NUMBERS equivalent to R-OUTPUT, for compatibility with
previous releases. Minimum abbreviation is REC.

KEYS-AND-NUMBERS equivalent to KR-OUTPUT, for compatibility with
previous releases. Minimum abbreviation is now KEY-A to
avoid confusion with K-OUTPUT.

When any of the above output options except K-OUTPUT is used, only a
single input file is allowed. This may be a sort input file or a
merge-only input file.

The following output file attributes are of interest only to users of
FIXED-LENGTH record files containing binary data; see the ''Programmer's
Guide• for further information:

FFZZZ terminate output file by filling excess space in last
sector, if any, with two FF hex bytes, then lA hex
(Control-Z) 's. This is the default if FFZZZ was speci­
fied for the input,

NO-FFZZZ terminate output file by filling last sector with hex
lA's (Control-Z's). This is the normal CP/M file termi­
nation convention; it is the default UNLESS FFZZZ was
specfied for the input.

Additional examples of OUTPUT-FILES commands:

OUTPUT-FILE= ITPOINTS.IDX, FIXED-LENGTH, KR-OUTPUT
OUTPUT= MASTER.009/C, 2000, FIX, NOFFZ

Don't overlook the fact that any previous contents of the output file
are lost, Supersort is--capable of writing the output on one of the
sort input files, but prudent procedure dictates that you should never
create a situation where the input could be lost before creation of the
output was complete. Either use a different file for the output, or
copy the input file to a backup diskette before sorting.

9. SPECIFYING mE KEI(S}

Use the KEY command to specify one or more sort keys. Up to 32 keys,
each with its own attributes, may be used. Multiple keys may be speci­
fied in a single command (continued on next line with & if necessary),
or in multiple commands (use KEY+). The keys should be specified in
the desired priority order.

III-28

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

form of the KEY comnand is:

KEY(=) (start-posn, end-posn) { ASCENDING } , ...
(+) (i field-no, max-len) { DESCENDING }

+

{ NUMERIC-ASCII }
{ UPPER-CASE }
{ RIGHT-JUSTIFY }
{ LOH! }
{MASK-PARITY-BIT}
{ EBCDIC }
{ ALTSEQ }
{ 'IWOS-COMPLEMENT}
{ COMPUTA'l'IONAL }
{ INTEX.ER }
{ FLOATING-POINT }
{ PACKED-BCD }
{ COMPUTATIONAL-3 }

means replace previously specified keys

means add to previously specified keys

For a positional (columnar) field, give two numbers as follows:

start-posn

end-posn

first column or position of the field

last (inclusive) position

NOTE

For VARIABLE records, the first data character is at
position 3, as opposed to position 1.

For a comma-delimited field, enter at and two numbers. The t indi­
cates field reference rather than column position reference:

field-no

max-len

field number, e.g. field t3 is between the second
and third commas

maximum number of characters to take from the
field, after deleting quotes, leading blanks, and
trailing blanks. Excess characters are ignored; a
shortage is padded with blanks.

The following specify the sort sequence, ASCENDING is the default:

ASCENDING

DESCENDING

sort into forward (increasing) order on this field

sort into reverse (decreasing1 backwards) order on
this field

III-29

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Here are some examples using KEY features already described:

KEY = 2, Hl, ASCENDING
KEY = i 2 , Hl ASCENDING
KEY= t 2, 10, DESCENDING
K #2 10 DE

(columns 1 through 10)
(2nd field, max 10 characters)
(same, but opposite order)
(minimum abbreviation)

More examples follow. Note that several keys may be specified in one
command, with the t and ASCENDING/DESCENDING repeated as applicable:

KEY~ 2, 10, ASC, 20, 45, DESC
KEY= #11,40,ASC, 13,5,DESC, 16,8,ASC
KEY= 1,10 ASC, t 4,20 DESC

Some test attributes which may be specified in the KEY command are:

NUMERIC-ASCII interpret field as a free-format number stored as
text (as opposed to binary). Sorts data as written
by the PRINT statement of BASIC into numeric order:
most negative number first, then values increasing
through zero to the largest positive number. This
feature is further discussed in the •concepts and
Facilities." section and the range of number formats
accepted is detailed in the ,"Programmer's Guide''.

UPPER-CASE treat any lower case letters in this field as the
corresponding upper case letter.

RIGHT-JUSTIFY add blanks to beginning, not end, of comma­
delimited field if shorter than the specified
maximum length.

LOHI test this field right to left. Intended primarily
for binary data which is stored low order first,
but may be used with any positional field. Not
allowed for comma-delimited fields.

MASK-PARITY-BIT ignore the high order bit of each byte.

EBCDIC sort ASCII text in this field as though in the IBM
EBCDIC code (see Appendix 1). Ignores the high
order bit of each byte.

ALTSE:Q sort this field according to user-specified
collating sequence. See the COLLATING-SEQUENCE
command below; also see the ,''Programmer's Guide." re
installing custom tables.

Some more examples:

KEY= #17, 10, NUMERIC-ASCII, DESCENDING
KEY+ #5,10 DESC,NUM-ASC, #8, 20, ASCEND, RIGHT, UPPER
KEY= 1,10 LOHI,DESCEND, 11,20 ALTSEQ,ASCEND
KEY= 200,209 EBCDIC

III-38

Ka
yp
roJ
ou
rna
l

superSort Manual Operator's Handbook

The remaining test attributes relate to various non-ASCII data types;
the user of ASCII data may initially wish to skip the rest of this
description of the KEY command.

TWOS-COMPLEMENT Either of these means that the data is signed
COMPUTATIONAL fixed point binary, with negative numbers stored

in twos-complement representation. Used alone, the
data is assumed to be stored high order first.
(Most binary data in 8080/8085/Z-80 systems is
stored low order first; see LOHI above and INTEGER
below). May be used with any field length; use
with a 2-byte field for COBOL COMPU'l'A'l'IONAL data.

INTEGER indicates signed binary fixed point data stored low
order first; equivalent to LOH! and TWOS-COMPLEMEN'l'
used together. Use with a 2-byte field for MBASIC
or FORTRAN INTEGER data.

CAUTION

To users of prior releases of Supersort: the
meaning of INTEGER has been changed; in
releases 1.02 and older it meant what 'l'WOS­
COMPLEMENT now means.

FLOA'l.'ING-POINT indicates data is in Microsoft floating point
binary format. Use with a 4-byte field for MBASIC
SINGLE PRECISION data or FORTRAN REAL data, or with
an 8-byte field for MBASIC or FORTRAN DOUBLE
PRECISION data.

PACKED-BCD Either of these indicates packed binary coded
COMPUTATIONAL-3 decimal data, with or without sign. Use for COBOL

COMPUTATIONAL-3 data.

CAUTION

COMPUTATIONAL-3 should be abbreviated only as
COMP-3 or C3. Other abbreviations will be
rn isinterpreted as COMPUTATIONAL without the
113h •

NOTE

For UNSIGNED binary fixed point data (where values with the
high order bit set represent large positive numbers, not
negative numbers) stored low order first, use LOHI. For such
data stored high order first, no attribute is needed.

Additional examples of KEY commands:

KEY= 1,1 'IWOS-COMPLEMENT, 3,4 'IWOS-COMPLEMENT
KEY= 1,2 INTEGER, DESC, 3,6 FLOATING-POINT, 11,14 FLOAT
KEY+ 11,12 'IWOS-COMPLEMENT, 5,10 PACKED-BCD
KEY+ 11,12 COMPUTATIONAL, 5,10 COMP-3 (same as preceding)

III-31

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

lliJ. STARTING EXECUTION

When all of the desired commands have been entered, start Supersort
execution by entering the command

GO

The GO command (or simply G) will generate an error message if you have
not specified the input attributes, at least one input file, the output
file, and at least one key, Errors will also occur in cases of incon­
sistent specifications, such as a key position larger than the input
record length. After such an error, the previously entered commands
are still in effect. Enter the .necessary commands to correct the error
condition, then type GO again.

We have now described enough commands to permit using superSort's basic
functions of sorting, merging, and extracting records by record number.
Here are some examples of complete sets of superSort commands:

INPUT-ATl'RlBU'l'ES = 62, CR-DELIMITED
SORT-FILE= SAMPLE.DAT
OUTPUT-E'ILE = BYACCOUN.DAT
KEY= i9, 4 ASCENDING RIGHT-JUSTIFY
GO

INPUT= 80, FIXED
SORT MAILLIST.NEW(l,2500)
nERGE MAILLIST.MAS
KEY= 72,80 ASC, 50,71 ASC, 1,49 ASC UPPER
OUTPUT= MAILLIST,MAS/C
GO

INPUT= 1200, CR-DEL
MERGE PART,001, PAR'l'.002, PART.003
KEY= i 7, 16, NUMERIC-ASCII, DESC, 15, 5, UPPER RIGHT ASCE
OUTPUT = PAR'l'l23 ,DAT, 1024, FIXED
GO

I=62,CR-D; S=SAMPLE.DAT: O=OUTPUT.DAT; K=i4,6,DE; G

----------------*----------------
At this point we recommend you now do a few sorts and merges,
either on SAMPLE.DAT or your own data. After thus completing your
familiarization with SuperSort's basic functions, continue reading
to obtain familiarity with record selection and other additional
features.

----------------*----------------

III-32

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

11. USING COMMAND FILES

Some or all of the commands needed to do a particular sort/merge may be
stored in a command file, making it unnecessary to enter them each time
the particular procedure is to be repeated.

Commands in a file have exactly the same form as those entered from the
console. The command file may be created with your text editor. This
is easiest if your text editor is MicroPro's WordMaster. Enter exactly
what you would type to Supersort. Include a GO command in the file if
execution is to commence without further console input.

Invoke use of the command file with the command:

For example:

CFILE = filename

CFILE = SORTSAMP.COM
CF B:OIDFIL.TXT

A command file need not contain the entire set of commands. For exam­
ple, it might only contain a commonly-used but long and tedious-to­
enter KEY command.

Other commands may be entered before the CFILE command, and after it
completes if no GO was present in the file.

To make the commands from the file print out on the console, include
the command

LIST

in the file, or enter it from the console before invoking the file,
LIST causes command file lines (starting with the one AF'TER the one
containing LIST) to echo on the console.

12. SPECIFYING THE WORK FILE DRIVE

For all sorts except those involving very little data, SuperSort makes
use of a WORK FILE on disk. By default, this file is put on the
current driver the user may optionally specify the drive with the
command:

WORK-DRIVE= drive

where drive is a letter, A thru z, corresponding to a drive present in
the system, optionally followed by a colon.

For Example: WORK-DRIVE = B:
WORK C

III-33

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

When a large amount of data is being sorted, the user should plan
sufficient space for the work file on one of the disk drives, and
specify that drive in a work-drive command. see ''Utilization Hints"
for further discussion.

When the output diskette change option is invoked the work file must be
on a different drive than the output file.

The work file is called SORT.$$$ and is deleted at the begin­
ning of execution and upon successful completion.

13. USING TAG.SORT

The command
TAGSORT

causes SORT to use a different internal technique to produce a sorted
output file. The effect is to reduce the work file disk space usage
without effecting the output of the run.

TAGSORT is allowed only where there is one sort input file and no merge
input files.

See ''Concepts and Facilities'' and "Utilization Hints.'' for further
discussion,

14. SPECIFJING DEGREE OF MESSMIB PRIHTOO'f

As described in the ''Concepts and Facilities'' section, superSort has
six message levels, called PRIN'l' LEVELS 0 through 5, with the default
being 2. The operator may select a print level with the command

PRINT-LEVEL = n

where n is a number from 0 to 5.

Examples: PRINT-LEVEL = 3
PR 0

See the '"Execution Messages'' section below for examples of the printout
at each level, and detailed specifications of the printout.

III-34

Ka
yp
roJ
ou
rna
l

superSort Manual Operator's Handbook

15. MISCELLANEOUS CXlNMANDS

Following are descriptions of those of the remaining commands that
admit of brief description:

CANCEL

BYE

deletes all previously entered commands, allowing you to
start over. Exception: does not cancel COLLATING-SEQUENCE
commands (described later).

exit SORT; equivalent to Control-C

NO-ERROR-MESSAGES

if an error is detected during SORT execution, print only the
error number, not the full message. The error number may be
looked up in the ''Warning and Error Messages'' section, or the
ERROR-MESSAGE command may be used. The RAM space occupied by
message texts is made available as working storage, speeding
execution and reducing work file space usage, particularly in
small systems. May be abbreviated to NO-E.

ERROR-MESSAGE number

prints the full message for the specified error number. May
be used to inquire about an error after the NO-ERROR-MESSAGES
command was used.

RETURN-TO-CONSOLE

CHANGE

after execution, accept commands for another sort/merge oper­
ation instead of exiting to the operating system. This
command reduces the amount of RAM available for working
storage1 it is thus not recommended for large sorts in small
systems, or when the fastest execution is desired.

allows MP/M users to change disks immediately after SORT is
invoked. Has no affect on CP/M users.

16 . Ill'.l'llalUCTIOR m llCOlID SELECTION

SELECT and EXCLUDE define record extraction criteria on the basis of
data tests. Records meeting SELECT test criteria are included in the
sort/merge process. Conversely, EXCLUDE does the opposite: only
records which fail its test criteria are included; all others are
bypassed. SELECT and EXCLUDE operate on both sort and merge-only
inputs.

III-35

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

The SELECT and EXCLUDE commands have a comprehensive syntax allowing
many options and variations; the most commonly used form is:

(SELECT) (=) (FIELD start, end) operator '"text."
(EXCLUDE) (+) ([FIELD] j field no)

{ NUMERIC-ASCII }
{ UPPER-CASE }
{ RIGHT-JUSTIFY }
{ LOHI }
{ MASK-PARITY-BIT}
{ EBCDIC }
{ ALTSEQ }

means replace previously entered SELECT/ EXCLUDE
commands

+ add this command to previously entered SELECT/
EXCLUDE commands

FIELD start, end specifies a positional field, by start
column and end column, in a manner similar to the
KEY command.

FIELD# field no specifies a comma-delimited variable length
field to be tested. Note that, unlike in the KEY
command, the maximum length is not specified: the
entire field is always used.

operator is one of the following comparison operators, to
specify the test to be performed:

< or L'l' less than
<= or LE less or equal

or EQ equal
<> or NE not equal
>= or GE greater or equal
> or GT greater than

"text'' is the text to test the field against, enclosed in
quotes. DO NOT OMIT THE QUOTES when testing a
field against a text. (The quotes are omitted for
numeric constants, a less used form described
below.) The quoted text may be as long as desired.

NUMERIC-ASCII These have meanings analogous to those described
UPPER-CASE above for the KEY command. They are applied to
RIGHT-JUSTIFY BOTH the field of the record and the ''text'', before
LOHI the comparison test is performed. (Additional
MASK-PARITY-BIT test attributes are also allowed; their applica-
EBCDIC tion to record selection is discussed in a later
ALTSEQ section).

III-36

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

The following examples of SELECT relate to the file SAMPLE.DAT (sup­
plied with SuperSort), using the field definitions given for this file
in the "Getting Started" section.

SELEC'l' = FIELD II 4 >= "780701"

choose only those records with dates on or after July 1,
1978. (Recall that field 4 is the date in the form YYMMDD).
Note the quotesi they are necessary since the data being
tested consists of characters.

SELECT = FIELD II 1 : hABC''

choose only the records for firm ABC.

SE il="ABC''

the same, abbreviated. Note that when i is present, the word
FIELD may be omitted.

SELECT = FIELD i 8 > "3000'' NUMERIC-ASCII

select records for transactions over $3000.00 (positive
only). NUMERIC-ASCII indicates testing the numeric value of
text.

SELECT = FIELD #4 >= ''780701"
SELECT+ FIELD #4 < "780715"
SELEC'l' + FIELD U == "ABC,"
SELECT+ FIELD #9 >= "1500" RIGHT-JUSTIFY
SELECT+ FIELD #8 > "3000" NUMERIC-ASCII

Together, the above five commands cause the output to contain
only the records for transactions in the first 15 days of
July for firm ABC with general ledger accounts of 1500 or
higher and amounts over $3000.00.

The RIGHT-JUSTIFY in the fourth line is to make fields con­
taining fewer digits test low, despite the lack of leading
zeroes in the file. Specifying NUMERIC-ASCII would achieve
the same result.

When multiple SELECT and/or EXCLUDE commands are given, the records
included are those that PASS ALL of the SELECT conditions AND FAIL ALL
of the EXCLUDE conditions.

The following examples of SELECT relate to a hypothetical file contain­
ing names and addresses in positional fields.

SELECT = FIELD 7 5, 7 9 < "10000"

If the ZIP code is stored right-adjusted in columns 75
through 79 inclusive, this chooses addresses in New England
and New Jersey.

III-37

Ka
yp
roJ
ou
rna
l

superSort Manual Operator's Handbook

SELECT = FIELD 1,1 >= ''M.''

If the name begins in column 1, this chooses names beginning
with M through z.

SE FI 1, l="M,''

Minimum abbreviation of preceding.

17. RANGE TES'l'ING IN RECORD SELECTION

Frequently, it is desired to test for a field value within, or outside
of, a given range. SELECT/EXCLUDE range testing can be specified with
"between'' and ''not-between'' operators in the following form:

(SELECT) (=) field as above {BT) ''text!", "text2'', attributes
(EXCLUDE) {+) (NB) as above

BT means BeTween '"textl '' and "text2'' inclusive

NB means Not Between "text!'' and "text2"

"textl'' is the lower limit of the range

''text2" is the upper limit of the range

Examples of the between/not between form of SELECT:

SELECT U NB '"-3000 '', "3000" NUMERIC-ASCII

choose large postive or negative transactions from
SAMPLE.DAT: over $3000, or more negative than -$3000.00.

SELECT = f'l 75, 79 BT "10000", "19999''

choose ZIP codes in New York and Pennsylvania.

18. MORE RECORD SELECTICW FEATURES

The previous section described the commonly-used tip of the SELECT/
EXCLUDE iceberg; now we will introduce more features. Those reading
this manual for the first time may wish to skip ahead two sections.

Interchangabilty of Fields and Constant Values

As described previously, the field specification was always shown
on the left of the comparison operator, and the constant to test

III-38

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

against on the right. However, fields and constants can be
swapped and substituted as desired. You may put the constant
before and the field after the operator, and you may test a field
against another field or fields in the same record. Examples:

SELECT= "ABC"<= FIELD tl
SELECT= FIELD 11 > FIELD t2
SELECT = ''1234'' BT FIELD U, FIELD 12

'I'he latter tests for field 1 less than or equal to
h1234" and field 2 greater than or equal to "1234".

Logical Operators

Complex conditions can be formed by combining tests with AND, OR,
and XOR (exclusive OR):

SELECT= 19 > •3000k NUM OR 11 = "ABC·

All transactions from SAMPLE.DAT over +$3000.00, and
also every transaction for firm "AB<:".

Note that all attributes (such as NUM for NUMERIC-ASCII in the
above) must follow the comparison test they apply to, and be
repeated for all tests they apply to.

An individual test may be negated by preceding it with NOT:

SELECT "' 19 GT "300ft)h NUM AND NOT 11 = "ABC"

transactions over +$3000.00 for firms other than ABC

AND, OR, XOR, and NOT may not be abbreviated.

Parentheses

Parentheses may be used to group logical operations. In the
• absence of parentheses, the order of operations is: all compari­

sons first, then NOT, then AND, then XOR and OR. Example:

SELECT = i2=''R" AND (:119 >="1500" RIGHT OR U=,"ABC,")

19. RECDRD SBLEC!'Imi W1'l'B RCli-ASCII DM'A

This section describes the field test attributes and the numeric
constant features which make it possible to do record selection on BCD
and various types of binary data.

III-39

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Additional Test Attributes

The following additional test attributes may be used in record
selection tests. Their meanings are as described above in the
hKey Specification" and ''Concepts and Facilitiesh sections.

'IWOS-COMPLEMENT or COMPUTATIONAL
INTEGER
FLOATING-POINT
PACKED-BCD or COMPUTATIONAL-3

Numeric constants, to compare binary and BCD data to, will be
described shortly; first, we will give some examples using addi­
tional field test attributes to compare fields to each other.

SELECT= FIELD 1,2 > FIELD 3,4 INTEGER

Select records in which bytes 1 and 2 are greater than
bytes 3 and 4 when interpreted as FORTRAN or MBASIC
binary 1NTEGERs (twos complement fixed point binary,
stored low order first).

SELECT= FIELD 1,2 > FIELD 3,4 LOH!

As above, except data is unsigned.

SELECT= FIELD 1,8 BT FIELD 9,16, FIELD 17,24 FLOATING

Select records in which the first field in the record
has a value between (inclusive) the second and third
fields. The fields are treated as Microsoft FORTRAN or
MBASIC binary DOUBLE PRECISION data. Note the use of
the FLOATING-POINT attribute and the field lengths of 8
bytes for DOUBLE PRECISION data.

SELECT= FIELD 1,10 < 21,30 COMPUTATIONAL-3

Accept records in which positions 1-10 are less than
positions 21-30 when compared as packed BCD data, as
might be written by Microsoft COBOL.

NI.Ulleric Constants

Values to test against (compare to) may be specified as numeric
constants as well as quoted texts. The numeric constant repre­
sents the binary values stored inside the computer, the value
being expressed in octal, decimal, hexadecimal, or BCD at the
user's convenience; for quantities expressed in decimal, the user
may specify high order first or low order first storage.

Numeric constants are generally appropriate when binary or BCD
data is being tested; a quoted text is generally more convenient
for comparison to ASCII data. (Numeric constants can be used with
ASCII data, if the numeric values of the ASCII codes are entered.)

III-40

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

When using numeric constants, the user generally must be aware of
how many bytes the constant occupies, to ensure its length
matching the comparison field. This is because the blank fill
generated by SuperSort when comparing values of unequal length
will not normally provide meaningful results with binary values.

Thus, the syntax used to specify constants allows specification of
the constant's length in bytes. If the significant digits require
fewer bytes, high order bytes are added by SuperSort which are
filled with all one bits for negative numbers (except for PACKED­
BCD constants), and zero bi ts in all other cases. If no size is
specified, the minimum that will hold the significant digits is
used.

A numeric constant consists of an optional sign, any number of
digits you can type on a line, an optional base indicator letter,
and, if the base indicator letter is present, an optional decimal
number representing the size of the constant in bytes. No spaces
are accepted before or after the base indicator letter.

The base indicators available are:

T decimal, converted to two's complement binary
I decimal, converted to two's complement binary,

stored low order first
P decimal, converted to packed BCD
H hexadecimal
Q octal

If no base indicator is given, decimal (T base indicator) is assumed,
except if one of the digits A-Fis present, hexadecimal is assumed.

All numeric constants are stored with the high order byte first (at the
lowest memory address) except those in which the I base indicator is
used. I-base decimal constants must be used in comparisons where the
field being tested is stored low order first, i.e. wherever the LOHI or
INTEGER test attribute is pertinent. If a hexadecimal constant is used
in such a test, rearrange the digits to put the low order byte first.

The I base indicator implies the LOHI attribute, since it is pertinent
only to tests of data stored low order first. If the data is signed
(and it usually is), TWOS-COMPLEMENT or INTEGER must be explicitly
specified.

The P base indicator· implies the PACKED-BCD (COMPUTATIONAL-3) test
attribute.

CAUTION

users of prior releases of Supersort: the meaning of the I
base indicator has been changed; in release 1.92 and
preceding releases it meant what T means now.

III-41

Ka
yp
roJ
ou
rna
l

SupecSort Manual Operator's Handbook

Illustrative examples of nl.lllleric constants:

12

12T

12T2

12!2

12H

12P

1234

1234'1'4

-2

-2!4

1234P

+1234P

-1234P4

10291\H

1029A

00f!lH

1H2

l00H2

III-42

one byte containing 12 decimal (0C hex)

same

two bytes containing 12 decimal, stored high order first
(000C hex)

two bytes containing 12 decimal, stored low order first
(0C00 hex)

one byte containing 12 hex (18 decimal)

one byte containing 12 in unsigned packed decimal (12
hex)

decimal 1234 in two bytes (the minimum it will fit),
stored high order first.

decimal 1234 extended to 4 bytes with sign (0 for posi­
tive) bytes, stored high order first.

decimal -2, stored in 1 byte {FE hex)

decimal -2 extended to 4 bytes with sign bit bytes (all
1 bits for negative), stored low order first (FEFFFFFF
hex)

1234 with no sign stored as packed decimal. two bytes,
1234 hex.

1234 with positive sign in packed decimal. three bytes,
01234C hex.

1234 with negative sign, packed decimal, extended to 4
bytes with leading zero byte: 0001234D hex.

three bytes containing, in order, 01 hex, 02 hex, and 9A
hex.

same: default hex since A present

1, stored in ONE byte. Leading zeroes do NOT reserve
bytes.

correct way to get two bytes containing 6001 hex, high
order first

two bytes containing 1, stored low order first: when
using hex constants, rearrange the digits if low order
first storage is desired.

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Examples of SELECT commands using numeric constants:

SELECT= FIELD 23,23 FFH

test for FF hex in position 23,

SELECT= FIELD 1,10 < 1234Pl0 COMPUTATIONAL-3

Accept records in which positions 1-10, interpreted as packed
decimal, contain a value less than 1234, Note explicit
sizing of constant to 10 bytes to match length of field.

SELECT= FIELD 1,10 < +1234Pl0

Sarne as preceding, since the presence of the Pin the con­
stant implies testing as packed decimal: the presence of the
+ sign is does not effect the outcome of the comparison.

SELECT= FIELD 1,2 > 123!2

test for 2-byte low order first value greater than 123 deci­
mal in bytes 1 and 2 of record. Note that LOH! is implied by
use of the I base indicator, Comparison is UNSIGNED, that
is, data in record with high order byte on is considered
large positive data, rather than negative,

SELECT= FIELD 1,2 > 123!2 INTEGER

similar, but data is assumed to be signed.

SELECT= FIELD 1,2 > 123T2 COMPUTATIONAL

here the data is assumed to be high order first and signed.
Note use of the T base indicator,

SELECT= 11,14 <= 0000208484 FLOATING-POINT

select records in which the FORTRAN REAL or MBASIC SINGLE
PRECISION value in positions 11 through 14 has a value less
than 10.0. Note the explicit 4-byte size specification; the
leading zeroes in the constant were entered only for reada­
bility. Since Supersort has no provision for entering float­
ing point constants in decimal, the hexadecimal value was
obtained from a FORTRAN compilation listing; it could also be
obtained by DUMPing a FORTRAN unformatted or MBASIC random
file.

Constant Lists

In addition to fields and single constants, another form of value
is accepted: the constant list. A CONSTANT LIST is a list of ac­
ceptable constants, separated by commas or blanks, and enclosed in
BRACKETS. The constants in the list are evaluated individually,
then concatenated together. They need not be of the same type.

III-43

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

For instance, you might want to express part of the value as
quoted text (for printable ASCII characters), and part as a numer­
ic constant (for control characters or special codes):

SELECT= FIELD 1,6 = [hABCD~,0D0AH]

The preceding example tests for ABCD, followed by the control
characters carriage return and line feed. (This would only work
in a fixed length or VARIABLE record, as the latter two characters
are delimiters for CR-DELIMITED records.)

Or, you might want to express several byte values in octal, with
three digits for each byte:

SELECT= FIELD 1,3 = I 101Q, 102Q, l03Q]

If the digits were all run together, 101102103Q, SuperSOrt would
pack each digit into three bits, bridging byte boundaries.

Or, you might want to enter a constant too big to conveniently
type on one line:

SELECT = FIELD #1 = [hTHIS IS A VERY LONG '', &
''TES'I' TEXT THAT RAMBLES ON AND ON, AND KEEPS•, &
"GOING ON AND ON, AND ON, TILL THE END"]

Recall that the j is the SuperSort convention for continuing the
same command on the next line. The &'sand carriage returns could
be enclosed in the quotes, but this would store them in the string
constant. Since the user desired to test for the text shown
without any imbedded carriage returns, he used the constant list
construction to break it into three constants.

The SELECT/EXCLUDE features that way have described can be used in an
almost unlimited number of combinations to specify complex record
selection conditions. For example, if you can think of a use for this,
SuperSort will do it:

SELECT = 14 > "I h AND #7 BT ''LLLL", ·zzzz" &
OR 15 BT hl234,M,.•9999•,

AND (NOT FIELD 1,4 = 0P4 PACKED &
XOR (''ABC" BT ill, 112 &

OR FIELD 5,8 BT [15Q, 12Q], &
['"STOP HERE", DH]))

21. SELECT/EXCLUDE SUMMARY

The SELECT and EXCLUDE commands allow records to be chosen from the
input file on the basis of field values and value relationships between
fields. The arguments to these commands are comparisons of field
values and constants, optionally preceded by NOT and/or combined with
the AND, OR, and XOR operators, and parentheses, if desired. If

III-44

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

multiple commands are given (with+ included in all but the first!),
only recoi:ds which are accepted by ALL of the SELECTS and rejected by
NONE of the EXCLUDES will be included in the sort/merge.

In addition to the usual comparison operators - less than, equal to,
etc - operators for "between" (inclusive) and :"not-between," are
included. All comparisons operate on both ASCII and binary data of any
length up to SuperSort's maximum record length of 4096 characters.

Two types of constants, quoted text string and numeric, are available.
The numeric constants may be octal, hexadecimal, decimal (fully packed
into binary), or BCD (decimal packed two digits to a byte, with optio­
nal trailing sign nibble), and may be any number of digits long. Fur­
ther, you can specify the length of a numeric constant in bytes, and
you can concatenate several constants (of the same or different types)
into one value.

The ."test attributes,'' available with the KEY command are also available
with the SELECT and EXCLUDE commands. These permit right-justifica­
tion, right-to-left comparison, use of alternate collating sequences,
and masking of the high order bit. Additional attributes permit the
data to be treated as BCD, fixed point binary (signed or unsigned,
stored high or low order first), or floating point binary.

All of the SELECT/EXCLUDE features have been described individually in
the preceding three sections; A formal syntax specification of the
SELECT and EXCLUDE commands, and text expanding a few details, is given
in Appendix 2.

21. SPECIFYING ALTERNATE COLU!.TDIG SJQJaCBS

The COLLATING-SEQUENCE command is used to specify or modify the alter­
nate collating sequence that is invoked with the ALTSEO field test
attribute in the KEY, SELECT, and EXCLUDE commands.

The base or default collating sequence which the COLLATING-SEQUENCE
command modifies is normally the ASCII code value sequence, or the 8-
bit binary byte value. Any characters for which no position is speci­
fied with the COLLATING-SEQUENCE command retain their base position.
The base sequence can be altered by linking in a customized COLTAB.REL,
as described in the "Programmer's Guide."; this custom table may then be
operated on with the COLLA'l'ING-SF,QUENCE command, if desired.

The general form of the COLLA'l'ING-SEQUENCE COllllland is

COLLATING-SF,QUENCE (=} argument, argument, ...
(+)

The= and+ have the same effect.

III-45

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

COLLATING-SEQUENCE arguments can be of two types, which we will call
implied position and explicit position. with implied position argu­
ments, characters can be simply listed in the order in which they are
to collate1 with explicit position arguments, characters can be
assigned to specific positions in the sequence.

Implied Position Arguments

An IMPLIED POSITION argument specifies a character or a range of
characters, whose position in the collating sequence implicitly is
immediately after that of the preceding argument, or position 0
(out of 256 possible positions) if it is the first argument in the
command. The characters are commonly specified enclosed in
quotes, but may also be specified as decimal, octal, or hexa­
decimal codes.

For example,

specifies blank as the first character of the collating sequence,
then the upper case letters, then the digits, then the character
whose hexadecimal code is 7F. The unspecified characters retain
their original positions, thus in this example some of the control
codes and punctuation characters have positions equal to the
position of a letter, digit, blank, or 7FH.

In an implied position argument, if a range of characters is given
{two character values separated by -) , the characters in the
range always occupy sequentially increasing positions in the
sequence, starting from the first character. This is true even if
the second character in the range is less than (has a smaller
ASCII code than) the first character.

For example, the following would sort in ascending order on the
upper case letters and in descending order on the lower case
letters:

COL = •1A1'- 1'z1•, 11z 11-"a 1•

Explicit Position Arguments

In an EXPLICIT POSITION argument, the position of the character or
range of characters in the collating sequence is explicitly speci­
fied and may be all the same, sequentially increasing, or sequen­
tially decreasing for the characters in the range,

To form an explicit position argument, follow the character or
range with an =, then a numeric constant or quoted character to
specify the first postion, followed by a+ for increasing posi­
tions, a - for decreasing positions, or neither for all characters
in the range to occupy the same position.

III-46

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

For example, the following makes the letters occupy positions 25
up, with upper and lower case being equal, and makes the digits
occupy postions 50 down:

COL ., "a'"-''z"=25+, ''A'"-"Z"=25+, ''0''-''9''=50-

To clarify the effect of-, we will point out that the following
are equivalent:

and
COL = "0'"-"9''=50-

COL '"9"-'"0''=40+

Which form you use is a matter of convenience only. The
following, however, is quite different:

it makes all the digits have the same position, 50.

Interaction of Arguments

If an implied position argument follows an explicit position
argument, its starting position is the position occupied by the
last character of the explicit argument, plus one, regardless of
whether said preceding argument occupied increasing, decreasing,
or constant positions.

Any argument will override any arguments to its left. Thus, all
the unspecified characters can be gotten out of the way at the
high end of the sequence by, for example,

which sets up a sequence of A thru z, then period, then 0 thru 9,
with everything else high. The first argument in the above exam­
ple EXPLICITLY sets the position of all characters (0-255) to the
last position (=255). The second argument explicitly sets space
to the first position (0). The remaining three arguments
IMPLICITLY set the positions of the letters, period, and digits,
in that order, to sequential positions after space, since no ='s
and position values follows them. • That is, A's position is set to
1, B's, to 2, ... Z's to 26, period's to 27, etc.

Actually, since the position wraps around to 0 after 255, the
following is equivalent the preceding:

III-47

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Multiple COLLATING-SEQUENCE commands

Any number of COLLATING-SEQUENCE commands may be entered1 each one
modifies whatever the last one left7 the implied position starts
over at 0 at the beginning of each command.

The selection of= or+ after the keyword COLLATING-SEQUENCE has
no effect other than to clarify the meaning of the command to
possible future readers of command files,

Reinitializing the collating sequence table

SuperSort NEVER automatically sets the collating sequence table
back to its original values. The CANCEL command does NOT cancel
COL commands. If the RETURN-TO-CONSOLE command is used, the COL
commands remain in effect upon completion of the sort,

However, the user can restore the collating sequence table to its
standard original state with the command:

COL 0-255

Note on COLLATING-SEQUENCE arguments

The values for characters and positions can actually be ANY quoted
string or numeric constant accepted by the SELECT and EXCLUDE
commands that has one-byte value. Thus, leading + and - signs,
the base indicators H, I, P, and Q, and a size in bytes of l byte,
are accepted, as long as the resulting value occupies exactly one
byte. This feature could could lead to confusing results if used
indiscriminately.

22. IHVOKING US~EXIT lOJ'.rINES

A user-exit routine is a subroutine installed by the user in SuperSort
(Supersort I only). The function of such routines is discussed in
''Concepts and Facilities''1 their coding and installation is described
in the ''Programmer's Guide''.

User-exit routines installed in the supersort program are dormant
unless invoked with the command:

USE-USER-EXIT [1] [2]

where l means to use the ''XITl" routine, and 2 means to use the "XIT2"
routine.

III-48

Ka
yp
roJ
ou
rna
l

SuperSort Manual

Examples:

USE-USER-EXIT 1,2

USE 2

USE 1

us 1, 2

Operator's Handbook

These commands have no effect unless user-exit routines have been
installed (linked into} your copy of SORT.COM,

III-49

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

D. UTILIZATI~ HINTS

This section includes notes on applying Supersort to data
created by programs written in several specific languages,
descriptions of a number of non-sorting utility uses of
Supersort, and considerations relating to sorting large
files,

l. CREATING SOR!' PllOCEDORE COIIMAll1D LIBRARIES

TWO tools are available to eliminate the need, and the possibility of
error, of entering supersort commands every time a regularly used
sort/merge procedure is to be executed.

SUBMIT

The operating system's batch-processing facility, SUBMIT {see your
CP/M system documentation), may be used to invoke a sort if all of
the necessary SuperSort commands can be fit onto one system com­
mand line -- which is often possible by using the shortest abbre­
viations and separating commands with semicolons. For example, a
line in the submit file might be:

SORT 1=80 CR;S=NEW,DAT;M=OLD,DAT;O=NX.DA'l';K=U,10; GO

Conmand Files

Supersoi::t's command file facility and its usage is described in
the hOperating the Supersort Program" section.

Both Together

Using a SuperSort command file, a sort/merge requiring any number
of commands may be invoked from a submit file, For example, if
the file SOR'l'RANS,COM contains the desired SuperSort commands, the
line

SORT CFILE=SOR'I'RANS. COM

could be used in a submit file. The submit file could also speci­
fy additional sorts or other operations, all of which would take
place without operator intervention when the submit file was
invoked.

III-50

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

2. THE ONE-INPUT MERGE - THE NON-SORT

Whenever you wish to apply some supersort facility to a data file
without reordering the records, use a ONE-INPUT MERGE: specify the
desired file as a merge-only input file, and specify no other input
files. You can thus select records, apply user exists, perform file
type conversions, utilize output options, etcetera, etcetera, while
keeping the records in the original order.

When doing a one-input merge, it is necessary to specify a key in order
to prevent the •·no key specified'' error message, but the key has no
effect {unless K-OUTPUT is used).

NO'l'E

If the input is a COBOL RELA'l'IVE file containing deleted or
unwritten records, the hholes" will be lost. The output
records will be in the input order, but the record numbers
will not be the same,

3. NON-SORTING USES

In addition to sorting and merging, SuperSOrt's features permit it to
perform many utility functions. This section suggests a number of such
uses. All can be applied without reordering the data, via a one-input
merge.

Converting a File to a Different Type

Specify the present type -- FIXED-LENGTH, CR-DELI¥.ITED, VARIABLE,
or RELATIVE -- in the INPUT-ATTRIBUTES command, and the desired
type in the OUTPUT-FILES command.

For example, if you wish to print a FIXED, VARIABLE, or RELATIVE
file containing ASCII data, convert it to CR-DELIMITED, then copy
the result to the printer.

Type conversions are also useful to make files written by one
language readable in another language,

Changing Record Length' (FIXED and REIATIVE files)

Specify the present record length in the INPUT-A'I'I'RIBUTES command,
and the desired record length in the OUTPUT-FILE command.
SuperSort will truncate or blank fill the records as required.

III-51

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

Truncating Leng Records (CR-DELIMITED and VARIABLE files)

Specify the present maximum record length (or longer) in the
INPUT-ATTRIBUTES command~ specify the desired maximum in the
OUTPU'l'-FILE command. Records longer than the specified output
record length will be truncated to that length, with the data in
columns beyond the specified output length being discarded.

Selecting and Rearranging Positional Fields within the Record

Specify the desired positional fields, in the desired order, as
keys. In the OUTPUT-FILE command, specify K-01.n'PUT, and specify
FIXED, CR-DELIMI'l'ED, VARIABLE, or RELATIVE as desired. The result
will be a file containing only the specified fields, in the speci­
fied order. use no test attributes -- sort in a separate run if
necessary -- or read about K-OUTPUT in the ."Programmer's Guide,•,
then use KEY test attributes with caution.

Converting Comma-Delimited Fields to Positional Fields

Specify the desired comma-delimited fields (I-fields), in the
desired order, with the desired lengths, as keys. Specify K­
OUTPUT. The output file will contain the specified fields in the
specified order, stripped of quotes, and blank-filled to the
specified lengths. RIGHT-JUSTIFY may be used to obtain leading
instead of trailing blank fill on individual fields.

Such a conversion might be used to make a file generated by a
BASIC program readable by a FORTRAN or COBOL program, or to format
an A:;lCII file for printout.

Converting Data to a Different Character set

To convert data from one set of codes to another, set up the
desired conversions with the COLLATING-SEQUENCE command, specify
the entire record as a key with the .I\LTSEQ attribute, and specify
K-OUTPUT. The output file will receive records in which the
specified byte substitutions have been performed. Specific con­
versions can also be performed more simply by using the EBCDIC,
UPPER-CASE, and/or MASK-PARITY-BIT attributes, without using
COLLATING-SEQUENCE. A side effect of this conversion technique is
that CR-DELIMITED and VARIABLE records will be extended to the
specified key length with blanks.

Inserting Blank Spaces Between Fields

To format an ASCII file attractively for printout, you may wish to
insert blanks between the fields. This may be done using
superSort with a two-step process.

First, sort or one-input-merge the file, specifying a FIXED-LENGTH
output file with records several bytes longer than the input
records. The additional record length will be filled with blanks.

Ill-52

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

second, select and arrange the fields, using K-OUTPUT as just
described. Wherever blanks are desired, specify a key of the
desired length from the blank fill at the end of the extended
records. Specify this second output file as CR-DELIMITED, so that
it will be ready to copy to the printer.

For example, suppose you wish to print a report based on file
SAMPLE.DAT showing only the firm number, right-adjusted in columns
1-4, and the transaction date, in columns 9-14, You do not want
to print the other fields, nor the commas and quotes, and you only
want to show transactions over +$3000.00. Proceed as follows:

First, select the desired records and convert to overlong
blank-filled FIXED records. You could also sort, if desired,
in this run:

A>SORT
INPUT-ATTRIBUTES = 62 CR-DELIMITED
MERGE-FILE= SAMPLE.DAT
OUTPUT-FILE= TEMP.DAT, 100 FIXED-LENGTH
KEY,. 1,1
SELECT = 18 > '"3000'' NUMERIC-ASCII
GO

second, create the print file:

A>SORT
INPUT-ATTRIBUTES = Ul0 FIXED-LENGTH
MERGE-FILE= TEMP.DAT
OUTPUT-FILE = TEMP,PRN, CR-DELIMI'l'ED, K-OUTPUT
KEY= 11,4,RIGHT-JUSTIFY, 91,94, t4,6
GO

The 91,94 key in the above gets 4 blanks from the end of
the record, _to fill columns 5 through 8.

'l'hen copy file TEMP,PRN to the printer.

Garbage Collecting a COBOL RELA'l'IVE file

Sort or merge the file. All deleted records, and all record
numbers for which records were never written, will be removed: the
output records w~ll be written contiguously from record number 1.

Obtaining a list of Existing Record Numbers in a RELATIVE file

Specify CR-DELIMITED R-OUTPUT. The output file will be a printa­
ble list of record numbers. using KR-OUTPUT, you could show
selected fields, or the entire records, along with the record
numbers.

III-53

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

4. NOTES ON USE WITH MicroSoft MBASIC

MBASIC Sequential Files

MBASIC Sequential files are CR-DELIMI'l'ED and contain ASCII data.

Commas between fields and quotes around string data are not auto­
matically written. we suggest writing data variable length, and
explicitly comma-delimiting the fields. The following example
outputs the variables I and J with a comma between them:

150 PRINT U , I : " , " ; J

String data which can contain commas, or significant leading or
trailing blanks, should be explicitly quoted. The following exam­
ple outputs A$ and B$, enclosed in quotes (produced by ,CHR$(34)),
with a comma between them:

200 PRINT #1, CHR$(34)7 A$; CHR$(34); ","; CHR$(34); B$1 CHR$(34

Alternately, you could produce positional fields with PRINT USING,
with the TMl function, or (with caution) by using commas to sepa­
rate the variable names in the PRINT statement.

All numeric data in MBASIC sequential files will be correctly
interpreted by the NUMERIC-ASCII attribute, subject to the 14-
digit accuracy limitation for double precision values.

MBASIC Random Files

MBASIC random files (the kind processed with PUT and GET) contain
no delimiters unless explicitly output by the program. Normally,
they should be processed in SuperSort as FIXED-LENGTH records with
positional fields.

Numeric data in random files is normally binary integer or floa­
ting point. Since such data can contain bytes with the value lA
hex, you should read the section "End of File Indication Consider­
ations~ in the ~Programmer's Guide" before using MBASIC random
files with SuperSort, Usually, using a logical record length of
128 or more and using the NO-ZZZ input attribute will solve the
problem.

MBASIC Data fypes - Random Files

MBASIC Data fype

IN'I'EGER
SINGLE PRECISION
DOUBLE PRECISION
STRING

III-54

Field
Length

2
4
8

as written

Use SuperSort
Test Attribute

INTEGER
FLOATING-POINT
FLOATING-POINT
none required

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

5. NOTES ON USE WITH BASIC-E AND CBASIC

File Types

BASIC-E and Software System's CBASIC ~sequenti al,h files are CR­
DELIMITED; the ''random,'' files of these BASICS have records of
constant length, terminated with carriage returns, and may be
processed as either CR-DELIMITED or FIXED-LENGTH.

Data in Files

BASIC-E and CBASIC data in files is written in ASCII in comma­
delimited fields, with strings enclosed in quotes, when PRINT
USING is not used. The NUMERIC-ASCII attribute will correctly
interpret numeric data.

6 • NOTES <Ji USE WITH llicroSoft POR'l'RAN

FORi'RAN File Types

FORMATTED files are CR-DELIMITED.

UNFORMATTED files are usually FIXED-LENGTH, with the record length
128 or a multiple thereof.

FORTRAN Data Types - FORMAT'l'ED Files

NUMERIC-ASCII can be used for all numeric formats. For DOUBLE
PRECISION data, note that it disregards significant digits in
excess of 14.

Positive numbers written in positional fields with I and F formats
will be correctly interpreted with no attributes, with no limita­
tion on the number of signicant digits.

FORTRAN Data Types - UNFORMAT'l'ED Files

FORTRAN Data Type

LOGICAL
INTEGER
REAL
DOUBLE PRECISION

Field
Length

1
2
4
8

Use SuperSort
Test Attribute

INTEGER
INTEGER
FLOATING-POINT
FLOATING-POINT

III-55

Ka
yp
roJ
ou
rna
l

SuperSort Manual

7. RO'l'ES OR USE WI'i"R llicrOSOft aa>L

COBOL File Types

superSOrt
File Type

Ope~ator's Handbook

COBOL File Type

Line sequential
Fixed Length Sequential
Variable Length sequential
Relative

CR-DELIMITED
FIXED-LENGTH
VARIABLE
RELATIVE

Indexed

COBOL Data Types

COBOL Data
'!Ype (USAGE)

DISPLAY
COMPUTATIONAL
COMPUTATIONAL-3

Field Length

t characters
2
one-half t
digits, plus 1

Use superSOrt
Test Attribute

none required
COMPUTATIONAL
COMPUTATIONAL-3

or PACKED-BCD

When entering commands, remember that COMPUTATIONAL-3 should be
abbreviated only as "COMP-3" or "CJ~, other keywords may be abbre­
viated with the first two or more characters.

8. <DISIDBRA'1'IQIIS RBLUDIG 'l'() LUGE SORl'S

The amount of data that can be sorted and/or merged is limited by
diskette space: The output file must fit entirely on one diskette. The
work file must also fit entirely on one diskette: however, in most
cases it is no bigger than the output file, or can be manipulated (e.g.
by using tagsort) to be no bigger than the output file.

Merging generally uses no work file space: when sorting large amounts
of data, the user will want to plan adequate diskette space for the
work file.

In a system with three or more drives, reserving one drive for the
output file and another for the work file generally allows sorting the
maximum amount of data.

In a two-drive system, use one of the following approaches to sorting
large amounts of data:

a. for sorting one input file only:
put input file on one drive
put output file on other drive
put work file on either drive
use tagsort

IIl-56

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

b. for any nwnber of sort input files:
reserve one drive for work file
put output file on same drive as input,

with diskette change option
tagsort cannot be used

Method (b) usually can sort the largest amount of data, but if it
yields a ,"disk full," error for the work file (<output filename>.$$$),
try method (a). Also, read the next section.

Additional hint: it is not necessary to have the file SORT.COM on-line
while sorting. Change diskettes after invoking SORT (but before the GO
command!) in order to make the diskette space SORT.COM occupies avail­
able for data,

9. IIDIIIIIZDIG 110n FILE DISlt SPACE OSllGB

a, use tagsort for single-file sorts

b, Use maximum available RAM working storage:

with the supersort program:

Relocate your operating system to use all available RAM
t"CPM," command; see system documentation)

Do not use the RETU:RN-'1'0-CONSOLE command
use the N~ERROR-MESSAGES command

with the SuperSort subroutine:

supply largest possible working storage area

with either:

Use NOCOL, NOREPORT, NOSEL, and/or NOERR load options as
described in the ''Programmer's Guide".

c. Maximize effectiveness of working storage use:

Do not greatly over-specify the maximum length of CR­
DELIMITED records, VARIABLE records, and comma-delimited
fields

Additional measures to try if work file overflows disk although total
data is less than a diskette's capacity and the preceding measures are
not adequate:

d. if you are using record selection or user-exits, try not
using them. Instead, do a separate merge-only run to apply
these features.

III-57

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

e. if you have a long key or several keys: sort first on first
few characters of highest priority key only (short keys make
better use of RAM working storage), then sort the result on
all keys (partially ordered data requires less work file
space).

f. if you have little RAM and long records: divide the data into
two or more files, sort each in a separate run, then merge
the results together. Possible ways to divide the data
include using record selection in SuperSort, and using a text
editor.

Another hint: If your data is already mostly in order, with out of
order records not far after their correct position, and you have no
merge only files, put the work file on the output disk if other consid­
erations permit. In some cases, if the input file and output file
attributes are the same, superSOrt will be able to rename the work file
to be the output file, skipping the merge phase and using no work file
space concurrently with output file space.

18. IIUIIIIZING SO.R'l'Ilil'i SPEED

Do everything specified in the previous section, except do not use
tagsort unless necessary to prevent work file disk overflow.

III-58

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

E. EXECU'l'ION MESSAGES

This section details Supersort's normal execution messages
(as opposed to error and warning messages). As explained in
the ''Concepts and Facilities~ section, all execution messages
are controlled by the PRINT-LEVEL setting. The print-level
is set by command in the SuperSort program, and by parameter
in the subroutine. In the program, it defaults to 2 if not
specified. Many of the printable items also print only if
non-0, or only if different from another quantity printed.

A brief list of the printable quantities was given in hConcepts and
Facilities''; here we will show a number of examples, then tabulate
detail about each item, keyed to the examples.

For our first example, we will do a simple sort, that does not produce
any of the conditionally printing items, at print-levels 0 through 5.
The parenthesised numbers in the left margin are references to a table
below. The operator's typing is on lines beginning with* and A>; the
rest is computer output. Note the use of command abbreviation, multi­
ple commands on one line, the PRINT-LEVEL command, and the RETURN-TO­
CONSOLE command.

A>SORT

MicroPro Supersort ready for command input
* PRI 0; I 40 CR-D; SORT I; OUT O; KEY 1,4; RE; GO

MicroPro SuperSort release 1.60
* PRI l; I 40 CR-D; SORT I; OUT O; KEY 1,4; RE; GO

(9) 639 RECORDS SORTED
(21) WORK FILE DISK SPACE USAGE BK
(22) *** SORT/MERGE COMPLETE***

MicroPro Supersort release 1.60
* PRI 2; I 40 CR-D; SORT I; OUT D; KEY 1,4; RE; GO

639 RECORDS SORTED
(18) OUTPUT FILE SIZE BK

(19-21)

WORK FILE DISK SPACE USAGE BK
*** SORT/MERGE COMPLETE***

MicroPro Supersort release 1.60
* PRI 3; I 40 CR-D; SORT I; OUT O; KEY 1,4; RE; GO

639 RECORDS SORTED
OUTPUT FILE SIZE BK
2 SORT RUNS 1 MERGE RUN WORK FILE DISK SPACE USAGE BK
*** SORT/MERGE COMPLETE***

III-59

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

First example, continued ...

MicroPro SuperSort release 1.60
"' PRI 4: I 40 CR-D; SORT I; OUT O; KEY 1,4; RE; GO

(2) SORTING .. .
(2) MERGING .. .

639 RECORDS SORTED
OUTPU'l' FILE SIZE BK
2 SORT RUNS 1 MERGE RUN WORK FILE DISK SPACE USAGE 8K
"'"' SORT/MERGE COMPLETE"'"'

MicroPro SuperSort release 1.60
* PRI 51 I 40 CR-D; SORT I; OUT O; KEY 1,41 GO

(1) 24248 BYTES WORKING S'l'ORAGE
SORTING ...

(3) 468+170 1+0
MERGING ...

(4) 2
639 RECORDS SORTED
OUTPUT FILE SIZE 8K
2 SORT RUNS 1 MERGE RUN WORK FILE DISK SPACE USAGE 8K
*** SORT/MERGE COMPLETE***

A>

For our second example, we show runs with user-installed user-exit
routines invoked. At level l, the number of records output prints
because it is different from the number of records sorted: at level 2,
the numbers of insertions and deletions that account for the difference
are also printed.

A>SORT
MicroPro SuperSort release 1.60
* PRI 1: USE 1,2; I 40 CR-D; SORT I; OUT O; KEY 1,4; RE; GO
488 RECORDS SORTED

(17) 3 2 8 RECORDS OUTPU'l'

(7 ,9)

(15,16)
(17 ,1B)

III-60

WORK FILE DISK SPACE USAGE 8K
*** SORT/MERGE COMPLETE*"'*

MicroPro Supersort release 1.60
* PRI 2; USE 1,2; I 40 CR-D; SORT I; OUT O; KEY 1,4; GO

639 RECORDS INPUT FOR SORT
213 SORT INPUT DELETIONS 62 SORT INPUT INSERTIONS

48B RECORDS SORTED
162 OUTPUT DELETIONS 2 OUTPUT INSERTIONS

328 RECORDS OUTPUT OUTPU'l' FILE SIZE 6K
WORK FILE DISK SPACE USAGE BK
*** SORT/MERGE COMPLETE***

A>

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

This one is a good example of the level 4 and 5 printouts (items 1-4 by
the reference numbers at the left):

(1)
(2)
(3)

(2)
(4)
(2)
(4)
(9)
(18)
(19-21)
(22)

A>SORT

MicroPro supersort release l.60
* PRI 6; I 2048 CR-D: SOR'l' SORT.SYM; OU'l' SY; KEY 1,4; GO
38060 BYTES WORKING STORAGE

SORTING, .•
10+9
9+27
9+5
9+54

MERGING ...
4

FINAL MERGE ...
12

639 RECORDS SORTED
OUTPUT FILE SIZE SK

10+40
9+26

9+65
9+26

10+86
9+14

9+45
9+23

10++19
9+18

9+43

15 SORT RUNS 2 MERGE RUNS WORK FILE DISK SPACE USAGE 12K
*** SORT/MERGE COMPLETE***

A>

Here's the whole works: both sort and merge-only inputs, and SELECT in
use as well as XITl and 2. The reference numbers in the left margin
are used in the table on the next page.

(1)
(2)
(3)
(2)
(4)
(5)
(6)
(7 ,8)
(9)
(HI)
(11)
(12)
(14)
(15,16)
(17 ,18)
(19-21)
(22)

A>SORT
MicroPro SuperSort release 1.60
* PRI=S; IN=70 CR-D; SORT=A; MERGE--0; OUT=OO 80: KEY=#l 30
* USE 1,2; SEL FI 1,1 <> MA,M; GO
38029 BYTES WORKING STORAGE

SORTING ...
11+0

MERGING ...
2

18 RECORDS INPUT FOR SORT
6 SORT RECORDS EXCLUDED OR NOT SELECTED
4 SORT INPUT DELETIONS 3 SORT INPUT INSERTIONS

11 RECORDS SORTED
328 RECORDS INPUT FOR MERGE ONLY

4 MERGE-ONLY RECORDS EXCLUDED OR NOT SELECTED
64 MERGE-ONLY INPUT DELETIONS

260 RECORDS MERGED ONLY
91 OUTPUT DELETIONS 8 OUTPUT INSERTIONS

188 RECORDS OUTPUT OUTPUT FILE SIZE 4K
l SORT RUN l MERGE RUN WORK FILE DISK SPACE USAGE lK
*** SORT/MERGE COMPLETE***

A>

III-61

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

The following table shows exactly what's printed at what levels and
under what conditions. The ''ref'' column is the number shown in the
left margin in the preceding examples,

ref

I
2
2

2

2

3

4

description

printed only
at level
and above

working storage size 5
SORTING ... , 4
MERGING, •• , 4

(indicates beginning of merging)
FINAL MERGE ... , 4

(indicates beginning of last
merge, to output file, prints only
if not also the first merge)

ADDITIONAL MERGE ... 4
(indicates beginning of second
complete pass through data: tagsort
suggested tagsort if this prints)

number of records input to each 5
sort run

number of runs input to each 5
merge run

printed only if
different from

The following quantities ace printed only if one or more sort
input files ace specified:

5

6

7
8

9

III-62

records read from sort input file{s)
(see note on next page)

records rejected by SELECT and/or
EXCLUDE during sort
records deleted by XITl during sort
records inserted by XITl during sort

NO'I'E

a record REPLACED by an XIT routine
is counted as both a deletion and an
insertion.

records sorted - number remaining
after SELECT/EXCLUDE and XITl

2

2

2
2

l

records sorted

zero

zero
zero

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

Table, continued ...
printed only

ref description
at level printed only if
and above different from

The following quantities are printed only if one or more merge­
only input files are specified:

10 records read from merge-only 2 records merged
input files (see NOTE below)

11 records rejected by SELECT and/or 2 zero
EXCLUDE during merge-only input

12 records deleted by XITl during 2 zero
merge-only input

14 records merged only 1
15 records deleted by XIT2 2 zero
16 records inserted by XIT2 2 zero
17 records output (always printed if 1 records sorted

both sort and merge-only inputs) or merged
18 output file size, kilobytes 2
19 number of sort runs 3 zero
20 number of merge runs 3 zero
21 work file size 1 zero
22 SORT/MERGE COMPLE'TE 1

NOTE

For RELATIVE files, the numbers of records input (refs 5 and
10) count all deleted records and never-written record num­
bers less than the highest record number in the file.

The NOREPORT Load Option

As described in the ''Programmer's Guide", the NOREPOR'l' load option
reduces Supersort's memory requirements by eliminating much text. Fol­
lowing is an example run of a Supersort main program loaded with the
NOREPORT option:

A>SORT
MicroPro Supersort release 1.60
* PRI=S; IN=70 CR-D; SORT=A; MERGE=O; OUT=OO 80; KEY=#l 30
* USE 1,2; SEL FI 1,1 <> ''A''; GO

(1) 38029 BYTES WORKING STORAGE
(3} 11+0
(Nl) 188 RECORDS

A>

In the above, item (Nl) is the number of OUTPUT records, which is
printed at level 1 or higher. Items (1) and (3) are as described
previously. Items (2), (4)-(16) and (18)-(22) of the previous
description are never printed with the NOREPORT load option.

III-63

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

F. WARNING AND ERBOR MESSAGES

This section describes the various warning and error messages
superSort can emit. The full text of all messages is shown,
supplemented by additional explanation. The errors are
arranged in numerical order, for reference in cases where
only the error number is known: after error which occured
when the NO-ERROR-MESSAGES command was in use, and for error
codes returned by calls to the SuperSort subroutine.

1. NARNING IIESSNll:S

There are several conditions which are sufficiently serious that the
user should be informed, but not sufficiently serious that execution
should be terminated. When one of these conditions arise in either the
SuperSort program or subroutine, one of the following messages is
unconditionally printed on the console. Execution then continues.

WARNING SWl: MARGINAL SORT WORKING S'IORAGE

The amount of memory the superSOrt main program is being run in,
or the size of the RAM working storage area supplied by the caller
to the SuperSort subroutine, is barely big enough to permit SORT
to function with the given record lengths and options. Slow
execution and overflow of the work file disk are likely after this
message appears. Increase working storage size or shorten record
lengths if feasible; with the sort main program, use the NCrERROR­
MESSAGES command.

WARNING SWS: INSUFFICIENT FIELDS OR COLUMNS FOR KEY OR SELECT
IN ONE OR MORE RECORDS, BLANKS ASSUMED

A positional (column-specified) field extended beyond the end of a
CR-DELIMITED record, or the number of comma-delimited fields in a
record was smaller than a #-field number specified. The missing
field or portion of field is assumed to contain blanks and execu­
tion continues. Message prints once, at end of execution,
regardless of the number of occurences.

WARNING SW6 : ONE OR MORE CR-DELIMI'l'ED INPUT RECORDS WERE LONGER
THAN SPECIFIED MAXIMUM LENGTH, AND WERE DIVIDED
INTO MULTIPLE RECORDS BEFORE SORT/MERGE

Occurs at end of execution if one or more CR-DELIMITED input
records were too long. The excess length becomes another record;
usually you will wish to correct the input file or re-run SORT
with a longer input record length specified.

111-64

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

:NO'l'E

If there are NO delimiting characters in the entire
file, this message appears and the treatment of the
input is identical to that for FIXED-LENGTH records of
the specified length.

2. ERR>R MESSAGES

i~e various errors can be classified as follows according to when they
occur and what happens when they occur:

command Entry

When an error occurs while commands are being entered to the main
program, supersort displays a "ft" (caret, or up-arrow on some
terminals) under the APPROXIMATE position of the error, prints the
error messages, and prompts for another command. The corrected
command may then be reentered. Any previously accepted commands
remain in effect; no part of the erroneous command takes effect.

When a command entry error occurs on an input line containing
multiple commands separated by semicolons, the command that caused
the error, and any commands to its right, have not taken effect,
but any commands to its left have been accepted and remain in
effect.

When a command entry error occurs on a command read from a command
file with ''LIST" off, the command is printed on the console before
the ,,~,, and error message are printed,

When a command entry occurs in a command "line'' that was entered
on multiple lines (by· use of the continuation character "&"), the
,,~ .. will be spaced down as well as over to indicate the position
of the error,

At GO

These errors occur when the GO command is given to the Supersort
main program. The program returns to command entry and previously
accepted commands remain in effect1 the operator may correct the
error or omission and enter GO again,

At Subroutine Initialization

These errors occur when the SuperSOrt subroutine is first invoked
by a calling program. The error number is returned to the subrou­
tine caller. At this time no files have been opened1 the input is
unaltered even if the output was to the same file.

III-65

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

During Execution

These errors apply to both the program and the subroutine. Execu­
tion is aborted; files in use are not closed; the work file
<OUTPU~· FILENAME>.$$$ may not have been erased, If the output was
the same file as one of the sort inputs (generally not recom­
mended), it may or may not have been altered.

The subroutine returns the error number to the caller.

The SuperSort program normally returns to the operating system
after such an error, however, if the RETURN-TO-CONSOLE command is
in effect, it will return to command input but all previously
entered commands will have been cleared,

Internal Errors

These are errors which only occur when some one of SORT's internal
mechanisms malfunctions. If you can find a set of conditions
which reproduce one of these errors (other than invalid record
select parameters in a supersort subroutine call), you have found
a bug in SuperSort.

Many errors fit two or more of the above classes, particularly those
that apply to both the main program and the subroutine. In the follow­
ing error descriptions, the classification(s) of each error are
indicated.

Following are the full texts of each message; note that the error
number is included in the text. The full text is printed by the
SuperSort' program, except that errors during execution under the NO­
ERROR-MESSAGES command print only ''ERROR sh and the error number.
Items such as file names, shown in lower case in the message, are
replaced with actual values when the message is printed.

ERROR S281 TOO LITTLE MEMORY

Occurs when the SuperSort program is first started. The solution
is to run the program in more RAM memory, with CP/M relocated
appropriately. (The operating system message LOAD ERROR or TOO
BIG may also occur, if the CP/M in use is relocated for too little
RAM to accomodate SORT.COM.)

ERROR S29: NOT ENOUGH WORKING STORAGE

Occurs at GO in the sort main program or at initialization in the
subroutine. The amount of RAM memory (sort main program) or the
caller-supplied working storage area (sort subroutine) is is not
large enough for the particular combination of record lengths and
options specified,

III-66

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

ERROR S30: COMMAND INPUT WORKSPACE FULL,
'l'RY MORE MEMORY OR SIMPLER COMMANDS

Occurs during main program command entry. A command was entered
that was presumably valid but too complex to handle in the amount
of RAM in use.

ERROR S35: BADLY STRUCTURED SORSUB PARAMETER BLOCK

occurs at subroutine initialization, indicating invalid parameters
in the call. Probably one of the DW -1 's required after the sort
file names, merge-only file names, and key specifications is
missing or misplaced, or the number of sort files, merge-only
files, or keys actually given is different from the number that
precedes them.

ERROR S37: INVALID FILE NAME

During main program command entry, means whatever was entered
where a file name is required contains no letters or digits
(before the . if one is given), or contains • or ? •

At subroutine initialization, indicates first byte of file name in
the parameter block is zero or blank.

ERROR S3 8: INVALID DRIVE NAME

During main program command entry, drive name given not between A
and Z (WORK-UNIT command).

At subroutine initialization, first byte of any of the file names
in the parameter block not 0-26 (the normal CP/M values) nor ASCII
'A'-'Z' (accepted for convenience and translated to 1-26).

ERROR S39: UNRECOGNIZED COMMAND

During command entry, first word of command not a superSort
command keyword nor an acceptable abbreviation thereof.

ERROR S40: INVALID ARGUMENT

During command entry, an argument to a command (something after
the initial keyword of the command) not understood by Supersort.
,.~~ is printed under approximate position of error, for this and
all command entry errors.

ERROR S41: MISSING ARGUMENT
Command entry: something mandatory appears to have been omitted,
about where the,~ points; or, possibly a preceding error caused
Supersort to expect another argument when you intended to end a
variable length list.

III-67

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

ERROR S42: INVALID LINE TERMINATION

During command entry, indicates command acceptable up to approxi­
mate position of ,,-,,, after which the end of the command (carriage
return or 1 or I) was expected, but something else was found.

ERROR S43: NUMBER REQUIRED

ouring command entry, at least one digit is required where the•-•
points, but none was found.

ERROR S4 4: NUMBER TOO LARGE

During command entry, number larger greater than 65535, (This
limit does not apply to numeric constants in SELECT and EXCLUDE
arguments, which are limited only by the number of digits you are
willing to enter.)

ERROR S45: RECORD LENGTH MISSING

Command entry: number to specify record length is mandatory in
INPUT-ATTRIBUTES command,

ERROR S46: THAT COMMAND MUST BE LAST ON LINE

Command entry: ''Go• and ucFILE" may not be followed by and
another command.

ERROR S50: NO INPUT FILE SPECIFIED

At GO command to the main program, means no SORT-FILES nor MERGE­
FILES command has been given. Specify your input, then GO again.
At subroutine initialization, means subroutine parameter block
specified no file(s) to sort and no file(s) to merge.

ERROR S51: MORE THAN 32 SORT INPUT FILES

Occurs during main program command entry, or at subroutine
initialization.

ERROR S52: NO KEYS SPECIFIED

At GO command to main program, means no KEY command has been
entered and accepted. At subroutine initialization, means zero
key count specified in parameter block.

ERROR S53: MORE THAN 32 KEYS

Occurs during main program command entry, or at subroutine
initialization.

III-68

Ka
yp
roJ
ou
rna
l

superSort Manual Operator's Handbook

ERROR S54: MORE THAN 32 SELECT CRITERIA

During main program command entry, means number of SELECT com­
mands, plus the number of EXCLUDE commands, greater than 32. At
subroutine initialization, means the "number of select criteria"
field in the sort subroutine parameter block contains a number
greater than 32.

ERROR S55: NO OUTPUT FILE SPECIFIED

At GO command
been entered.
field in sort
blank.

to main program, means no OUTPUT-FILE command has
At subroutine initialization, output file name

subroutine parameter block begins with a zero or

ERROR S56: PRINT LEVEL NOT 0 TO 5

Occurs during main program command entry, or at subroutine
initialization.

ERROR S57: RECORD LENGTH NOT 1 'l'O 4096

Occurs during main program command entry, or at subroutine initia­
lization. Indicates invalid input or output record length speci­
fication. For VARIABLE files, the minimum record length that the
user may specify to Supersort is 3, corresponding to records
containing 1 data byte.

ERROR S58: FIELD END COLUMN< START COLUMN

Command entry: applies to positional field specifications (no i)
in KEY, SELECT, and EXCLUDE statements.

ERROR S59: i-FIELD NUMBER NOT 1 TO 255

Occurs during main program ommand entry, or at subroutine
initialization. Applies to KEY, SELECT, and EXCLUDE comma­
delimited fields.

ERROR S61: FIELD END COLUMN> RECORD LENGTH

Occurs in the main program during command entry or at GO; in the
subroutine, at initialization. Applies to KEY, SELECT, and
EXCLUDE positional (column-specified, no i in command) fields.

ERROR S62: FIELD START COLUMN< 1 OR> RECORD LENGTH

Occurs in the main program during command entry or at GO; in the
subroutine, at initialization. Applies to KEY, SELECT, and
EXCLUDE positional fields.

ERROR S63: FIELD LENGTH NOT l TO 4096

Occurs at entry of a KEY, SELECT, or EXCLUDE command, or during
subroutine initialization.

III-69

Ka
yp
roJ
ou
rna
l

-
superSort Manual Operator's Handbook

ERROR S64: BAD SELECT OR EXCLUDE ABGUMENT

During execution, indicates invalid operation code in record
select parameter string supplied by subroutine caller.

ERROR S65: NO 'GO' AF'l'ER ERROR IN COMMAND FROM COMMAND FILE
CORRECT ERROR, ENTER 'GO' AGAIN

Occurs at GO command from a command file after an error was found
in a preceding command in the command file.

If the sort main program detects an error in a command input from
a command file (invoked with the CFILE command), it prints the
line containing the error, and the error message, on the console.
If a GO command is subsequently encountered in the command file,
it is not executed, instead the above message is printed and
console input is accepted.

This gives the operator the opportunity to enter the necessary
command{s) to correct the error. After the error is corrected,
another GO may be entered to start sort execution.

ERROR S67: TAGSORT WITH INPUT FILE SAME AS OUTPUT

occurs at GO command in the main program, or at initialization in
the subroutine, when tagsort has been requested and the same file
has been specified for both input and output.

ERROR S68: MORE .THAN 32 MERGE-ONLY INPUT FILES

Occurs during main program command entry, or at subroutine
initialization.

ERROR S69: NO INPUT RECORD LENGTH SPECIFIED

At GO in the main program, indicates no INPUT-ATTRIBUTES command
has been entered. At subroutine initialization, indicates a zero
in the parameter block input record length field.

ERROR S70:) MISSING

At entry of a SELECT or EXCLUDE command: matching parentheses not
found where expected, or not recognized due to some other syntax
error.

ERROR S7 l: COMPARISON OPERATOR REJ,JUIRED

Occurs at entry of a SELECT or EXCLUDE command. After a value
(field specification, quoted text constant, or numeric constant),
one of the following is required: GT, GE, EQ, NE, LE, LT, BT, NB,
>, >-=, -=, <>, <=, or <.

III-70

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

ERROR S72: FIELD OR CONSTANT REQUIRED

Occurs at entry of a SELEcr or EXCLUDE command.

Before and after one of the comparison operators listed in the
description of the preceding error, a FIELD specification or a
numeric or quoted text constant is required (2 values are required
after BT and NB).

The message also occurs if the beginning of the argument list is
unrecognizable, where a (or "NOT'' are acceptable in addition to a
field or constant.

ERROR S73: SECOND" MISSING

Command entry: closing '' missing in SELECT or EXCLUDE text
constant.

ERROR S74: ILLEGAL DIGIT FOR NUMBER BASE

At entry of a SELECT or EXCLUDE command: 8-9 or A-F encountered in
an octal constant, or A-F encountered in a decimal constant.

Might also be confusion resulting from lack of a space or comma to
separate a constant from the following item.

ERROR S75: SIZE IN BYTES IS 'l'OO SMALL TO HOLD THE VALUE GIVEN

At entry of a SELEcr or EXCLUDE command: The significant digits of
a constant require more bytes than the size in bytes specified
after the base indicator. Example: 12345H2: 12345 hexadecimal
will not fit in two bytes.

Or, confusion resulting from the lack of a space or comma between
the constant and the next item,

ERROR S76:] MISSING''

At entry of a SELEcr or EXCLUDE command: in []-enclosed constant
list, neither another valid constant nor the closing] found at
position of h-,,.

ERROR S78: 1-BYTE CONSTANT REQUIRED

At entry of a COLLATING-SEQUENCE command: a character or position
value was given as a pair of quotes with 0 characters or two or
more characters between them, or as a number whose value was
greater than 255 decimal.

ERROR S79: 'l'OO MANY NESTED() 'SOR INTERNAL ERROR

At' entry of a SELECT or EXCLUDE command: can be caused by more
than 5 levels of nested parentheses.

III-71

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

ERROR S81: WORKING STORAGE FULL:
TRY USING MORE WORKING STORAGE, OR TRY TAGSORT.

occurs during execution. An unusually large amount of input being
sorted or merged in a relatively small amount of RAM memory (sort
main program) or a small caller-supplied working storage area
(sort subroutine) has caused the working storage area to overflow
during sorting or merging, despite the fact that the available
working storage appeared adequate when checked at initialization.

ERROR S82: ILLEGAL XITl INSERTION

occurs during execution, when the operator has invoked a user­
installed ~xITl~ user-exit subroutine. The XITl subroutine
attempted to insert or replace a record in a merge-only input
file, or when tagsort, R-OUTPUT, P-OUTPUT, KR-OUTPUT, or KP-OUTPUT
was in use,

XITl functions are limited to acceptance or rejection of the
record except for sort input records when full record sort or K­
OUTPUT is in use.

ERROR S85: MERGE-ONLY INPUT FILE NAME SAME AS OUTPUT FILE

Occurs at GO command in main program, or at subroutine
initialization. The output file cannot be the same as one of the
merge input files.

ERROR S86: TAGSORT, AND INPUT FILE DRIVE SAME AS OUTPUT/C DRIVE

occurs at GO command in the main program, or at subroutine initia­
lization. When tagsort and output diskette change are both
requested, the output file cannot be on the same drive as the
input file.

ERROR 587: WORK FILE DRIVE SAME AS OUTPUT/C DRIVE

occurs at GO command in the main program, or at subroutine initia­
lization. When output diskette change is specified, the work file
must be on a different drive. (The work file is on the current
drive if not otherwise specified with the WORK-DRIVE command.)

ERROR S88: INVALID COMBINATION OF FIELD TEST ATTRIBUTES

An invalid combination of KEY or SELECT/EXCLUDE field test attri­
butes has been specified, such as NUMERIC-ASCII and INTEGER
together, or UPPER-CASE and FLOATING-POINT. Also occurs if LOHI
is given for a comma-delimited field. Occurs at command entry, or
at subroutine initialization or execution.

ERROR S89: MORE THAN ONE OF CR-DELIMITED, FIXED, VARIABLE, AND RELATIVE

Two file types specified for input, or for output. Note that it
is legal for the output to be different from the input. Occurs at
command entry, or at subroutine initialization.

III-72

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

ERROR S91: MORE THAN ONE INPUT FILE WI'l'H OUTPUT OPTION OR TAGSORT

R-OUTPUT, P-OUTPUT, KR-OUTPUT, KP-OUTPUT must be used with a
single (sort or merge) input file; TAGSORT must be used with a
single sort input file only. (K-OUTPUT can be used with multiple
input files.} Occurs at GO or at subroutine initialization.

ERROR S92: MORE THAN ONE OUTPUT OPTION, OR AN OUTPUT OPTION AND TAGSORT

More than one of TAGSORT, K-, R-, P-, KP-, and KR-OUTPUT
specified. Occurs at GO or at subroutine initialization.

ERROR S94: MERGE-ONLY INPUT FILE WITH 'l'AGSORT

Tag sort must be used with a single sort input file only. Occurs
at GO or at subroutine initialization.

ERROR Sl00: SELECT/EXCLUDE NOT PRESENT IN THIS VERSION

Occurs at main program command entry, or during subroutine execu­
tion, if record selection is invoked in a version of SuperSort
which the user has created with the NOSEL load option, as
described in the kProgrammer's Guide''•

ERROR SHll: COLATING-SEQUENCE, ALTSEQ, AND EBCDIC
NOT IN THIS VERSION

Occurs at command entry when the indicated features are invoked in
a version of the main program created by the user with the NOCOL
load option invoked.

CAUTION

If the subroutine is loaded with NOCOL, and EBCDIC is
invoked, no error occurs, but incorrect sorting will
occur.

Use of ALTSEQ is unaffected by NOCOL in the subroutine since in
the subroutine the collating sequence table is supplied by the
user as an argument, rather than loaded from SORLIB.

ERROR S128: FILE name.typ NOT FOUND

At en'try of SORT-FILES or MERGE-FILES command, named file not
found on specified disk. If wrong diskette was mounted, it is
permissable to change diskettes and re-enter command.

Occurs during execution if one of the specified inputs to the
subroutine is not found.

III-73

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

ERROR Sl29: DISK d: FULL WHILE WRITING FILE name.typ

Occurs during execution when there is insufficient space for the
indicated file. If the file is the work file (whose name.typ
appears as SORT.$$$), you may wish to put this file on another
drive via the WORK-DRIVE command, or to use tagsort to reduce the
size of the work file.

ERROR Sl30: DIRECTORY OF DISK d: FULL WHILE WRI'l'ING FILE name. typ

Occurs during sort execution.
up before its file space is
files on the diskette. See
file.

A CP/M diskette's directory fills
full if there are a number of small
previous error with regard to work

ERROR Sl31: CLOSE FAILURE FILE name.typ

Internal error, or diskette was changed while program was running,
other than before the GO command or as prompted by the output
diskette change option.

ERROR S133: OVERLONG RECORD (LENGTH nnn) IN FILE name.typ

Record encountered during execution in a VARIABLE input file with
length longer than the maximum specified by the user.

ERROR Sl34: NOT A RELATIVE FILE: FILE name.typ

The RELATIVE input attribute was specified, but the indicated file
did not have a proper COBOL RELATIVE file header with a zero in
the first byte. Occurs during execution.

ERROR Sl35: INCORRECT RECORD LENGTH GIVEN FOR RELATIVE FILE name.typ

User-specified input record length did not match that in RELATIVE
file header. Occurs during execution.

ERROR S136: INVALID LENGTH nnn IN VARIABLE LENGTH OUTPUT RECORD

VARIABLE output file in use, and record returned by user-installed
XIT2 subroutine did not contain a record length between land
4094, fixed point binary, high order first, in its first two
bytes~ or VARIABLE input in use, and record with invalid length
returned by user-installed XITl routine.

III-74

NOTE

If the record length is in the range 1 to 4094, but
longer than the user-specified record length, SuperSort
will truncate the record, adjust the length, and give no
error message.

Ka
yp
roJ
ou
rna
l

Supersort Manual Operator's Handbook

ERROR S140: COMMAND DECODING WORKSPACE FULL,
TRY MORE MEMORY OR SIMPLER COMMANDS

During command entry, either a very complicated command (probably
a SELECT or EXCLUDE) was input while operating in a minimal amount
of memory, or an internal error.

ERROR Sl50: INTERNAL ERROR
ERROR Sl51: INTERNAL ERROR
ERROR Sl52: INTERNAL ERROR
ERROR S153: INTERNAL ERROR
ERROR Sl54: INTERNAL ERROR

The preceding five errors can be caused during execution by an
incorrectly formed record select parameter string in a call to the
Supersort subroutine. If you are using record select in your sub­
routine call, check the pertinent parameters carefully. If you are
using the subroutine without intending to invoke record selection,
make sure the parameter block ends correctly with a 16-bi t zero
followed by a 16-bit -1 to indicate null selection parameters.

ERROR Sl60: INTERNAL ERROR
ERROR S253: INTERNAL ERROR

Internal errors.

ERROR Snn: NO SUCH ERROR

ERROR-MESSAGE command entered with undefined error number, other­
wise internal error.

III-75

Ka
yp
roJ
ou
rna
l

SuperSort Manual Operator's Handbook

3. "NOERR" LOAD OPrION MESSIIGES

The NOERR load option reduces the amount of memory Supersort occupies,
in order to increase the working storage available, by shortening the
error message texts. Invocation of this option is described in the
''Programmer's Guide''•

Many of the shortened error message texts are null -- only the word
ERROR and the error number is printed. Most of these are command entry
errors, where the ,,~,, printed under the approximate positition of the
error usually makes the problem immediately apparent to an experienced
operator.

Similarly, the several errors which say TOO MANY are distinct in use
(in the main program case) by what command causes them.

Following are the shorter error message texts provided by the NOERR
load option. For equivalent long texts and descriptions, refer above
by number.

ERROR S2 8: TOO LITTLE MEMORY
ERROR S29; NOT ENOUGH WORKING STORAGE
ERROR S30: TOO LITTLE MEMORY
ERROR S33:
ERROR S35: BAD PARM BLK
ERROR S36:
ERROR S37: BAD FILE NAME
ERROR S38: BAD DRIVE
ERROR S3 9: WHAT?
ERROR S40:
ERROR S41: ARG MISSING
ERROR S42: HUH?
ERROR S43: # REx;!UIRED
ERROR S44: # > 65545
ERROR S45: # REx;!UIRED
ERROR S46: END LINE REQUIRED
ERROR S50: NO INP FILE
ERROR S51: TOO MANY
ERROR S52: NO KEY
ERROR S53: TOO MANY
ERROR S54: TOO MANY
ERROR S55: NO OUT FILE
ERROR S56: BAD PRN LVL
ERROR S57: BAD REC LEN
ERROR S58: FIELD END < STAR'I·
ERROR S59: #-FIELD# BAD
ERROR S61: FIELD END > REC LEN
ERROR S62: FIELD START BAD
ERROR S63: BAD FIELD LEN
ERROR S64: BAD SEL/EXCL ARG
ERROR S6 5; CORRECT PREVIOUS ERR THEN GO
ERROR S67: TAGSORT MISUSED
ERROR S6 8: TOO MANY
ERROR S6 9: NO INP REC LEN

:;:n-76

Ka
yp
roJ
ou
rna
l

supersort Manual Operator's Handbook

ERROR S70: MISSING
ERROR S71:
ERROR S72:
ERROR S73: '' MISSING
ERROR S74: BAD DIGIT
ERROR S75: SIZE TOO SMALL
ERROR S76:] MISSING
ERROR S78:
ERROR S79: TOO MANY(((()))) 'S
ERROR S81: FULL WORKING S'.t~RAGE
ERROR S82: ILLEX; XITl INSERT
ERROR S85: MERGE FILE= OUTPUT FILE
ERROR S86: INPUT DRIVE= OUTPUT/C DRIVE
ERROR S87: WORK DRIVE= OUTPUT/C DRIVE
ERROR S88: ILLEX; A'.t'TRIBUTE COMBINATION
ERROR S89:
ERROR S91: OUTPUT OPTION OR TAGSORT MISUSED
ERROR S92: OUTPU'.t' OPTION OR TAGSORT MISUSED
ERROR S94: TAGSOR'I' MISUSED
ERROR Sl00: FEATURE NOT PRESENT
ERROR S101: FEATURE NOT PRESENT
ERROR S128: NOT FOUND: FILE d:name.typ
ERROR S129: DISK FULL FILE d:name.typ
ERROR S13 0 : DI RECTORY FULL FILE d :name. typ
ERROR Sl31: CLS ERR FILE d:name.typ
ERROR $133: REC TOO LONG FILE d:name.typ
ERROR Sl3 4: NOT RELATIVE: FILE d :name. typ
ERROR S135: REC LENGTH BAD: FILE d:name.typ
ERROR S136: BAD OUTPUT REC LEN: nnn
ERROR S140: TOO LITTLE MEMORY
ERROR S150: INTERNAL ERR
ERROR S151: INTERNAL ERR
ERROR Sl52: INTERNAL ERR
ERROR Sl53: INTERNAL ERR
ERROR S154: INTERNAL ERR
ERROR S160: INTERNAL ERR
ERROR S253: INTERNAL ERR
ERROR Snn:

4. •NOREPORr• LOAD OPYIClil MESSIIGHS

The NOREPORT Load Option, another option that makes more working stor­
age available by shortening message texts, alters two of the warning
messages as follows. Refer to the "Warning Messages" section above for
full text and discussion:

WARNING SWS: RECORD(S) WITH INSUFFICIENT FIELDS OR COLUMNS
WARNING SW6: OVERLONG CR-DELIMITED INPUT RECORD(S)

III-77

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

I V. P R O G R A M M E R 'S G O I D E

The ''Programmer's Guideb is intended primarily for
programmers and systems designers. Additional detail on file
and data formats is presented. Calling sequences for the
SuperSort subroutine, SORSUB, and various supporting routines
are given. Loading procedures are described for user­
supplied main programs that use the SuperSort subroutine, and
for reloading the Supersort main program in order to invoke
load options supplied with SuperSort or to install user­
supplied custom modules such as user-exit routines.

The ''Programmer's Guide" assumes familiarity with the ''Oper­
ator's Handbook", particularly the ''Concepts and Facilitiesh
section. Refer back as necessary for basic descriptions of
and motivations behind the features which are described here
in technical detail only.

IV-1

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

A. FILE AND RECORD FORMATS

This section is intended mainly for those who wish to use
non-ASCII data with superSOrt, and for programmers who wish
to write assembly language programs to process files of one
or another of SuperSort's record types.

1. CR-DELIMITED RECORD FILES

CP/M Text File Conventions

Under CP/M, a file containing lines of text normally has both a
carriage return (0D hex) and a line feed (0A hex) after each line.
If the 1 ast record in the file does not end exactly at the end of
a physical sector, a Control-Z (lA hex) character follows the last
record. If the last record ends exactly on a sector boundary,
there may or may not be an additional sector containing a Control­
Z, depending on what language or utility wrote the file.

The above format is produced by and expected by the editor and the
various programming languages. Supersort produces the above
format for CR-DELIMI'l"ED output files; on input, it will correctly
read the above format and some variations, as follows.

Supersort handling of CR-DELIMITED Files

IV-2

When reading a CR-DELIMITED input file, SuperSOrt accepts a single
carriage return or line feed as a record delimiter. It then
ignores any additional carriage returns or line feeds before the
beginning of the next record. Thus, a file intended to be read
only by SuperSort needs to contain only one character between
records; empty lines, containing not even a blank, are ignored in
the input. A Control-Z is also taken as a record delimiter (as
well as an EOF indicator), so that the last record of the file
will be correctly read even if the carriage return after it is
omitted.

SuperSort considers the input end-of-file to have been reached
upon reading the physical end-of-file, or upon reading a single
Control-Z (lA hex) character. The NO-SINGLE-Z and NO-ZZZ input
attributes are inoperative with CR-DELIMITED input.

When writing a CR-DELIMl'l'ED output file, SuperSort puts one car­
riage return and one 1 ine feed after each record, regardless of
how the corresponding input record was delimited. The file is
terminated by filling any unused space in the last sector with
Control-Z's (lA hex), or two hex FF's followed by Control-Z's if
the FFZZZ output attribute is specified. If the data happens to
end on a sector boundary, no end-of-file characters are written.

Ka
yp
roJ
ou
rna
l

superSort Manual Programmer's Guide

Data Considerations for CR-DELIMITED Files

Normally, only blanks, printing characters (ASCII codes 21 hex
through 7E hex}, and possibly tabs (09 hex) and form feeds (0C
hex) are put in text files. When putting other values into a CR­
DELIMITED file, the user be sure to output no bytes with value lA
hex except as an end-of-file indicator, and no bytes with value 0D
hex (carraige return) or 0A hex (line feed), except as record
delimiters.

2. FIXED-LEm'l'B RECORD FILES

In SuperSort, FIXED-LENGTH records have a constant length and no char­
acter is ever interpreted as a record delimiter. Carriage returns,
line feeds, or any special character{s) other than Control-Z (lA hex)
may be present without restriction, provided they are allowed for in
the record length specification.

The record length need not bear any relationship to the physical sector
length~ Supersort handles FIXED-LENGTH records 1 to 40 96 bytes long,
spanning sector boundaries to efficiently use disk space.

on input, SuperSort considers the end-of-file to have been reached when
there is less than a record length of data remaining before the physi­
cal end of file, or, if neither NO-SINGLE-Z nor NO-ZZZ is specified,
upon detecting a Control-Z (lA hex) in position 1 of the record. Users
of binary data which could possibly take on the value lA hex (26
decimal) in the first byte of the record should carefully read the
section below on End-of-File Indication Considerations.

On output, Supersort fills any unused space in the last sector of the
file with Control-Z's (lA hex), or with two FF hex bytes followed by
Control-Z's if the FFZZZ output attribute is in effect. If the last
record ends at the end of a sector, no end-of-file characters are
written. Note that in the Supersort main program, FFZZZ defaults on
for output if it is specified for input.

3. VARIABLE RICORD PILES

VARIABLE records contain the length of the data in the record in the
first two bytes, stored as a binary fixed point number with the high
order byte first. This record data length must be between 1 and 4094.
In SuperSort (but not in the file), the length bytes counted in the
length; thus, the record length specification must be in the range 3 to
4096 and positional data fields begin at column three.

IV-3

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

When reading a VARIABLE input file, supersort considers the end of the
file to have been reached when less than 2 bytes remain before the the
physical end-of-file, or upon reading two bytes in the record length
position containing control-z's.

When writing a VARIABLE output file, superSort ends the file by writing
two zero bytes (a zero-length record), then filling any remaining space
in the last sector with (two hex FF's if FFZZZ specified, then)
Control-Z"s (lA hex).

Since the length of each record, and the end-of-file, are indicated
externally to the data, VARIABLE files may contain any data type with
any value in any column position after the length bytes.

4. RELATIVE FILES

RELATIVE files are a special COBOL-compatible type of fixed length
record file. In COBOL programs, records in a RELA'l'IVE file can be
randomly read, written, and deleted by record number. The records
present in the file need not have contiguous record numbers. Deleted
records are represented by a record length of binary zeroes1 never­
written records are all zero or have no disk space allocated to them.
The record length and highest active record number are stored in a 6-
byte header at the beginning of the file.

Since the records are not delimited, and the end-of-file is unambigu­
ously indicated by the highest active record number in the header,
RELATIVE file records can contain any data type with any value,
provided the entire record is not binary zeroes.

The SuperSort main program automatically sets the NCrSINGLE-Z and N(}­
zzz input attributes when RELATIVE input is specified: users of the
subroutine version should specify these attributes in the parameter
block when using RELATIVE input.

The format of the relative file header in the first sector is:

Byte Use

0 must be 0 to indicate RELA'l'IVE file
1,2 record length, binary fixed point, low order first
3 unused
4,5 highest record nUIDber that has been written

Record data begins in byte 6 of the first sector.

IV-4

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

5. END-OF-FILE INDICATic»I CONSIDERATIONS FOR FIXED-LEtl.TB FILES

The CP/M operating system keeps track of the number of 128-byte sectors
in a file, but it has no provision for recording, externally to the
data, the number of used and unused bytes in the last sector of the
file. Thus, to allow for cases where the number of data bytes in the
file is not an exact multiple of 128, the end of file must be indicated
in the data. By convention, Control-Z (lA hex) characters are for this
purpose. This convention works without ambiguity for ASCII and BCD
data, but some types of non-ASCII data can take on the value lA hex,
creating the possibility of a spurious end-of-file indication and the
resultant loss of following input data.

CR-DELIMITED files should contain only ASCII data, which cannot take on
the value lA hex. For VARIABLE and RELATIVE files, the end-of-file
indication problem is handled by the file and record structure and EOF
attribute defaulting as described above. For FIXED-LENGTH record
files, the user of binary data must consider the end-of-file indication
problem.

SuperSOrt defaults to terminating a FIXED-LENGTH record input file upon
reading a Control-Z (lA hex) in position l of the record. This works
so long as the data in this position cannot take on this value, e. g.
if it is ASCII text or if the user's program writes a zero fill byte in
this position. For users who wish less restriction on their binary
data, other options are available; before discussing them, we will
review the available EOF criteria.

SuperSort has the following four possible criteria for defining the end
of a FIXED-LENGTH input file. If more than one is enabled, SuperSort
terminates input on the first to occur.

Physical end of file

If less than a record length of data remains in the file,
superSort always considers the end of the file to have been
reached, This is an unambiguous logical end of file indi­
cator if the logical record length is 129 or greater; for
files (e.g. FORTRAN unformatted output) known not to have an
appended Control-Z, it is also an unambiguous end-of-file
indicator for records of length 128.

single Control-Z at beginning of record

This is the default1 it may be suppressed with NO-SINGLE-Z
input attribute and is also suppressed by the NO-ZZZ input
attribute in the superSort main program.

Full record length of Control-Z's (lA hex)

This also defaults on; it may be disabled with NO-Zzz.

IV-5

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

TWo FF hex bytes, rest of record Control-Z's

defaults off~ enable with FFZZZ. Note that this provides an
unambiguous EOF indication if the data record begins with a
non-negative integer quantity.

some approaches to the binary FIXED-LENGTH record end-of-file defini­
tion problem are:

IV-6

a. Make sure there cannot be lA hex in the first byte of the
record. For example, write a zero instead of data in this
byte. While this can waste a byte in each record, it is
simple and requires no special input attributes to be speci­
fied in SuperSort.

b. Make sure the entire record cannot consist of lA's, and use
NO-SINGLE-Zin Supersort. If there is a datum anywhere in
your record which cannot take on the value lA hex in all
bytes, and you know that the program which writes the file
fills the entire unused portion of the last sector with
Control-Z's (many language processors only0 write a single
Control-Z), the full-record-length-of-Control-Z's end-of-file
criterion will work.

c. use the FFZZZ convention in your files, and specify FFZZZ and
NO-ZZZ in SuperSort. This convention is effective if the
first datum in the record cannot take on the value FFFF hex
"-- for instance, if it is a positive FORTRAN integer. Code
the program that writes the file to fill any unused space in
the last sector with FF hex for the first two bytes, followed
by lA hex to the end of the sector. Or, if more convenient,
code the program to always write two FF hex bytes followed by
enough lA hex bytes to make a record length.

d. Make the logical record length 128 or greater. Specify NO­
ZZZ in SuperSort. The physical end of file will be an unam­
biguous logical end of file indication and no restrictions
will apply to the data in the file. Exception; if the
program writing the file uncondi ti on ally appends a
terminating Control-Z, then the record length must be 129 or
more.

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

B. FIELD FORMATS

1. POSI'rIONAL FIELDS

A positional field is located in the record via a user-specified start
position and end position (or length, in calls to the the SuperSort
subroutine). The positions (columns) start with 1 for the first byte
of the record, or 3 for the first data byte of a VARIABLE record. No
commas, quotes, or other characters get special treatment; if present,
they are treated as part of the data.

If a positional field's ending position is beyond the end of a CR­
DELIMITED record, it is filled out with blanks. If its start position
is beyond the end of the record, all blanks are used and a warning
message occurs. An attempt to specify a starting or ending position
beyond the specified record length causes an error message.

2. roMMA-DELIMITED FIELDS

A comma-delimited field is specified by field number. Field n is
extracted from the record as follows: first, the n-1 th comma in the
record is located, not counting commas enclosed in quotes. If n is 1,
the beginning of the record (column 3 for VARIABLE records) is used,
This is the beginning of the field, Then, the next comma not enclosed
in quotes is located; if the end of the record is encountered, this
position is used. This is the end of the field. Next, any blanks at
the beginning or end of the field are removed. Finally, all quotes (~}
in the field are removed. For a key field, the result is then right­
truncated if longer than the user-specified maximum length.

Though quotes are normally used around the entire field, if at all,
there can be any even number of quotes in the field, and they can be in
any position as long as they enclose the desired commas or blanks. The
presence or absence of quotes has no effect except when they enclose
commas, leading blanks, or trailing blanks; blanks n6t at the beginning
or end of the field are never deleted.·

If there are not n-1 commas not enclosed in quotes in the record, a
warning message occurs and a blank field is assumed.

Commas with nothing between them are taken as blank fields and produce
no error message.

A comma~delimited field can be up to 4096 characters long.

The field number must be 1 to 255.

IV-7

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

C. DATA J!'ORMTS

supersort's basic data format is a stream of unsigned bytes.
When comparing two keys during sorting or merging, or when
doing a record selection test, the two byte streams are
compared left to right until a position is found where the
bytes are not equal. This correctly sorts ASCII data, and
unsigned binary fixed point data stored high order firstr
there is no distinction between these types, and no user
specification is needed to distinguish them.

This section details the data formats expected by some of the
test attributes the user may specify to modify the above bas­
ic method of handling data: for an introduction to all of the
test attributes, see the •·concepts and Facilities'' section.

1. IIJJIEBIC-ASCII

A NUMERIC-ASCII datum is a number represented as a string of ASCII
characters, as written by the PRINT statement of BASIC, by the format­
ted write of FORTRAN, by putting USAGE IS DISPLAY data into a record in
COBOL, or as entered with a text editor or other program. Any sequence
of characters, within the specified field, matching the following, in
order, will be correctly interpreted:

any number of blanks
optional+ or-, followed by any number of blanks
any nllJllber of leading zeroes
any number of digits
optional decimal point
additional digits if decimal point was present
any nllJllber of blanks
E, e, D, or d, to indicate exponent following
If E, e, D, or d present:

any number of blanks
optional+ or-, optionally followed by blanks
up to three digits, with value between -255 and +255.

Significant digits after 14 are ignored, but the scan continues to
locate the point correctly and to check for an exponent.

There are no error or warning messages for NUMERIC-ASCII data interpre­
tation. If the field is not numeric, zero is assumed: if only part of
it can be interpreted, the value thus obtained will be used: an
exponent out of the range -255 to +255, or more than three exponent
digits, will produce an unspecified value without an error message.

IV-8

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

2. PACllD-BCD (OJNPU'l'M'IONAL-3)

'l'he PACKED-BCD (Binary Coded Decimal) test attribute signifies COBOL
format packed decimal data. such data is stored with two decimal
digits in each byte, with the more significant digit in the high order
bits and the more significant bytes first (at lower addresses). Each
digit occupies four bits and has a value between 0 and 9. The optional
sign is at the end, in the low order four bits of the last byte.
Values in these four bits are have the following meanings:

0-9:
A, c, E or F hex:
B or D hex:

digit: number is unsigned
+ sign
- sign

Supersort will correctly compare signed and unsigned PACKED-BCD
numbers, and signed numbers with different sign representations.

IV-9

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

D. OPTI(IIIAL CXJTPO'l' FILE FORMATS

1. OU'l'POT OPTIONS - GENERAL

The general nature of the output options, and the motivations behind
them, were given in the •concepts and Facilities." section.

The data output by each output option is described in the following
sections. In all cases, if VARIABLE output is specified, two bytes of
record length begin the record1 if CR-DELIMITED output is specified, a
carraige return and line feed follow the record.

When an output option is specified1 any output record length.specified
by the user is disregarded. The output record lengths for the various
options are as follows:

file type K-OUTPUT R-OUTPUT P--OUTPUT KR-OUTPUT KP-OUTPUT

--CR-DELIMITED keys 6 13 keys+6 keys+l3
FIXED-LENGTH keys 3 4 keys+3 keys+4
REIATIVE keys 3 4 keys+3 keys+4
VARIABLE keys+2 5 6 keys+S keys+6

where ."keys,'' means the lengths of the keys as described below for K­
OUTPUT. Note that the record lengths for CR-DELIMITED files do not
include the carriage return and line feed.

2. K--ouTPOT (keys only)

Each output record in a K-OUTPUT file contains only the concatenated,
internalized keys. The record length is the total length of the
modified keys. Note that PACKED-BCD fields have a byte added to them,
and all NUMERIC-ASCII keys become 9 bytes.

The keys are concatenated together, highest priority key first, in a
partially internalized form suitable for comparison as an unsigned byte
string. Comma-delimited fields have been extracted, deblanked, and de­
quoted as described above, and extended to their maximum length with
blanks. Attributes specified have been applied, as follows:

NUMERIC-ASCII data converted to 9-byte format detailed below

UPPER-CASE lower case letters converted to upper case

RIGHT-JUSTIFY leading, rather than trailing, blanks added to comma­
delimited fields shorter than maximum length

LOHI reverse order of bytes

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

MASK-PARITY-BIT set bit 7 of all bytes to 0

EBCDIC each byte replaced from EBCDIC table

ALTSEQ each byte replaced from alternate collating sequence
table

'IWOS-COMPLEMENT complement bit 7 of first byte

INTEGER reverse order of bytes, complement bit 7 first byte

FLOATING-POINT special conversion detailed below

PACRED-BCD add FF hex byte in front of keyr if signed, shift right
4 bits to delete sign; if sign was negative, ones
complement entire key, including the added byte

DESCENDING ones complement entire key, after all other attributes
applied

AK-OUTPUT file created using no attributes will contain the original
field data; some attributes, such as NUMERIC-ASCII and DESCENDING,
thoroughly disguise the original data.

When using attributes in creating a CR-DELIMITED or FIXED-LENGTH K­
OUTPU'l' file, use caution not to inadvertently create an end-of-file
indication1 see the ''File and Record Formats~ section above.

The 9-byte internal format produced by the NUMERIC-ASCII attribute is a
sortable BCD floating point number, as follows:

bytes/bits

byte 0 bit 7

byte 0 bits
6 - 0, and
byte 1

bytes 2-6

definition

one

excess 513 exponent (base ten), computed as:
value of digits after E, if any, plus number
of digits before decimal point, plus 512,
but zero if significant digits zero.

significant digits, 4 bits each, trailing 0's.

All one's complemented if number was negative.

The FLOATING-POINT attribute transforms the key as follows:

I. reverse order of bytes.
2. if byte 0 (after reversal) is 0, set all bytes to 0.
3. set bit 7 of byte I to bit 0 of byte 0.
4. shift byte 0 right one bit position.
5. set bit 7 of byte 0 to 1.
6. if bit 7 of byte I was a 1 before step 3, ones-complement all bytes.

IV-11

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

3. R-OOTPO'l' (record nmobers)

An R-OUTPUT file contains only the input record numbers. The record
numbers start at l; the maximum record number handled is 65535,

If the output file is specified as CR-DELIMITED, the numbers are output
in ASCII, with leading zeroes to produce six digits.

If the output file is specified. as FIXED-LENGTH, VARIABLE, or REL/\'l'IVE,
the numbers are output in binary, three bytes each. The first byte is
always zero, the second byte is the low order byte of the record
number, and the third byte is the high order byte: the bytes are ''low
order first'', forming a FORTRAN integer.

When reading a FIXED-LENGTH R-OUTPUT file with another program, the end
of the file is indicated by physical end of file or by l·A hex (26
decimal) in the first byte, whichever occurs first. (or FF hex in the
first byte if the FFZZZ output attribute was specified.).

4. P-OO'l'PtlT (pointers)

A P-OUTPU'I' file contains tipointers." to the beginning of each input
record. Each pointer consists of two numbers: a SEC'l'OR NUMBER, running
up from 1, indicating which 128-byte sector of the file contained the
beginning of the record, and a BYTE OFFSET, a number l to 128
indicating at which byte in the sector the record begins.

If the output file is CR-DELIMITED, the numbers are output in ASCII,
six digits each, with a comma between them. If the output file is
another type, the numbers are output in binary, two bytes each, low
order byte first,

When reading a FIXED-LENGTH P-OUTPUT file with another program, the end
of file is indicated by physical end-of-file, or by a record containing
lAlA hex for both numbers, whichever occurs first, (If the file is
written with the FFZZZ option, then -1 in the first number indicates
end of file).

S. D-OIJTPO'r (keys and record mmbers)

A KR-OUTPUT file contains the keys, followed by the input record
numbers, both as described above.

6. JU>-OOTWT (keys and pointers)

A KP-OUTPUT file contains the keys, followed by the pointers to the
input records, both as described above.

IV-12

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

E. SUBROOTINES AND CALLING SEOUEllCES

This section describes the subroutines supplied on the
SuperSort distribution diskette and the user-exit routines
which may be coded by the user. Calling sequences for use
from FORTRAN, COBOL, and assembler programs are given in this
section. The procedure to load a program using these
routines is given later in the hLoading Procedures.'' section.
This section applies to SuperSort I only.

1. IH'l'BOOOC'l'ION

The subroutines described in this section are:

the supersort sort/merge subroutine SORSUB

SORMSG print error message if error occurred on preceding
SORSUB call

SORCNT

XITl, XIT2

return counters in array provided by caller

user-provided routines called by Supersort to
inspect and/or alter records during input and
output respectively.

To make use of the SuperSort subroutines, the user must have one or
more of the following language processors, in which to write the
calling program:

Microsoft FOR'l'RAN (F80)
Microsoft Relocateable Assembler (M80)
MicroSoft COBOL

plus the Microsoft loader, L80, to load the compiled code and SuperSort
routines.

2. 'l'BE SOR:r/MEBGE SOBBOOTINE (SORSOB)

The SORSUB subroutine provides the functions of the Supersort main
program, in subroutine form for invocation from a main program supplied
by the user,

It has the following detail difference from the main program: there is
no provision for changing diskettes at the start of the routine, If
the operator has been allowed to change a diskette after invocation of

IV-13

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

the caller's main program and before that program calls SORSUB, the
caller's program should have issued an ''initialize disk system" system
call.

Arguments to SORSUB

IV-14

Five arguments must be transmitted in a call to SORSUB. One of
them is a variable-length parameter block in which most of the
parameter information is actually transmitted. The arguments are
named as follows in this manual:

PARBLK
WORK
WLEN
S'l'AT
COLTAB

parameter block
working storage area location
working storage area length
variable for status return
alternate collating sequence table

In more detail, the arguments are as follows:

PARBLE<

WORK
WLEN

parameter block containing file names, key specifi­
cations, etc. as described in detail in the next
section, "The SORSUB Parameter Block''

work area location
work area length

Together the above should define the largest area
of RAM that it is practical to make available. For
moderate amounts of data with a short record
length, a large FORTRAN array or assembler DS will
suffice. In this case, WORK should be the address
of the array, and WLEN should contain its length in
bytes.

For large amounts of data and long record lengths,
one very effective technique is to use the area
between the top of the program and the bottom of
the operating system as the working storage area.
The end of the program may be defined in a module
that is loaded last, after all library searches, or
via the loader's $MEMRY feature. If the program
uses FORTRAN I/0, be sure increase this address to
allow for the buffers FORTRAN allocates at this
address. The address thus obtained should be
transmitted as the WORK argument.

A zero may be transmitted in the WLEN argument if
the working storage area is to extend up to the
base of the operating system. SORSUB will then
determine the base of the operating system, reduce
the address appropriately if the stack is in this
area, and compute the actual working storage area
length.

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

S'l'AT 16-bit variable for completion status return. zero
is returned upon successful completion; otherwise a
Supersort error number is returned. For example,
it 28 decimal is returned in this variable, then
the error condition is that described for ERROR S28
in the ''Warning and Error Messages" section. War­
ning conditions are not returned in the status; the
message is unconditionally typed on the console
device and SORSUB execution continues.

COLTAB

The completion status is also returned in A regis­
ter, with the flags set, and also in BX.

user's optional collating sequence table. A 256-
byte table (128 acceptable if li1ASK-PARITY-BIT
attribute used), indexed by character (byte) value,
with each byte containing position (0-255) that
character is to occupy in collating sequence.

The COL'l'AB argument is applied to key fields and
record selection tests with the ALTSEQ test attri­
bute specified; It may be omitted if there are no
such fields specified in the parameter block.

After describing the overall calling sequences in various languages, we
will describe the PARBLI< argument in detail,

SORSIJB Calling Sequence in FORTRAN

SORSUB may be called as a SUBROUTINE subprogram in the form:

CALL SORSUB(PARBLK,WORK,IWLEN,IS'l'AT,COLTAB)

Where PARBLK is an array that has been initialized to the desired
parameters as described in the next section, WORK is an array for
use as the working storage area, IWLEN is an integer variable or
constant containing the length of WORK in bytes, !STAT is an
integer variable for completion status return (values described
above}, and COLTAB is a 256-element LOGICAL (INTEGER*!) array
specifying the alternate collating sequence to use for key fields
and selection tests with the AL'l'SEQ attribute specified in the
PARBLI< argument.

SORSUB may also be declared and called as an INTEGER FUNCTION, or
as a LOGICAL (INTEGER* l) function. In both cases the completion
status will be the function value. The ISTAT argument, however,
must be be given and will always be set.

IV-15

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

SORSUB Calling Sequence in COBOL

IV-16

SORSUB may be called from a COBOL program with a sentence such as
the following in the procedure division:

CALL 'SORSUB' USING PARBLK, WORK, WLEN, STAT, COLTAB.

When calling SORSUB from COBOL, the user must produce 16-bit
binary values with the low order byte stored first for arguments
such as WLEN. This can be done using the COMPUTA'l'IONAL data type,
which generates a 16-bit binary datum with the high order byte
stored first, after adjusting the desired value as follows:

l. Divide by 256 decimal to get a quotient and remainder.

2. Multiply the remainder by 256 decimal.

3. Add the quotient from step 1 to the product from step 2.
Use this value,

Normally, the value is known when the program is being written,
and the adjustment may be performed by hand and the resulting
value entered in a VALUE IS clause in the data division.

The following example shows portions of a COBOL program that calls
SORSUB. A complete COBOL program example is given at the end of
the ''SORSUB Parameter Block~ section.

DATA DIVISION,
WORKING-S'l'ORAGE SECTION.

* WORK AREA, 4096 BYTES LONG IN THIS EXAMPLE
77 WORK-AREA DISPLAY PIC X(4096).

~ WORK AREA LENGTH
77 WORK-LEN COMPUTATIONAL VALUE 16 PIC 9999.

* ABOVE VALUE IS 4096, ADJUSTED FOR LOY ORDER FIRST
* STATUS RE'IURN VARIABLE: SORSUB RETURNS STATUS HERE.

77 S'l'AT-RETURN COMPU'l'ATIONAL PIC 9999,
* DUMMY COLTAB - FULL TABLE NCYI' NEEDED IF NCYI' USED

77 COLTAB PIC X.
* SORT SUBROUTINE PARAMETER BLOCK

01 PARAM-BLOCK.
(an example with a parameter block in COBOL
is given at the end of the next section)

PROCEDURE DIVISION.

* INVOKE SORT SUBROUTINE
CALL 'SORSUB' USING PARAM-BLOCK, WORK-AREA,

WORK-LEN, S'l'A'l'-RETURN, COLTAB.
* TEST STA'I'US RETURNED TO SEE IF AN ERROR OCCURED

IF S'l'A'l'-RETURN = 0 GO TO SUCCESS.
* PROCESS SORSUB ERROR HERE. TEST STAT-RETURN FOR 256
* TIMES SORT ERROR CODE 'l'O IDENTIFY PARTICULAR ERRORS.

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

SORSUB Calling Sequence in Assembler

When SORSUB is called from an assembly language program, the first
two arguments are transmitted in the BX and DX register pairs, and
the location of a block of pointers to the remaining arguments is
transmitted in ex. TO wit;

BX: location of parameter block
DX: location of working storage area
CX: location of pointer block containing:

pointer to location containing working
storage area length
pointer to status return variable
pointer to collating sequence table, if used

approximately 120 bytes of stack space must be available.

CALL SORSUB

upon return the completion status (0 if successful, else er­
ror code) is in the A register, with the flags set, and also
in the HL register pair and in the status return variable.

The following examples shows portions of an assembly language
program that calls SORSUB:

EXT SORSUB

MOV BX,PAJIBLK
MOV DX,WORK
HOV CX,SORARS
CALL SORSUB
JNZ ERROR

:DECLARE SORSUB EXTERNAL

;LOCATION OF PARAMETER BLOCK
1LOC WORKING STORAGE; ARRAY
:LOC OF POINTERS TO '!'HE REST
:CALL SUPERSORT SUBROUTINE
;PSW NON-ZERO IF ERROR

;BLOCK OF POINTERS 'l'O SORSUB ARGUMENTS 3,4,5
SORARS: DW WI.EN : LOC WORK AREA LGTH

DW SSAT ; LOC S'l'ATUS RETURN VBL
DW COLTAB ;LOC ALTSEQ 'l'ABLE

:
WLEN: DW 5000 : SORSUB WORKING STORE AREA LENGTH
SSTAT:
COLTAB:
PARBLK:

WORK:

DS 2 ;STATUS Ri.'TU:RNED HERE
DB 0,1,2,3,173,25,17, ... ;COLLATING SEX)UENCE TBL

(SORSUB parameter block here)
(see next section)

DS 5000 ;SORSUB WORKING S'l'ORAGB AREA

Another example, complete with parameter block, is inclJded as a
file on the distribution diskette: file SUBRDEMO.MAC is an assem­
bly language program that calls SORSUB.

IV-17

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

3. THE SOBSUB PAIWlftER BLOCK

The SORSUB parameter block gives the complete specifications for a
sort/merge operation, except for the collating sequence table, which is
transmitted as a separate argument. The parameter block can specify up
to 32 files to be sorted, up to 32 files to be merged only, up to 32
keys, an indefinitely complex record selection criterion, and all other
supersort features. Yet for simple cases it is compact, due to the use
of variable length data structures.

Refer to the previous section for the usage of the parameter block in
the SORSUB calling sequence.

In summary, the SORSUB parameter block consists of:

a. Fixed length information

This includes the output file name, input and output record
lengths and other file attributes, the print level, the work
file drive, and flags to invoke features such as output
options, tagsort, and user-installed XIT routines.

b. Variable length information

sort input file specifications
merge-only input file specifications
key field specifications
record select specifications

The input file specifications and the key field specifica­
tions each consist of a fixed length block which is repeated
for each file or key field to be specified. The number of
items, as a 16-bit quantity, precedes each group, and a 16-
bit -1 (FFFF hex) must follows each group.

The record selection specifications are of indefinite length
in a variable format to be detailed in the following section.

In detail, the parameter block is laid out as shown in the table
beginning on the next page; several parameters are detailed in notes
following the table.

All parameters are binary unless otherwise specified; all 2-byte items
are storea low order byte first.

Refer to the hConcepts and Facilitiesb section and to preceding sec­
tions of the ''Programmer's Guide'' for descriptions of the features and
options mentioned in the parameter block description.

IV-Hi

Ka
yp
roJ
ou
rna
l

superSort Manual

byte length,
name offset bytes

IRECL

ORECL

ICRDF

IEOF

0

2

4

8

9

OFNAME 10

OFOP 22

OCRDF 24

OEOF 25

WDRV 26

RNOUTF 27

KANOUT 28

TAGSF 29

30

KONLYF 31

KPOUTF 32

POUTF 33

XITlF 34

XIT2F 35

PRNLVL 36

37

38

2

2

4

1

1

12

2

1

l

l

1

1

1

l

l

l

1

1

l

1

1

Programmer's Guide

SORSUB PAIWIETER BOOCK

description

(Maximum) record length for input files

Record length for output file, or zero for
same as input files.

(reserved, should be zero)

Input file type (Note 1)

Input files end-of-file options {Note 2)

Output file name, in FCB format (Note 5)

Bit 15 on for OUTPUT DISKET'l'E CHANGE

Output file type (Note 1)

output file end-of-file option (NOte 3)

Work file disk drive {Note 4)

non-0 for R-OUTPUT, zero normal

non-0 for KR-OUTPUT, zero normal

non-0 for TAGSORT, zero normal

(reserved, should be zero}

non-0 for K-OUTPUT, zero normal

non-0 for KP-OUTPUT, zero normal

non-0 for P-OUTPUT, zero normal

non-0 to invoke use of user-installed XITl
routine, zero to not call XITl.

non-0 to invoke use of user-installed XIT2
routine, zero to not call XIT2.

Print level: 0 to 5

(reserved~ should be zero)

end of fixed length part of parameter block

continued on next page ...

IV-19

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

SORSUB parameter block continued ...

byte length,
name offset bytes description

NSORFL 38 2 Number of sort input files, 1 to 32.
May be 0 if merge-only files are given;
must always be present,

Repeat next 4 items for each sort input file1 omit if none:

NMOFL after
sort
input
files

12 Input file name, FCB format (Note 5)

2 {reserved1 should be zero)

2 Start record (0 = beginning of file)

2 End record (0 or FFFF = entire file)

2 Must contain FFFF hex to mark

2

end of input sort files.
Must always be present

Number of merge-only input files, 1 to 32.
May be 0 if sort input files are given1
must always be present

Repeat next 2 items for each merge-only file1 omit if none:

12 Merge-only file name, FCB format (Note 5)

6 (reserved1 should be 0)

2 Must contain FFFF hex to mark end
of merge-only input files.
Must always be present,

concluded on next page ...

IV-20

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

SORSUB parameter block concluded ...

byte length,
name offset bytes description

NI<EY after 2

merge
files

Number of key fields: 1 to 32.

Repeat the next 3 items for each key:

2 Start column (positional field), or field
number (comma-delimited field)

2 Field length in bytes; maximum length
for comma-delimited field. Note that
length, not end postion, is given.

2 Field type and attributes - see Note 6

2 Must contain FFFF hex to mark end of keys.

NSEL after 2
keys

Must always be present

0 to not use record selection,
any value 1-32 to use record selection

Omit the next item if select is not to be used:

variable
length

1

properly formatted select specification
string, as described in next section.

FF hex to terminate select string
(FFFF bex in 2 bytes also acceptable).

IV-21

Ka
yp
roJ
ou
rna
l

superSort Manual Programmer's Guide

Rotes to SOBStJB PARANB'l'ER BUJCI[Table

NOTE 1: The file record type is specified by a 1-byte value:

NOTE 2:

contents of ICRDF
Type or OCRDF (decimal)

CR-DELIMITED 1
FIXED-LENGTH 2
VARIABLE 64
RELATIVE 128

A zero value is also taken to mean FIXED-LENGTH.
For VARIABLE and RELATIVE input files, always specify NO­
SINGLE-Z and NO-ZZZ, by putting 3 in IEOF (next note).

Input end-of-file indication options for FIXED-LENGTH record
files may be specified by putting the sum of one or more of
the following in parameter IEOF. For default end-of-file
detection, use 0. For VARIABLE or RELATIVE input, use 3.

Option IEOF Value

NO-SINGLE-Z l
No-ZZZ 2
FFZZZ 4

NO'l'E 3: parameter OEOF should be 0 for normal output end-of-file last
sector fill (lA hex), or 2 for FFZZZ fill.

NO'l'E 4: The disk drive number for the work file or in a file name is
a one-byte quantity in one of the following formats:

BINARY

ASCII

0 • current logged drive, 1 = A:, 2 • B:,, ..

space= current, 'A'• A:, 'B1 • B:, ...

NO'l'E 5: The following 12-byte format is used for all file names in
the SORSUB parameter block:

IV-22

Bytes Contents Description

--0
1-8

9-11

disk drive
file name
file type

see NO'l'E 4
ASCII, left-adjusted, blank-filled
ASCII, left-adjusted, blank-filled

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

Examples for NOTE 5:

file B:DETAIL.DAT, in assembler:
DB 2,'DETAIL DAT' ;NB 2 blanks between

; DETAIL and DAT
in FORTRAN:

LOGICAL NAME (12)

EQUIVALENCE(NAME,desired place in PARBLK)

DATA NAME/2, 'D', 'E', 'T', 'A', 'I', 'L',' ',' ', 10 1 , 'A', 'T'/

in COBOL: in the WORKING-STORAGE SECTION of the DATA
DIVISION. Note ASCII drive specification: begin the
VALUE with a space if current drive is desired.

IH OFNAME USAGE IS DISPLAY PICTURE IS X (12)
VALUE IS 'BDETAIL DAT'.

NOTE 6: The field type and attributes for each key are specified by a
16-bit quantity in which each bit has a function. For each
desired attribute, obtain the value from the following table,
then use the sum of these values. For convenience, both hex
and decimal values are shown; the bit number column is for
information only.

Decimal Hex Bit
Attribute Value Value Number
---------------------------------comma-delimited

(omit for positional)
NUMERIC-ASCII
UPPER-CASE
RIGHT-JUSTIFY
LOHI
MASK-PARITY-BIT
EBCDIC

1
2

8192
64

4
16384
20480

1024 ALTSEQ
'IWOS-COMPLEMENT
INTEGER
FLOATING-POINT

(COMPUTATIONAL) 32
36

PACKED-BCD (COMPUTATIONAL-3)
DESCENDING

(omit fo~ ASCENDING)

Examples:

16
128

256

1
2

2lillillil
40

4
4lillillil
5000

400
28
24
18
BB

100

comma-delimited, NUMERIC-ASCII, DESCENDING:
use 1 + 2 + 256 or 259.

positional, ASCENDING, UPPER-CASE:

" 1
13

6
2

14
12+14

llil
5

2+5
4
7

8

positional and ASCENDING require no specification;
use 8192 to specifiy UPPER-CASE.

All but bits Iii and 8 of the above are also used in coding
test attributes in record selection specification strings,
described in the next section.

IV-23

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

The following is an example of a SORSUB parameter block coded in
Assembler. It specifies a run in which two files are sorted, an addi­
tional file is are merged with the result of the sort, and the diskette
is changed before the output file is written.

; SORT SUBROUTINE PARAMETER BLOCK

; FIXED LENGTH PORTION
PARBLK: DW 256 ;INPUT RECORD LENGTH: 256 BYTES

;OUTPUT RECORD LENGTH: SAME

IV-24

DW 0
DB 0,0,0,0
DB 1,ll
DB 2, 'RESULT
00 X'B000'
DB 1,0
DB 1
DB 0,0
DB 0
DB ll
DB 0,0,ll
DB X'FF' ,0
DB 5
DB 0

SORT INPUT FILES
DW 2
DB 0, 'FILE!
DW 0,Hlll,455
DB l,'FILE2
DW 0,ll,ll
DW -1

MERGE INPUT FILES
I:Ml
DB 0, 'MASTER
IM 0,0,0
DW -1

;INPUT CR-DELIMITED, NO EOF OPTIONS
DAT' ;OUTPUT TO B:RESULT.DAT

;REQUEST OUTPUT DISKETTE CHANGE
;OUTPUT CR-DELIMITED, NO EOF OPTIONS
;WORK DRIVE IS A:
; NO OUTPU'l' OPTIONS
;DO NOT USE TAGSORT

;NO OUTPUT OPTIONS
;INVOKE XITl, DO NOT INVOKE XIT2
;MAXIMUM PRINT LEVEL

DTA'

DTA'

;NUMBER OF SORT INPUT FILES
;FIRST FILE IS FILEl.DTA
;TAKE RECORDS 100-455
;SECOND FILE IS A:FILE2.DTA
;ENTIRE FILE
;MARK END OF SORT FILES

:NUMBER OF FILES
;MERGE FILE MASTER.07A

;MARK END MERGE FILES
KEY SPECIFICATIONS

00 2 ; NUMBER OF KEYS
; FIRST
DW 10

(HIEST PRIORITY) KEY IS COLUMNS 10 TO 14
;START COLUMN

DW 5
I:M 0
; SECOND KEY
005
DW 17
I:M 1+2+X'100'

OW -1

OW 0
OW -1

;LENGTH
;ALL ATTRIBUTES OFF; POSITIONAL

IS FIELD #5 LENGTH 17 DESCENDING NUM-ASC
;FIELD NUMBER 5
;MAX LENGTH
;BITS: 1 MEANS COMMA-DELIM NOT POSNL,

2 SPECIFIES "NUMERIC-ASCII'•
; 100 HEX SPECIFIES DESCENDING
; TERMINATES KEY SPECIFICATIONS

;NO RECORD SELECTION: MUST BE PRESENT
;TERMINATE THE NULL SELECTION INFO

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

The following is a complete COBOL program that calls SORSUB; it con­
sists largely of the SORSUB parameter block. The SORMSG subroutine,
described subsequently, is also used. 16-bit binary values have been
adjusted to interchange the bytes, as explained above under the sub­
heading ''SORSUB Calling Sequence in COBOL". 8-bi t binary values are
generated two at a time, using COMPUTATIONAL data items.

* DEMONSTRATION COBOL PROGRAM 'IO CALL SORT SUBROUTINE,
*
* SEE ''DISPLAYM COMMANDS AT BEGINNING OF PROCEDURE DIVISION
* (2 PAGES AHEAD) FOR EXPLANATION OF WHAT PROGRAM DOES,
*
* TO LOAD THIS PROGRAM USE: L80 DEMO,SORLIB/S,COBLIB/S,DEMO/N/E
*
IDENTIFICATION DIVISION.
PROGRAM-ID. DEMO.

DATA DIVISION.
WORKING-STORAGE SECTION,

* SORSUB WORK AREA, 4096 BYTES LONG.
77 WORK-AREA DISPLAY PIC X(4096).

* WORK AREA LENGTH
77 WORK-LEN COMP VALUE 16 PIC 9999.

* ABOVE VALUE IS 4096 WHEN INTERPRETED AS LOW-ORDER-FIRST,

* STATUS RETURN VARIABLE: SORSUB REI'URNS STATUS HERE.
77 STAT-RETURN COMP PIC 9999.

* DUMMY FOR OPTIONAL COLATING SEQUENCE TABLE
* - TABLE NOT USED IN THIS SORT, SO FULL TABLE NOT NEEDED.

77 COLTAB PIC X.

* SORT SUBROUTINE PARAMETER BLOCK
* THE PARAMETER BLOCK ARGUMENT TO THE SORT SUBROUTINE
* BEGINS ON THE NEXT PAGE; THE FOLLCWING COMMENTS APPLY:
*
* DATA NAMES CORRESPOND TO DESCRIPTION IN SUPER-SORT MANUAL,
* THE 02, 03, AND 04 LEVELS ARE USED TO IMPROVE READABILITY.
* THE 'COMPUTATIONAL' DATA TYPE IS USED TO GENERATE BINARY VALUES
* WHERE REQUIRED; THE VALUES ARE ADJUSTED TO PRODUCE THE DES-
* IRED LCM-HIGH VALUE (AS EXPECTED BY SUPER-SORT) FROM A HIGH-
* LOW VALUE (AS STORED BY COBOL).
* ONE-BYTE BINARY VALUES ARE GENERATED IN PAIRS, USING A SINGLE
* 'COMPUTATIONAL' ITEM TO GENERATE TWO ADJACENT ONE-BYTE PARAM-
* ETERS. THE VALUE FOR SUCH ITEMS IS DETERMINED BY MULTIPLYING
* THE VALUE DESIRED IN THE FIRST PARAMETER BY 256 AND ADDING
* THE VALUE DESIRED IN THE SECOND PARAMETER.
* DISK DRIVES IN DISK FILE NAMES ARE SPECIFIED IN ASCII WITH A
* SINGLE LETTER A, B, C .,,, OR BLANK FOR CURRENT,

IV-25

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

rv-26

01 PARAM-BLOCK.
02 FIXED-INFO.

03 IRECL COMP VALUE 20480 PIC 99999.
* 20480 IS 80 TIMES 256, FOR LOBI STORAGE

03 ORECL COMP VALUE 0 PIC 9999,
03 UNUSED-! COMP VALUE 0 PIC 9999.
03 UNUSED-2 COMP VALUE 0 PIC 9999.
03 ICRDF-IEOF COMP VAWE 256 PIC 9999.

* ABOVE GENERATES BlTE CONTAINING 1 TO SAY INPUT FILES
* • . • ARE CR-DELIMITED, FOLLOYED BY BYTE CONTAINING
* ••. ZERO TO SAY NO EOF OP!'IONS.

03 OFNAME DISPLAY VALUE 'ARESULT DAT' PIC X(12).
* ABOVE REPRESENTS FILE NAME FOR A:RESULT.DAT

03 OFOP COMP VALUE 0 PIC 9999.
03 OCRDF-OEOF COMP VALUE 256 PIC 9999.

* SEE COMMENT FOR ICRDF-IEOF
03 WDRV-RNOUTF COMP VALUE 512 PIC 9999.

* ABOVE PUTS 2 IN FIRST BYTE, FOR WDRV (USE B;),
* 0 IN SECOND BYTE FOR RNOUTF.

03 KANOUT-TAGSF COMP VALUE 0 PIC 9999,
* ABOVE GENERATES 2 BINARY ZERO BYTES,

03 UNUSED-KNOLYF COMP VALUE 0 PIC 9999.
03 KPOUTF-POUTF COMP VALUE 0 PIC 9999.
03 XIT1F-XIT2F COMP VAWE 0 PIC 9999.
03 PBNLVL-UNUSED COMP VALUE 512 PIC 9999.

* ABOVE PUTS 2 IN PRNLVL, 0 IN UNUSED BYTE.
02 SORT-INPUT-FILES.

03 NSORFL COMP VALUE 256 PIC 9999.
* ABOVE IS A 1, FOR ONE FILE, IN HI ORDER BYTE.

03 SORT-FILE-NAME VALUE 'AA DAT' PIC X(l2).
* ABOVE SPECIFIES FILE A:A.DAT

03 UNUSED COMP VALUE 0 PIC 9999,
03 START-RECORD COMP VALUE 0 PIC 9999.
03 END-RECORD COMP VALUE lil PIC 9999.
03 END-MARKER COMP VALUE -1 PIC 9999.

02 MERGE-INPUT-FILES,
03 NMOFL COMP VALUE 512 PIC 9999.

* ABOVE IS A 2, FOR 'lWO FILES, IN HI ORDER BYTE,
03 MERGE-FILE-1.

04 MERGE-FILE-NAME-1 VALUE 'AB DAT' PIC X(l2).
* ABOVE SPECIFIES FILE A:B.DAT

04 UNUSED COMP VALUE 0 PIC 9999,
04 UNUSED-2 COMP VALUE 0 PIC 9999.
04 UNUSED-3 COMP VALUE 0 PIC 9999.

03 MERGE-FILE-2.
04 MERGE-FILE-NAME-2 VALUE I C DAT' PIC X(l2).

* FILE C.DAT: NOTE BLANK TO INDICATE CURRENT DRIVE
04 UNUSED COMP VALUE 0 PIC 9999.
04 UNUSED-2 COMP VALUE 0 PIC 9999.
11!4 UNUSED-3 COMP VALUE 0 PIC 9999.

03 END-MARKER COMP VALUE -1 PIC 9999.

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

02 KEY-INFO.
03 NKEY COMP VALUE 256 PIC 9999.

* ABOVE IS Al, FOR ONE KEY, IN HI O:RDER BYTE,
03 FIELD-NR COMP VALUE 256 PIC 9999.

* ABOVE IS A 1, FOR FIELD 1, IN HI ORDER BYTE,
03 FIELD-MAX-LEN COMP VALUE 5120 PIC 9999.

* ABOVE IS 20, TIMES 256 'IO MOVE 'IO HI BYTE,
03 FIELD-ATTRIBUTES COMP VALUE 16640 PIC 9999,

* ABOVE IS 64 FOR RIGHT JUSTIFY,
* PLUS l FOR COMMA-DELIMITED FIELD,
* '!'IMES 256 'IO PUT IN OTHER BYTE,
* (64+1)*256 • 16640

03 END-MARKER COMP VALUE -1 PIC 9999.
02 SELECT-INFO.

03 NSEL COMP VALUE 0 PIC 9999.
03 END-MARKER COMP VALUE -1 PIC 9999.

PROCEDURE DIVISION.
RD;)UIRED-PARA-NAME.

* EXPLAIN WHAT THIS PROGRAM IS GOING TO DO
DISPLAY 'THIS PROGRAM SORTS FILE ''A:A,DAT" AND MERGES THE'.
DISPLAY 1 RESULT WITH PILES ''A:B,DAT'' AND "C,DAT'' (PRESUMED'.
DISPLAY 'ALREADY SORTED) TO FORM FILE "A:RESULT,DAT",'.
DISPLAY 'THE WORK FILE IS PLACED ON DRIVE B,'.
DISPLAY 'THE SORT KEY IS COMMA-DELIMITED FIELD U, RIGHT-'.
DISPLAY 'JUSTIFIED, MAXIMUM LENGTH 20.',

* USE SORT SllBROUTINE 'IO DO IT
CALL 'SORSUB' USING PARAM-BLOCK, WORK-AREA, WORK-LEN,

STAT-RETURN, COLTAB.
* TEST STATUS RETURNED TO SEE IF AN ERROR OCCURED

IF STAT-RETURN• 0 GO 'IO SUCCESS.
* SORSUB RETURNED ERROR. PRINT MESSAGE.

DISPLAY ''SORT SllBROUTINE ERROR:''.
* NOTE: SPECIFIC ERRORS COUID BE DISTINGUISHED BY TESTING
* STAT-RETURN FOR 256 TIMES THE SORT ERROR CODE.
* SORMSG SUBROUTINE - SUPPLIED WITH SUPER-SORT -
* PRINTS APPROPRIATE MESSAGE, NO PARAMETERS RF.QUIRED.

CALL I SORMSG' •
* DISPLAY COMPLETION MESSAGE - WHETHER ERROR OR SUCCESSFUL
* NOTE: IF SUCCESSFUL, SORT SUBROUTINE DISPLAYED
* "SORT/MERGE COMPLETE'', SINCE WE SPECIFIED A NON-0
* PRINT LEVEL,

SUCCESS. DISPLAY "DEMO-PROGRAM EXECUTION COMPLETE",

IV-27

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

4. SORSUB RECORD SELECTION SPECIFICATIONS

All fields of the SORSUB parameter block, PARBLK, were described in the
previous section except the optional record selection specification
string.

To use SORSUB without record selection, put a 0 in the NSEL field in
PARBLK (see table, previous section). You may defer reading this
section until you wish to use record selection.

TO use SORSUB with record selection, you must code a record selection
specification string in the parameter block. Before attempting to
understand the coding of SORSUB record selection strings, you should be
thoroughly familiar with the SELECT and EXCLUDE commands of the
SuperSort main program, as described in the Operator's Handbook. This
section does not describe the facilities available; it only covers the
method of invoking them in the subroutine version of Supersort.

The selection specification string consists of a sequence of codes,
each of which represents an operand (field or constant), a comparison
operator, or a logical operator. Each code is one byte; many of the
codes take following bytes to specify information such as field number
or comparison test attributes. The individual codes and the following
argument bytes each takes will be described presently, via a table.

The record selection specification string must be coded with OPERATORS
FOLLOWING THEIR OPERANDS, in a manner analogous to the operation of a
reverse-polish-notation calculator. For example, the string correspon­
ding to the superSort main program command

SELECT FIELD #1 < "ABC"

is coded in the following order (detailed programming examples will be
given later):

code for FIELD #1
code for constant ''ABC"
code for "less than''

Each comparison code must be preceded by two field or constant codes.
Each comparison produces a TRUE or FALSE value; SORSUB is capable of
remembering several TRUE/FALSE values temporarily while applying the
specification string to a record.

IV-28

Ka
yp
roJ
ou
rna
l

superSort Manual Programmer's Guide

The logical operators AND, OR, and XOR use the two MOST RECENTLY
GENERATED (but not yet used) TRUE/FALSE values, and produce a single
TRUE/FALSE result. Thus, those operators must be coded after the
comparisons (or after the preceding logical operators) whose results
are to be AND'd, OR'd, or XOR'd. For example,

SELECT FIELD U > ''ABC'' AND FIELD 12 = "02138"

must be coded in the order

codes for FIELD 11 > "ABC"
codes for FIELD #2 = ''02138''
code for AND

Note that the AND was coded at the end, not in the middle.

NOTE

Some of the difficulties experienced in the writing of select
strings can be overcome by the insertion of the special AND
operator (09H) just prior to the string termination.

The record selection string, taken as a whole, must produce exactly ONE
true/false result. Thus, it must contain a comparison operator, and
the operands required by that operator. Any number of comparisons may
be coded, provided the right number of AND's (or other logical
operators as desired) are coded to combine the multiple test results
into one. An error message will occur if the specification string,
when finished, leaves more or less than one TRUE/FALSE result, or if it
contains the wrong number of operands for the operators coded, or if
the operands do not precede the operators.

If application of the specification string to a given input record
produces a TRUE result, the record is included in the SORT/MERGEi a
FALSE result causes the record to be excluded. To cause a record to be
excluded when a condition is met (e.g. when a comparison produces a
TRUE result), you may code the desired condition FOLLOWED BY a NOT
code.

Operations are done in the order they are specified in the string.
There is no heirarchy of operations, nor any provision for coding
parentheses. Thus, in coding complex tests, the programmer must com­
pose the string with the operators in the desired order of execution.

There is no explicit code for BETWEEN or NOT-BETWEEN. These operations
must be composed with two comparisons and an AND or OR.

The composition of the record select specification string will be
detailed via examples after the following table, which details the
individual codes of which the string is formed. As in other parts of
the SORSUB parameters, all values are binary and all two-byte items are
stored low order first.

IV-29

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

SORStJB RECORD SELIC'rION SPECIJ!'ICA!.'ICII CX>DES

code
(hex)

0

1

2

83
C3
43
A3
63

23

5

6
7
B

FF

IV-30

function

positional

field

comma-
delimited
field

constant

less than
less or equal
equal
not equal
greater or

equal
greater than

NOT

AND
OR
XOR

halt

)
)
l
)
)
}
)

follow by

2 bytes:
start position

2 bytes: length

2 bytes:
field number

2 bytes:
length (n)

n bytes:
binary value

description

specifies positional
(column-specified) field
to be tested by a
subsequent comparison
operator

specifies comma­
delimited field to be
tested by a subsequent
comparison operator

specifies a constant to
be used by a subsequent
comparison operator.
Value should have high
order byte first except
when it is to be compared
to a field with low order
byte first using the LOHI
test attribute.

2 bytes, test attribute bits,
same as for key fields except
bits 0 and 8 do not apply.
Refer to table in Note 6 to
the SORSUB parameter block,
above, about 7 pages back.

the above six comparison oper­
ators compare the two most
recently specified (but not yet
used) fields or constants,
producing a TRUE/FALSE result.

complement most recent
TRUE/FALSE result

perform logical operation
on two most recently pro­
duced TRUE/FALSE results,
producing a TRUE/FALSE.

terminates specification
string. MUST BE PRESENT.

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

code
(hex)

9

84
C4
44
A4
64

24

AIDI'l'IONAL SORSUB RE<DRD SELEC'l'ION SPECIFICATION WDES

function follow by description

special AND

NOTE

same as AND except record
is immediately rejected
if result is false. Use
judiciously to speed
execution

If you experience unexplained internal errors, try including
the code for special AND just prior to terminating the select
string.

special less than
special less or equal
special equal
special not equal
special greater or

equal
special greater than

)
)
)
)
)
)
)

2 bytes, test attribute bits,
as above.

these six special comparison
operators compare the first
operand of the MOST RECENT
PREVIOUS COMPARISON to the
recently specified (but not
yet used) field or constant,
producing a TRUE/FALSE result.
Use to facilitate coding
BE'IWEEN and NCYI' BE'IWEEN tests
as shown in illustrative
example below.

IV-31

Ka
yp
roJ
ou
rna
l

superSort Manual Programmer's Guide

Each of the following examples illustrates one or more basic princi­
ples of the formation of record select strings. Each shows a record
selection condition, expressed in the form of a command that could be
used to produce it in the Supersort main program, followed by the
coding of a select specification string to produce the same selection
condition in SORSUB.

Example 1: selection equivalent to the SuperSort program command

SELECT FIELD il7 < "ABC''

could be coded as a SORSUB record selection specification string, in
assembler, as follows:

;FIELD 117
DB 1 ;CODE FOR COMMA-DELIM FIELD
ow 7 ;FIELD NUMBER OF COMMA-DELIM FIELD
;''ABC''
DB 2 ;CODE FOR CONSTJ\NT
DW 3 ; LENGTH OF CONSTANT: 3 BYTES
DB 'ABC' ;THE 3 BYTES: ASCII ABC
;< -- COMPARISON FOLLCMS THINGS TO COMPARE
DB X'83' ;CODE FOR LESS THAN: 83 HEX
DW 0 ; TES'!· ATTRIBUTES : NONE
;'I'ERMINA'l'E SELECT SPECIFICATION
DB X'FF' ;FF MANDATORY AT END

Or, in FORTRAN, as follows

INTEGER*l SELSTR(13)

EQUIVALENCE (SELSTR,proper place in PARBLK)

DATA SELSTR /1, 7 ,0,2,3 ,0, 1 A', 1B', 'C' ,x '83' ,0,0 ,X 'FF'/

Note that where a 2-byte quantity (field number 7, etc.) was entered as
two single bytes in the the data statement, the LOW ORDER byte was put
first, per the 8080 convention of storing all two-byte quantities
backwards.

Note that the appropriate syntax of the language in use was used to
convert the ASCII constant to binary. There is no distinction between
constant data types when SORSUB is called: all are coded as code 2 (1
byte), followed by the length in two bytes (low order first), followed
by the binary value in ''length'' bytes, high order byte first. (Excep­
t ion: constants for comparison to low order first fields, such as
FORTRAN INTEGERS, should be stored low order byte first. In this case
the LOHI bit must also be set in the comparison operator's test
attributes.)

IV-32

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

Example 2:

EXCLUDE FIELD 10,14 GE 123P5 PACKED-BCD

In assembler:

;FIELD 10,ll
DB 0 ;CODE FOR POSITIONAL FIELD
DW 10 ; START COLUMN
DW 5 ; INCLUSIVE LENGTH
;123P5 -- MUST ENTER AS HEXADECIMAL EQUIVALENT
DB 2 ;CODE FOR CONSTANT
DW 5 ;LENGTH: 5 BYTES
DB 0,0,0,l,X'23' ;VALUE
;GE PACKED-BCD
DB X'63'
DW X '80'
;NOT -- TO MAKE
DB 5

;CODE FOR >==
;ATTRIBUTES: PACKED-BCD BIT ON

IT EXCLUDE, NOT SELECT
;MAKE TRUE FALSE, MAKE FALSE 'I'RUE

;TERMINATE STRING
DB X'FF'

In FORTRAN, the following data statement might be used (SELSTR is a
LOGICAL or INTEGER*! array EQUIVALENCEd into the parameter block):

DATA SELSTR /0, 10,0, 5,0, 2, 5,0, 0,0,0,l,X"23',
+ X'63', X'80',0, 5, X'FF'/

In COBOL, the fol lowing code might be used within a SORSUB pa rarneter
block being specified at level 01 in the working-storage section of the
data division. Single-byte values are generated two at a time with the
COMPUTATIONAL data type using a value equal to the first byte contents
times 256 decimal plus the second byte value.

02 SELSTR.
03 SELSTR-1 COMPUTATIONAL PIC 99999 VALUE 10.
03 SELSTR-2 COMPUTATIONAL PIC 99999 VALUE 5.
03 SELSTR-3 COMPUTATIONAL PIC 99999 VALUE 2.
03 SELSTR-4 COMPUTATIONAL PIC 99999 VALUE 1280.
03 SELSTR-5 COMPUTATIONAL-3 PIC 9(10) VALUE 123.
03 SELSTR-6 COMPUTATIONAL PIC 99999 VALUE 25472.
03 SELSTR-7 COMPUTATIONAL PIC 99999 VALUE 5.
03 SELSTR-8 'COMPUTATIONAL PIC 99999 VALUE -1.

The FORTRAN form of this example shows the byte values required. The
first three pairs of bytes happen to have zero in the first byte. In
SELSTR-4, 1280 is 5 times 256 plus 0. In SELSTR-5, the appropriate
COBOL data type was used to generate the constant value; this could be
done since an even number of bytes preceded it. In SELSTR-6, 25472 is
63 hex (== 99 decimal) times 256, plus 80 hex (== 128 decimal). In
SELSTR-8 a -1 is used to generate a byte containing FF hex; the second
byte also generated does no harm at the end of the string.

IV-33

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

Example 3:

SEL #2 = "SPEC'' OR #1 < N-100" NUM AND 12 = "PMT''

Note that the default order of operations causes the AND to be done
before the OR, that is, as though parentheses were present like this:

SEL 12 = "SPEC" OR (U < "-100'' NUM AND *2 = ''PMT'')

In assembler:

;FIELD
DB
00'
DB
IM
DB
DB
DW

;FIELD
DB
ow
DB
DW
DB
DB
00

#2 = "SPEC"
l ;I FIELD
2 1 FIELD NUMBER
2 ;CONSTANT
4 ;LENGTH
'SPEC' ;VAWE
x • 43 • , coMPARE FOR muAL
0 ;NO ATl'RIBUTES
; "OR'' IS CODED LATER, AFTER THING TO OR WITH

U < "-100 '' NUMERIC-ASCII
l
1
2
4
'-100 1

X'83 1

2 ;NUMERIC-ASCII ATTRIBUTE BIT
; ''AND'' IS ALSO CODED LATER

;FIELD #2 = ''PMT"
DB 1
00 2
DB 2
00 3
DB 'PM'l'1

DB X '43'
ow 0

AT THIS POINT THERE ARE 3 SAVED TRUE/FALSE RESULTS:
RESULT OF FIELD 12 = ''SPEC'' (LEAST RECENT)
RESULT OF FIELD 11 < "-100" NUMERIC-ASCII
RESULT OF FIELD #2 = ''PMT" (MOST RECENT)

; DO "AND'' TO COMBINE LAST 'lWO RESULTS:
DB 6 ;CODE FOR ''AND''

NOW THERE ARE 'IWO SAVED RF.SULTS:
RESULT OF FIELD i2 = "SPEC''
RESULT OF THE AND OPERATION

; "OR" THE 'IWO RESULTS 'I'(X;ETHER:
DB 7 ;CODE FOR ''OR''
;TERMINATE STRING
DB X'FF'

Note that the logical operators were coded after their operands, espe­
cially that the OR was placed after the AND, since the result of the
AND was one of the operands of the OR.

IV-34

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

Example 4:

SELECT FIELD #7 BT ''07000'', ''07999''

Since there is no code for BE'l.WEEN, this must be coded as:

SELECT FIELD i7 >• ''07000'' AND FIELD 17 <= "07999"

We will show coding using the "Special less than or equal'' operation,
which avoids the need to code FIELD #7 twice. In assembler:

1FIELD #7 >• "07000'"
DB 1
DW 7
DB 2
DW 5
DB '0700111

DB X'63'
CM 0
:SAME THING <= "07999''
DB 2 :SECOND OPERAND: CONSTANT,
DW 5 JOF LENGTH 5,
DB '07999' 1OF VALUE ''07999'' ASCII
DB X I C4 1 :SPECIAL LESS OR EQUAL: COMPARE

J ••• SAME THING AS LAST COMPARED (IE FIELD 7,
1• .,FIRST OPERMD OF X'63' CODE ABOVE)
: ... TO OPERAND JUST CODED ("07999").

DW 0 JATI'RIBUTES: NONE
:AND RESULT OF THE >• WITH RESULT OF <•
DB 6 1 CODE FOR AND
:TERMINATE STRING
DB X'FF'

Another Approach to Record Selection Specifications

The following model is intended to elucidate the coding of record
selection specification strings. Since it is a close analogy to
the implementation of record selection in SORSUB, it will clarify
the coding of complex tests and give you an increased under­
standing of the wide range of possiblities available. However, if
it confuses you, skip it.

SORSUB record select specification strings are coded as though one
is writing a program for a hypothetical machine with two stacks,
the "Operand Stack'' and the "Result stack''. Each record selection
specification code may be thought of as an instruction in the
machine language of the hypothetical computer. The stacks operate
in normal pushdown fashion: the last value stored (pushed) is the
first value retrieved (popped). Both stacks are initially empty,
and at completion of the program there must be exactly one value
in the Result Stack and no values in the Operand stack.

IV-35

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

Each field or constant code, together with its argument bytes,
pushes one value onto the Operand stack of the hypothetical
machine.

Each non-special comparison operator code pops two values off the
Operand stack (generating an error if two values are not present),
and pushes one value (TRUE or FALSE according to the result of the
comparison of the values popped from the Operand Stack) onto the
Result Stack.

A NOT code pops one value off the Result Stack (generating an
error if no value is present), then pushes the opposite value.

AND, OR, and XOR pop two values off the Result Stack {generating
an error if two values are not present), perform the indicated
logical operation on those values, and push the result onto the
Result stack. Since the Result Stack operates in stack fashion,
and is independent of the Operand stack, AND, OR, and XOR always
combine the two most recently generated but not yet used
TRUE/FALSE values, regardless of whether these values were
generated by comparison operators or preceding logical operators.

When the ''halt'' code is encountered, the hypothetical machine pops
a value off the Result Stack, verifies that both stacks are empty,
then uses the TRUE/FALSE value popped from the result stack to
determine whether the record just tested should be included in the
sort,

5. 'l'HE SORMSG SUBROU'rIJIE

The SORMSG subroutine types the appropriate SuperSort error message, if
a preceding call to SORSUB ended with an error condition. If the error
related to a file, the file name is included in the message. If there
was no error, nothing is typed. SORMSG does not type warning messages
- these are unconditionally typed by SORSUB during execution.

SORMSG has no parameters and preserves all registers.

SORMSG Calling Sequence in FORI'RAN

CALL SORMSG

SORMSG Calling Sequence in COBOL

CALL 'SORMSG'

SORMSG Calling sequence in Assembler

EXT SORMSG

CALL SORMSG

IV-36

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

NOTE

Since a call to SORMSG causes all of SuperSort's error
message texts to load (these are not normally needed by
SORSUB), its memory requirement is substantial. The memory
requirement can be reduced, and the texts shortened, with the
NOERR load option.

6. THE SORCN'l' StJBROUTINE

The SORCN'l' subroutine allows a calling program to have access to most
of the data that SORSUB can print on the console, including the number
of records input, output, sorted, and merged; the number of records
deleted and inserted by SELECT, XITl, and XIT2; and the size of the
output and work files.

SORCNT stores information into an array provided by the caller, as
shown in the following table. Each item is two bytes, binary, low
order first.

byte
offset
decimal

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

40
42

FORTRAN
or COBOL
subscript description

1 number of sort input records read
2 number of sort record select rejections
3 number of sort XITl deletions
4 number of sort XITl insertions
5 number of records sorted
6 number of merge-only records read
7 number of merge record select rejections
8 number of merge XITI deletions
9 reserved for future use

10 number of records merged only
11 number of XIT2 deletions
12 number of XIT2 insertions
13 number of output records
14 number of 128-byte sectors in input file
15 number of sectors in output file
16 number of sectors in work file
17 number of sort runs (sort blocks)
18 number of merge runs
19 number of runs input to merges
20 non-0 if record(s) with insuffient

fields or characters read
21 reserved
22 reserved

IV-37

Ka
yp
roJ
ou
rna
l

supersort Manual

SORCNT Calling Sequence in FOR'l·RAN

INTOOER !ARRAY (22)

(use SORSUB)

CALL SORCNT(IARRAY)

SORCNT Calling Sequence in COBOL

01 COUNT-ARRAY.

Programmer's Guide

02 COUNT-ITEM OCCURS 22 COMPUTATIONAL PIC 99999.

(use SORSUB)

CALL 'SORCNT' USING COUNT-ARRAY.
•.. (swap high and low order bytes
••• of COUNT-ITEMS to be used)

SORCNT Calling Sequence in Assembler

EXT SORCNT

(use SORSUB)

LXI H,ARRAY
CALL SORCNT

ARRAY: DS 44

.7. OSD-EXI'.r BOOT.DIBS (XITl, Xl'l.'2)

The user-exit routines are routines which are provided by the user and
which the superSort main program or subroutine calls for each input
record (XITl) or each output record (XIT2). The user-exit routines can
inspect, alter, insert, replace, and delete records. There are many
uses for user-exit routines, a few possibilities were listed in the
"Concepts and Facilities'' section.

Procedures for installing XIT routines are given in the ~Loading
Procedures'' section, calling sequences are given in this section. After
a user-exit routine has been installed, it is used only if the appro­
priate command or parameter block flag was given.

Each XIT routine is called for each each record, and an additional time
at the end of the file. Record selection is done on the input records
before XITl is called.

IV-38

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

Each XIT routine is called with three arguments: an input or output
record, an empty buffer in which the routine may return a record, and a
flag variable used for communication in both directions:

RECORD

BUFFER

A record of the input or output file record length. If
the file is CR-DELIMITED, a carriage return, line feed,
or control-Z will be present if the record is shorter
than the maximum length. If the file is VARIABLE, the
first 2 bytes contain the length of the data in the
record.

A space of the input or output file record length. A
record returned in BUFFER for a FIXED or RELATIVE file
should be of the appropriate length (blank padded if
necessary); a record for a CR-DELIMITED file may be
shorter than the maximum length if it is terminated with
a carriage return, line feed, or control-Z; a record for
a VARIABLE file should have the data length in the first
two bytes, high order first.

Records of the entire output file record length will be
properly transmitted from XIT2 to the output file even
if the output file record length length is longer than
the input file record length.

The XIT routine should not store into BUFFER beyond the
input or output record lengths, plus two bytes for CR­
DELIMITED f ilea.

FLAG At entry to XIT routine1

bit 0 on if record is transmitted (only off at EOF)
bit 2 on if record is a merge-only input record
bit 3 on if this is end-of-file call

XIT routine may return (modulo 4 - bits 2-7 ignored)1

0 delete RECORD
l keep RECORD
2 use record in BUFFER instead (such replacement

is counted as a deletion and an insertion in
in supecSort's counters)

3 Insert record in BUFFER into file ahead of
RECORD. Transmit same RECORD and FLAG to XIT
routine again on next call. Beware infinite
loops!

There are a few limitations on what FLAG values an XIT routine can
return, mostly with regard to when XITl can insert oc replace a record,
as detailed in the following table.

IV-39

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

XIT condition/ comments

flag
value
to XIT

XITl each sort input record 1
records may be deleted or kept
in all cases.

* records may be replaced and inserted
only when full record sort or K-OUTPUT
is in use, not when another output
option or tagsort is in use.

end of last sort input file 8
zero, one, or several records
may be added to end of input.

each merge-only record 5
records may be kept or deleted only.

XIT2 each output record
records may be deleted, kept,
replaced, or inserted.

1

end of output file 8
records may be added to end, or not.
2 means add BUFFER only,
3 means add BUFFER and call XIT2 again.

Form of an XITl/2 Routine in FORTRAN

SUBROUTINE XITn (RECORD, BUFFER, FLAG)
INTEGER FLAG
LOGICAL RECORD (nn) , BUFFER (nn)

legal flag
values for
XIT to
return

0, 1, 2*, 3*

Iii, 2, 3

0, 1

0,1,2,3

0, 2, 3

or whatever data type
works best for your data

store new record into BUFFER if desired

FLAG= desired value

RETURN
END

or may leave unchanged to
keep record, not add at EOF.

Form of an XITl/2 Routine in Assembler

XITn:

IV-40

ENTRY XITn
;AT ENTRY: BX POINTS TO RECORD,

DX POINTS TO BUFFER,
ex POINTS TO FLAG.

MOV AX, [CX] ;PICK UP FLAG TRANSMITTED BY SORSUB

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

copy new record into buffer if desired

MOV ex, [AX] JSTORE NEW FLAG VALUE FROM A RroISTER
or leave unchanged to keep
record, not add record at EOF

register contents need not be restored
RET
END

8. <X>LLUING SlilQOl!liCB TABLES (<X>LTAB, BBC'i'AB)

The alternate collating sequence table COLTAB may be replaced in the
superSort main program with a table specifying a sequence of the user's
choice. The new table's sequence will then be used for ALTSEQ keys and
select comparisons, subject, of course, to additional modification with
the COLLA'l'ING-SEQUENCE command.

COLTAB is (normally) 256 bytes long, with byte 0 containing the
sequence position (0-255) for data bytes of value 0, byte l containing
the position for data bytes of value l, etc. The external label COLTAB
must be defined at the beginning of the table, and the label ENDCLT at
the end. The assembly language source file for the standard table,
COLTAB.MAC, is furnished with Supersort.

The procedure to link a modified COLTAB into the SuperSort program is
given in the ''Loading Options and Procedures" section. With the sub­
routine, COLTAB is not used since the caller passes his own table as an
argument.

The collating table EBCTAB, used for keys and record select comparisons
with the EBCDIC attribute specified, may similarly be replaced. It is
128 bytes long, has label EBCTAB at the beginning, and label ENDEBC at
the end. EBCTAB is used by the subroutine as well as the main program.

9. JIBMORY REQUIRENBll'l'S

Program or Subroutine

SUPERSORT I, II Main Program

SORSUB

Approximate memory usage
in bytes (decimal)

SORMSG - in addition to memory required by SORSUB

SORCNT - in addition to memory required by SORSUB

18800

11400

2000

25

The reader is also referred to the "LOad Options" section for informa­
tion on reduction of memory requirements obtainable with various load
options.

IV-41

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

F. LO!\D OP'.rIOHS AND LO!\DIIE PIIOCEDORES

This section tells you how to load the Supersort subroutine
(SORSUB) with your own main program, how to reload the SORT
main program to install exit routines or collating sequence
tables, how to reduce memory requirements by deleting
unwanted features, and how to modify SORT and SORSUB for
variants of the CP/M with different load addresses or system
call entry points. This section applies to SuperSort I only.

The preceding section gave the calling sequences for SORSUB,
the anciliary routines SORMSG and SORCNT, and the user­
suppliable modules XITl, XIT2, COLTAB, and EBCT.I\B.

1. LOAD OP'.rIOHS

There are several options supplied with superSort that may be invoked
when loading the superSort program or when loading the superSort sub­
routine with your own program. The options are described in this
section; the means of invoking them is described in the next section,
~Loading Procedures''•

Eliminating Features to Reduce Memory Requirements

IV-42

several modules are supplied which may be loaded with the SORT
main program or subroutine and which have the effect of preventing
code for certain features from loading, in order to save memory.
These are summarized in the table on the next page.

Generally, if a feature that was not loaded is invoked, an error
message occurs. The exceptions are: with NOREPORT, the printout
is just shortened. with NOCOL and the SUBROUTINE version only, if
EBCDIC is requested, the results are unspecified.

Ka
yp
roJ
ou
rna
l

supersort Manual Programmer's Guide

MEMORY SAVING LOAD OP'l.'IOHS

Module
Name

approximate size reduction, bytes:
main

Effect subroutine program

NOERR much shortened set of error
messages tests, as detailed
in ''Warning and Error Messages"
section.
• saves memory with subroutine

only if SORMSG used.

NOREPORT shortens information printed
at end of execution. see
''Execution Messages~ section.

NOCOL main program: eliminates COLATING­
SEQUENCE command and ALTSEXJ and
EBCDIC keywords in KEY, SELECT,
and EXCLUDE commands.

subroutine: prevents EBCDIC table
from loading,

NOSEL eliminates record selection

0 1100
(1100 *)

1000 1000

100 500

900 1100

NOCOL and NOSEL together 1000 2200
main program size reduction is
greater than sum of each separately

Modifying for a Different Variant of CP/M

The file SYSEQA.MAC contains EQU's which define a number of
version-dependent quantities, such as the system call entry point
and the program exit jump address. The values distributed are
correct for Digital Research CP/M.

If you have a different system, refer to the comments in the file
and to the programmer's manual or interface manual for your opera­
ting system to determine any changes needed, edit the file as
required, assemble, and specify in the L80 command before SORLIB/S
whenever loading the SORT main program or subroutine.

The load address (normally 100 hex) can be changed by reloading.
No other changes are required.

There is no provision for changing the system call function
numbers, the system call specifications, or the disk sector size.

IV-43

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

User-suppliable Modules

The user may install his own version of one or more of the follow­
ing tables and subroutines whenever he loads he loads the
SuperSort main program or subroutine:

name function

XITl subroutine to inspect each input
record and accept, delete, replace,
or insert an additional record. Operative
only if installed and invoked with
appropriate command or parameter flag.

XIT2 similar to XITl, but operates during output.

EBCTAB collating sequence table for EBCDIC option;
may be altered to any desired 7-bit
sequence.

COLTAB collating sequence for ALTSD;l option,
before modification by COL/I.TING-SEQUENCE
command. Applicable to main program only;
with subroutine user table is passed
as an argument.

effect if
omitted

all
records
accepted

same

standard
table
loads

standard
table
loads
{byte
value
sequence)

The interface specifications for XITl and XIT2, and the form of
COLTAB and EBCTAB, were described previously in the ''Subroutines
and Calling Sequences'' section.

2. LOADING PROCBDORBS

This section gives the procedure for loading the superSort program or
subroutine, for any of the following purposes: use of subroutine in
user's main program, installation of user-exit routines or custom
collating-sequence tables, invocation of load options supplied with
SuperSort, and/or changing the system symbols defined in SYSEQA,MAC.

By ''loading'' we mean the creation of an absolute load module (COM file)
from the relocatable object (REL files), as opposed to the loading code
into RAM for execution.

To use the procedures described here, it is necessary to have a copy of
the Microsoft loader (L80). Refer to the documentation supplied with
the Microsoft software for information on L80 usage.

Due to the large number of external symbols, loading superSort requires
36K of RAM, or more if there is a lot of user-supplied code.

IV-44

Ka
yp
roJ
ou
rna
l

SuperSort Manual Programmer's Guide

Prepare a working diskette containing L80.C:OM, the REL files supplied
on the distribution diskette, and the REL files for any of your own
modules that you wish to install. Note that there is list of the files
on the SuperSort distribution diskette in the ''Installation~ section.

Reloading the supersort Main Program

The SuperSort main program is supplied already loaded (i.e. as a
.COM file) on the distribution diskette. To reload it to install
options, use the following L80 command:

180 SORT,options,SORLIB/S,filename/N/E@

Where

filename is the desired file name for the newly loaded sort.
(With versions of L80 older than 3.0, the /N switch
is not available; use SAVE after exiting from L80.)

options is the name(s) of the REL files for any desired
load options or user-supplied modules.

L80 should print no error messages and no undefined symbols.

When the SuperSort main program is loaded, nothing must be loaded
after SORLIB is searched, If a user-supplied optional module
requires code from the FORTRAN library (all programs written in
FORTRAN do), insert FORLIB/S before SORLIB/S.

Examples showing reloading of the SuperSort main program:

L80 SORT,SORLIB/S,NSORT/N/E

reproduces SORT as distributed, on file NSORT.C:OM.

L80 SORT, XI Tl , NOSEL, NOCOL, SORLI B/ S, XSORT/N/E

installs user-supplied module XITl and MicroPro-supplied
load option modules NOSEL and NOCOL in a sort called
XSORT,

Loading User Ha.in Program with Supersort Subroutine

To load a program of your own that calls SORSUB, and optionally
also SORMSG or SORCNT, use the Microsoft loader as follows:

L80 program,options,SORLIB/S,filename/N/E@

Where

program is the user's main program roodule(s)

IV-45

Ka
yp
roJ
ou
rna
l

Supersort Manual Programmer's Guide

IV-46

options load option REL file narne(s) as above

filename name of COM file to receive loaded code

When the subroutine is used, loading additional modules after
SORLIB/S is permissable; therefore, L80's automatic FORLIB search
at /E may be allowed to occur.

Note that the subroutines SORSUB, SORMSG, and SORCNT are not named
explicitly in the loading command. They are contained in the
library SORLIB and those that are called will be loaded during the
search invoked by the /S switch.

Examples of SuperSort subroutine loading:

L80 SUBRDEMO,SORLIB/S,TEST/N/E

loads the sample program (after assembly with M80) sup­
plied on the distribution diskette, onto file TEST.COM.

L80 SORTER,USRSUBR,XIT2,NOCOL,SORLIB/S,SORTER/N/E

loads the user's program SORTER, the user's subroutine
USRSUBR (presumably used in SORTER), the user-supplied
SORT optional module XIT2, the MicroPro-supplied
optional module NOCOL, and the SuperSort subroutine.

Ka
yp
roJ
ou
rna
l

Supersort Manual Appendices

APPENDIX A: EBCDIC COLLATING SEQUENCE AND ASCII CODE TABLE

EBCDIC
SEQUENCE HEX ASCII ASCII
POSITION VALUE GRAPHIC NANE(S)
-------- ------- ------------

00 00 NUL
01 01 -A SOH
02 02 -B STX
03 03 -c ETX
37 04 -o EOT
2D 05 -E ENQ
2E 06 -F ACK
2F 07 -G BEL
16 08 -H BS
05 09 -1 H'l'
25 0A -J LF
0B 0B -K VT
0C 0C -1 FF
0D 0D -M CR
0E 0E -N so
0F 0F -o SI
10 10 -p DLE
11 11 -o OCl X-ON
12 12 -R OC2 'l'APE
13 13 -s OC3 X-OFF
3C 14 -T DC4 /TAPE
3D 15 -u NAK
32 16 -v SYN
26 17 -w ETB
18 18 -x CAN
19 19 -y EM
3F lA -z SUB
27 lB -1 ESC
22 lC -\ FS
1D 1D -1 GS
35 lE RS
lF lF us
40 20 SPACE
SA 21 !
7F 22 ,,
7B 23 #
SB 24 $
6C 25 %
50 26 &
7D 27 I

4D 28 (
5D 29)
SC 2A *
4E 2B +

A-1

Ka
yp
roJ
ou
rna
l

SuperSort Manual Appendices

EBCDIC
SEQUENCE HEX ASCII ASCII
POSITION VALUE GRAPHIC NAME(S)
-------- ------- ------------

6B 2C
60 2D
4B 2E
61 2F I
F0 30 0
Fl 31 1
F2 32 2
F3 33 3
F4 34 4
F5 35 5
F6 36 6
F7 37 7
F8 38 8
F9 39 9
7A 3A
SE 3B :
4C 3C <
7E 3D =
6E 3E >
6F 3F ?
7C 40 @

Cl 41 A
C2 42 B
C3 43 C
C4 44 D
cs 45 E
C6 46 F
C7 47 G
CB 48 H
C9 49 I
DI 4A J
D2 4B K
D3 4C L
D4 4D M
D5 4E N
D6 4F 0
D7 50 p
D8 51 Q
D9 52 R
E2 53 s
E3 54 'I'
E4 55 u
ES 56 V
E6 57 w
E7 58 X
ES 59 y
E9 SA z

A-2

Ka
yp
roJ
ou
rna
l

I
I
r
I
I

f

Super Sort Manual Appendic••

EBCDIC
SF.QUENCE HEX ASCII ASCII
POSITION VALUE GRAPHIC NAME(S) NOTE
-------- ------ ----------FF 5B ((1)

El SC \
FF 5D J (1)
SF 5E

,.

6D 5F • 79 60
81 61 a
82 62 b
83 63 C
84 64 d
85 65 e
86 66 f
87 67 g
88 68 h
89 69 i
91 6A j
92 6B k
93 6C 1
94 6D 11\
95 6E n
96 6F 0
97 70 p
98 71 q
99 72 r
A2 73 s
A3 14 t
A4 75 u
A5 76 V
A6 77 w
A7 78 X
AB 79 y
A9 7A z
C0 7B {
6A 7C I
D0 7D ! ALT MODE
Al 7E
07 7F DEL RUBOUT

NOTE 1 s Haven't identified EBCDIC equivalent, collate at end of
sequence.

A-3

-

Ka
yp
roJ
ou
rna
l

Supersort Manual Appendices

APPENDIX B; SELECT/EXCLUDE SYNTAX

The many features available for record selection may be
combined to form the argument to a SELECT or EXCLUDE command
in a manner similar to the formation of expressions in a
programming language. This appendix uses a formal notation
to show exactly how they may be combined, for the benefit of
readers who are facile with such notation and who wish to use
complicated record selection criteria.

To express the SELECT and EXCLUDE command syntax, we will use RULES of
the form:

<name>:= definition

Each rule should be read as "<name> is defined as ... ". The following
notational conventions will be used in the definition portion of each
rule (to the right of the:=) include:

<name> substitute anything matching rule <name>

contents optional

means ''or": separates alternatives.

enter one of the enclosed alternatives:
used to limit range of I 's

enter zero or more times

enclose (,), [,or] where they are
to be entered in command

The SELECT/EXCLUDE syntax specification follows, interspersed with
occasional elucidation of the notation and amplification of the
meaning. Refer to the Operator's Handbook for introductory descrip­
tions of all forms shown.

<select-command>:= SELECT (=I+) <logical-expression>

<exclude-co11U11and> := EXCLUDE (=I+) <logical-expression>

<logical-expression>:= <and-expression> {(ORIXOR) <and-expression>}

<and-expression>:= <sub-expression> { AND <sub-expression>

<sub-expression>:= <comprison> I NOT <sub-expression>
I '' ('" <logical-expression> ")"

B-1

Ka
yp
roJ
ou
rna
l

SuperSort Manual Appendices

The preceding rules say that the argument to SELECT or
EXCLUDE is a logical-expression, and that a logical-expres­
sion consists of comparisons, optionally preceded by NOT,
connected with AND, OR, and XOR, optionally grouped with
parenthesis.

Careful reading of the rules reveals that after NOT, any sub­
expression is accepted, including another NOT or a parenthe­
sized logical-expression, and that inside parentheses, any
logical-expression is accepted, including more parentheses.

In the absence of parentheses, the order of operations is:
NOT, AND, OR and XOR. Operations at the same level are done
left to right.

<comparison> :c <value> <compop2> <value> {<attribute>}
<value> (BTINB > <value>, <value> {<attribute>}

<compop2> :~ LT I LE I EQ I NE I GE I GT I < I <: I = I <> l >=I>

<attribute>:= UPPERCASE I RIGHT-JUSTIFY I LORI I MASK-PARITY-BIT
I EBCDIC I ALTSEQ I 'IWOS-COMPLEMENT I COMPUTATIONAL
I INTEGER I FLOATING-POINT I PACKED-BCD
I COMPUTATIONAL-3

A comparison consists of a value, a comparison operator, and
another value, and a third value if the operator was BT or
NB, and an optional list of test attributes. The test attri­
butes are described in the Operator's Handbook.

<value>:~ FIELD start-posn, end-posn I [FIELD] # field-number
I <constant-list>

A value consists of a field specification (as described in
Operator's Handbook) or a constant-list.

<constant-list> := <constant> I '' ['' <constant> { <constant> } "] ''

<constant> := ''<text>~ I <numeric-constant>

A constant-list consists of one constant, or a list of con­
stants enclosed in I] 's. Each constant may be text
enclosed in quotes, or a numeric constant. The constants in
a list are evaluated individually, then concatenated.

<numeric-constant>:= !+I-] <digits> I H IT I I IP IQ [<size>]

<digits>

<size>

B-2

one or more digits 0-9, also A-F if hexadecimal

decimal number indicating desired length in bytes

A numeric constant consists of an optional sign, one or more
digits, and an optional base indicator: H (hexadecimal), T
(decimal, stored high order first), I (decimal, stored low
order first), P (packed BCD decimal), or Q (octal). If no

Ka
yp
roJ
ou
rna
l

superSort Manual Appendices

base indicator is given, the default is decimal (T), except
hexadecimal if one of the digits A-F is present. If a base
indicator is given, it may be followed by a decimal number
specifying the number of bytes the constant is to occupy.

No imbedded blanks are allowed between the digits, base
indicator, or length. The user should be careful to al ways
put a blank or comma after each numeric constant, especially
if the next character would otherwise be a letter or digit.

My number of digits that fit on one input line may be given.
The digits are converted in the specified radix to a byte
string of the necessary length (ignoring leading zeroes).
The entire string is twos-complemented if a - sign was
present.

If a <size> is specified, the constant is extended with
leading fill bytes if necessary. The fill is zero, except
all l bits if a - was present in other than P constants,

Note that the conversion algorithm does not force the first
bit to be a sign, it only goes to another byte if the signif­
icance overflows. Thus, 65535, -1T2, and FFFF all have the
same 2-byte value.

The I base indicator inplies the LOHI attributes.

P constants are slightly different: A + or - sign causes an
appropiate trailing nibble to be added1 no trailing sign is
included if neither + nor - is given1 and any fill required
by a specified length is done with e•s, Also, the PACKED-BCD
attribute is implied for a comparison if a P constant appears
anywhere in it.

Octal constants greater than 3770 are packed three bits to a
digit, bridging byte boundaries. Use a constant list if you
wish to put three digits in each byte.

Note that there is no implicit interaction between the field
length and the constant length. since SuperSort uses blank,
not zero or sign bit, fill when comparison operands are of
unuequal length, the user of binary data must explicitly
specify constants of the same length as the field being
tested.

B-3

Ka
yp
roJ
ou
rna
l

supersort Manual Appendices

This page intentionally left blank

B-4

Ka
yp
roJ
ou
rna
l

SuperSort Manual Appendices

APPF.NDIX C: SOPERSORI' DIFFERENCF.S FROM PRIOR RELEASES

SuperSort 1.60 now handles files to the CP/M file size limit. No
initial disk reset is effected when operating under MP/M. If initial
disk change is desired under MP/M the new command CHANGE must be
issued.

SORT'S temporary file is now named <output filename>.$$$ instead of
SORT.$$$ to eliminate conflicts in Multiuser Systems. Note that under
certain conditions if two users invoke a sort of the same file on the
same drive conflict may still occur.

Supersort contains additions that permit it to input and output COBOL­
style "relative" and "variable length sequential•· files, to sort and
select records on the basis of binary integer and floating point data,
and to produce three new types of optional output files. The maximum
record length has been increased to 4096. User-exit routines can now
add multiple records at end of file. A summary of the changes follows;
refer to ''Concepts and Facilities'' and other manual sections for
detailed information.

General

The minimum memory requirement for the SORT main program is now 26K.

SuperSort is sold in two versions: Super sort I (complete), and
supersort II (without relocatable code, permitting customization and
use as a subroutine).

co.oana Additions in the SOR!' Main Program

NEW FILE AND RECORD TYPES: VARIABLE or RELATIVE may now be specified in
the INPUT-ATTRIBUTES and OUTPUT-FILE commands.

OUTPUT OPTIONS: Five forms of optional output can be invoked, by speci­
fying one of the following in the OUTPUT-FILE command:

K-OUTPUT R-OUTPUT P-OUTPUT KR-OUTPUT KP-OUTPUT

FIXED POINT AND FLOATING POINT BINARY DATA: The following test attri­
butes may now be used in KEY, SELECT, and EXCLUDE commands:

LOH!
INTEGER

'IWOS-COMPLEMENT
FLOATING-POINT

COMPUTATIONAL
COMPUTATIONAL-3

The meaning of INTEGER has been changed to imply low-high storage;
TWOS-COMPLEMENT was always present, but not documented.

The ''I" base indicator for numeric constants for use in SELECT and
EXCWDE commands has been changed to imply low order first storage: the
''T'' base indicator has been added, with the former meaning of ''I",

C-1

Ka
yp
roJ
ou
rna
l

supersort Manual Appendices

COMPATIBILITY: All command changes are additions, and all old commands
are still present, with the following exceptions: The INTEGER test
attribute has been changed to imply low order first storage1 the hi"
base indicator for SELECT/EXCLUDE numeric constants now implies low
order first storage; the obsolete OUTPUT-FILE keywords RECORD-NUMBER­
OUTPUT and KEYS-AND-NUMBERS are still accepted, with their old
meanings, but with longer minimum abbreviations.

Changes Applicable to Ila.in Program. and SUbroutine

RECORD LENGTH: The maximum record length is now 4096,

USER-EXIT ROUTINES may now add multiple records to the end of the
output or the end of the sort input.

PACKED DECIMAL in keys and record selection tests: Packed decimal
values now compare correctly even if the operands differ in sign
convention or presence or absence of sign.

Sort SUbroutine Changes

Disk drives in the parameter block may now be specified with an upper­
case ASCII letter (or space for currently logged drive), as well as in
binary as before.

Parameters formerly documented as ~reserved - should be zero•, and
unused bits in certain existing parameters, are now used to invoke new
features.. All calls set up for prior releases will work as before,
provided all "reserved - should be zero'' parameters, and all undefined
bits, are zero. In particular, there is no change in the effect of
previously defined attribute bits, despite the non-compatible change in
the meaning of INTEGER in the Supersort main program. Refer to the
•Programmer's Guide" for details.

C-2

Ka
yp
roJ
ou
rna
l

SuperSort Manual Appendices

APPENDIX D: INFOSTAR FILE SORTING

Infostar File sorting

Infostar's file format makes it very easy to select or exclude and sort
the records in a data file (.DTA). InfoStar's .DTA files are always
comma-delimited fields within carriage-return-delimited records. To
sort such records always remember to specify CR-DEL in the input
command.

For example:
*INPUT= 100, CR-DEL

would specify a carriage-return-delimited record which has a maximum
length of 100. Note that when the length is specified it must be
greater than the length of the longest record in the file.

Normally no special attributes need be given to the input and output
filenames. •

When specifying the key to be used, it's field# can be specified along
with that field's maximum length. Usually no attribute need be given
because the data is simply ASCII text. Specifying no attribute, how­
ever, will not correctly sort a field of unpadded numbers (i.e. 2, 12,
2083, 84). To get the varying lengths of the numbers in the field
properly ordered would require the NUMERIC-ASCII attribute.

Subsets of InfoStar files can also be created using the select/exclude
capabilities of supersort. Remember that each ''sub" datafile needs its
own (.NDX) index file. If you have just erected a sub datafile with
superSort and now wish to once again enter data into it with InfoStar
read the section in this Appendix on Creating an Index File.

Creating an Index File

Assuming that you have a datafile in a format acceptable to Infostar,
an Index file (.NDX) can be created for it by SuperSort. The following
example will illustrate the procedure.

INPUT = 100, CR
SOR'l' = DATA . DTA
OUTPUT .. DA'I'A .NDX ' fixed, KP
KEY= #1, 12, #2, 24, #1, 2
GO

Notice the [fixed, KPJ which has been appended to the output filename.
This specifies that the output will consist of the concatenated keys in
fixed position format in addition to pointers. 'I'hese keys and pointers
are then used by InfoStar as in index to the datafile. The key(s)
which are specified, and their associated lengths, must correspond
exactly with the key field(s) which were defined on the Infostar form
for which they are targeted. It is very important that both the length
and the order of the key fields match the Infostar form.

D-1

Ka
yp
roJ
ou
rna
l

Supersort Manual Appendices

The duplicate entry for field il in the above example is used to insure
that an additional two bytes is reserved for InfoStar's later use.
Note that what is actually in these positions is not important at this
time but it is very important to specify two additional bytes over and
above the space needed for the key(s). Using the fixed, KP output
option and the correct key specification, the index file will be very
quickly generated.

Pile Naintenance

The following two sorts are necessary to do a complete file maintenance
on a InfoStar file.

1. Sort the datafile into the order dictated by the Key
excluding deleted records as we go.

2. Using fixed keys and pointers output, extract an index
file (type .NDX) from the now sorted data (.DTA) file.

An example of sorting a datafile into key order is shown below:

*INPUT= <max record length>, CR-DEL
*SORT= <input filename>.DTA
*OUTPUT= <output filename>.DTA
*KEY= il, 12, #2, 24
*EXC = Field 1,1 = 0FFH
*GO

In this example the key fields we were sorting to, were field U and
field #2 which had lengths of 12 and 24, respectively. In most cases
the key fields on your InfoStar form and the keys you specify to
Supersort (along with their lengths) are the same.

Notice the EXClude line. This line eliminates any deleted records
(i.e. those which begin with a hex FF).

Extraction of the index file once the datafile is sorted and purged of
deleted records is described in the previous section on Creating an
Index File for InfoStar.

D-2

Ka
yp
roJ
ou
rna
l

** SUPER - SORT 1.5 ** COMM AND SUMMARY **

COMM,WJ

KEl'WQRD I
INPUT­
A'lTRIBUTES=

MEIGE-FILES (=)
{+l

KEY(=)
(+)

OOl'Rl'I'--FILE=

w.)}ij(-{)RIVE=

(SELECl') (=)
(EKCLUDE) (+)

CFILE=

PCSI'l'IONAL
IESCRIP,l'lW PAnAMETERIS}

Specify format nl.ll!DE!r l to 4096
of inp.it records

IESCRIPTIOO
(Maxinun)

record size

SJ?:Cify input [d:]filenarne[.typJ, .. sort filenames

SJ;:ecify input [d: l filename [. typJ, ..
filelsl to merge

Speeify one (start--<:ol,end--col)
or more sort (ifld--num,max-size)
and/or merge
keys

merge filenames

Specify sort/
rrerge key
field
location

Speeify
output
file

[d:]filename[.typ] outp.it filename

SI:ecify dri":7e

Invoke corrmand
e

d: drive letter

[IDI']
(start--<:ol, end-col)
(#field-number)
<,<=,=,>=,>,<>,

BT,NB,LT,LE,
E(!, NE, GE, Gr

{litei:al-ronstant)
(start--col,end--col}
(#field-number)
[ANO. OR. XOR I •• J
Id: l filename I .typ]

SI:ecify negation
Specify field

to examine
conparison

operator

SI:ecify
carparison
value

lcgical op;rator
cOOl!Wld file name

ATI'RIBUTE
KEYWORD

(FIXED-LEOO'lll)
(CR-DELIM'IBD)
(VARIABLE)
{RELATIVE l

(ASCENDING)
(D&SCENDIN;)
NUMERIC-ASCII

IESCRIPTICN
Record length identical for all records
Varying records separated by CR-LF
CCBOL-type variable length records
Ql30L "relative" file

SI:ecify ascending sequence for this field
Specify descending sequence for this field
SI:ecify signed/unsigned numeric text string

with unaligned decilllal point position
and optional exponential notation

RIGHI'-JUSTIFY SI:ecify right justification
UPPER-CASE Treat lower case as uppei: case
Ull.I Cbmpare field right to left
'!WJS--C(MPLEMENI' Signed binary stored hi-low (CCNPIJTATIONAL)
INl'EGER Signed fixed point binary stored low-high
FIDATING-POINI' Microsoft single or double precision
PACKED-BCD Packed decimal (CXMPUTATIOW.-3)
MASK-PARITY-BIT Ignore high order bit in each field byte
ALTSEQ t.se alternate collating sequence, this field
EBCDIC Collate this field as though in mrnrc
no-entry Outp.it file to consist of full records
(R-OJl'PUT) Output file of record numbers only
(P-CUI'RlT } Oltput file of sector/offset pointers only
(K-<JUI'RJT} Oltput concatenated sort/rrerge keys only
(KR-<XJl'IVr) Output concatenated keys, record numbers only
fKP;-;OO'I'FVI'l Q1twt concatenated k~s. t,ointers only

(current drive is used if this ooumand aranitted)

NUMERIC-ASCII
RIGffi'-JUSrIFY
UPPER-CME

Refer to the previous definitions
of these attribute keywrds

'IWOS-a::MPLEMENI' OJMR1l'ATIONAL
INI'EGER FIDATING-POINT
PACKED-BCD CCffllUTATICNAir-3
MASK-PARI'Y-BIT Ull.I
ALTSE(! EBCDIC

(foll™ logical operator with another conwrison definition)

N:>tes: 1,
2.
3.

Coomands may be entered in any order. Keywords may be abbreviated with the first two letters.
l\n = sign indicates replacement of any previous entry for this comnand k~rd. A blank in this position means the same.
'Ihe + sign indicates additional values for this conmand keyword.

4. Positional parameters must follow the associated coimend keyword in the order indicated.
5. Attribute keywords may be entered in any order following the field definition or carparison definition referred to.
6. use as many attribute keyWrds as is necesary to descril:e a KEY or SELECT/EXCLUDE field.
7. SELECI'/EXCLUDE syntax is: (SELECT) <field or literal> oi,:erator <field or literal> [attribute-keyword(s)),

8.
9.

10.

(EKCLlDE}
Brackets I] enclose optional items.
Vertically stacked parenthetical items in a column indicate mutually exclusive choices.
Use this table as a reference guide only. I<efer to the awropriate manual sections for more information.

I

l
I

[AND] , •••
[OR], .. .
[XOR], .. .

