
Ka
yp
roJ
ou
rna
l

r; GWBASIC

User's Guide

L

Ka
yp
roJ
ou
rna
l

u
u
u
u

1U
' u
I

u
LJ

u
u
u
u
u
u
u
u

GWBASIC

User's Guide

Ka
yp
roJ
ou
rna
l

Information in this document is subject to change without notice and does
not represent a commitment on the part of Microsoft Corporation. The
software described in this document is furnished under a license agree­
ment or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law
to copy Microsoft GW-BASIC on magnetic tape, disk, or any other me­
dium for any purpose other than the purchaser's personal use.

© Microsoft Corporation 1979, 1983, 1984

KAYPRO is a registered trademark of Kaypro Corporation.

Microsoft is a registered trademark, and MS and GW are trademarks of
Microsoft Corporation.

IBM is a registered trademark of IBM Corporation.

Teletype is a registered trademark of Teletype Corporation.

Document No. 3864-B

n
n
n
r,

n
n ,,
n
r,

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

I

u
u
u
u
u
u

iu

I u
u
u
u
u
u
u
u
u

Table of Contents

Ka
yp
roJ
ou
rna
l

n
n ,,
r,

n
n
n
r,

n
n
r,

n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

CHAPTER 1 INTRODUCTION

1.1
1.2
1.3

Overview 1-1
Syntax Notation .. 1-3
Resources For Learning BASIC 1-5

CHAPTER 2 USING THE GW-BASIC INTERPRETER

2.1
2.2
2.3
2.4
2.5

Invoking BASIC ... 2-1
Command Line Option Switches 2-1
Modes Of Operation .. 2-5
Line Format ... 2-5
Active And Visual (Display) Pages 2-6

CHAPTER 3 LEARNING THE LANGUAGE

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.3
3.4.4
3.4.5
3.5
3.6
3.6.1
3.6.2

Character Set .. 3-1
Special Characters ... 3-2
Control Characters ... 3-3
Constants .. 3-4
String and Numeric Constants 3-4
Single/Double Precision Numeric Constants 3-5
Variables .. 3-6
Variable Names and Declaration Characters 3-6
Array Variables .. 3-8
Space Requirements .. 3-8
Expressions And Operators 3-8
Precedence of Operations 3-9
Arithmetic Operators ... 3-9
Integer Division and Modulus Arithmetic 3-10
Overflow and Division by Zero 3-11
Relational Operators .. 3-11
Logical Operators .. 3-12
String Operators ... 3-15
Type Conversion ... 3-15
Functions .. 3-17
Intrinsic Functions .. 3-17
User-Defined Functions .. 3-18

CHAPTER 4 WRITING PROGRAMS USING THE GW-BASIC EDITOR

4.1
4.2
4.2.1
4.2.2

EDIT Command .. 4-1
Full Screen Editor .. 4-1
Writing Programs .. 4-2
Editing Programs ... 4-3

Ka
yp
roJ
ou
rna
l

4.2.3
4.2.4
4.2.5

Control Characters ... 4-3
Logical line Definition with INPUT 4-4
Editing Lines with Syntax Errors 4-5

CHAPTER 5 WORKING WITH FILES AND DEVICES

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.4

5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.7

Default Device ... 5-1
Device-Independent Input/Output 5-1
Filenames And Paths ... 5-2
Filename Specifications .. 5-2
Pathnames .. 5-2
Working With Pathnames in BASIC 5-4
Re-direction Of Standard Input

And Standard Output 5-5
Handling Files .. 5-7
Program File Commands 5-7
Protecting Program Files .. 5-8
Data Files: Sequential And Random Access 1/0 ... 5-9
Sequential Files ... 5-9
Creating a Sequential File 5-9
Reading Data From a Sequential File 5-10
Adding Data to a Sequential File 5-11
Random Access Files ... 5-12
Creating a Random Access File 5-13
Accessing a Random Access File 5-14
Random File Operations 5-16
BASIC And Child Processes 5-18

CHAPTER 6 USING ADVANCED FEATURES

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2
6.2.1
6.2.2

Assembly Language Subroutines 6-1
Memory Allocation ... 6-1
Internal Representation ... 6-2
CALL Statement ... 6-3
CALLS Statement .. 6-8
USR Function .. 6-8
Event Trapping ... 6-11
ON GOSUB Statement .. 6-12
RETURN Statement ... 6-13

CHAPTER 7 BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.1
7.2
7.3

ABS Function .. 7-1
ASC Function .. 7-2
ATN Function .. 7-3

r,
r,
r,

n
r,

n
r,
r,

n
n
n
n
n
n
r,
r,

Ka
yp
roJ
ou
rna
l

u
7.4 AUTOCommand .. 7-4

u 7.5
7.6

BEEP Statement .. 7-5
BLOAD Command ... 7-6

7.7 BSAVECommand .. 7-8

u 7.8
7.9

CALL Statement .. 7-9
CALLS Statement .. 7-10

7.10 CDBL Function ... 7-11

u 7.12
7.13

CHAIN Statement .. 7-12
CHOIR Statement .. 7-15

7.14 CHR$ Function ... 7-16

u 7.15
7.16

C/NTFunction ... 7-17
CIRCLE Statement .. 7-18

7.17 CLEAR Statement ... 7-20

u 7.18
7.19

CLOSE Statement ... 7-21
CLS Statement ... 7-22

7.20 COLOR Statement .. 7-23

u 7.21
7.22

COM Statement .. 7-24
COMMON Statement .. 7-25

7.23 CONT Command ... 7-26

u 7.24
7.25

COS Function .. 7-27
CSNG Function ... 7-28

7.27 CSRL/N Function ... 7-29

u 7.28
7.29

CV/, CVS, CVD Functions 7-30
DATA Statement .. 7-31

7.30 DATE$ Statement .. 7-32

u 7.31
7.32

DATE$ Function .. 7-33
DEF FN Statement ... 7-34

7.33 DEFINT/SNG/DBL/STR Statements 7-36

u 7.34
7.35

DEF SEG Statement ... 7-37
DEF USR Statement ... 7-38

7.36 DELETE Command .. 7-39

u 7.37
7.38

DIM Statement .. 7-40
ORAWStatement .. 7-41

7.39 EDIT Command ... 7-44

u 7.40
7.41

END Statement ... 7-45
ENVIRON Statement .. 7-46

7.42 ENVIRON$ Function ... 7-48

u 7.43
7.44

EDF Function ... 7-49
ERASE Statement ... 7-50

7.45 ERDEV,ERDEV$ FUNCTIONS 7·51

u 7.46
7.47

ERR And ERL FUNCTIONS 7-52
ERROR Statement .. 7-53

7.48 EXP Function ... 7-55

u 7.49 FIELD Statement ... 7-56

Ka
yp
roJ
ou
rna
l

7.50
7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.70
7.71
7.72
7.76
7.77
7.78
7.79
7.80
7.81
7.82
7.83
7.84
7.85
7.86
7.87
7.88
7.89
7.90
7.91
7.92
7.93
7.94
7.95
7.96
7.98

FILES Statement ... 7-5B
FIXFunction ... 7-60
FOR ... NEXTStatement 7-61
FREFunction ... 7-63
GET Statement - File 1/0 7-64
GETStatement- Graphics 7-65
GOSUB ... RETURN Statements 7-66
GOTO Statement .. 7-67
HEX$ Function .. 7-68
IF. .. THEN[. . . ELSE]/IF. . . GOTO Statements 7-69
INKEY$ Function ... 7-71
INPFunction .. 7-72
INPUTStatement .. 7-73
INPUT# Statement ... 7-75
INPUT$Function ... 7-76
INSTR Function .. 7-77
INTFunction .. 7-78
IOCTL Statement ... 7-79
IOCTL$ Function ... 7-80
KEY Statement ... 7-81
KEY(n) Statement .. 7-83
KILL Statement ... 7-85
LEFT$ Function .. 7-87
LEN Function ... 7-88
LETStatement .. 7-89
LINE Statement .. 7-90
LINE INPUTStatement ... 7-92
LINE INPUT# Statement 7-93
LIST Command ... 7-94
LL/ST Command ... 7-96
LOADCommand ... 7-97
LOG Function ... 7-98
LOCATEStatement ... 7-99
LOFFunction ... 7-101
LOG Function .. 7-102
LPOSFunction ... 7-103
LPRINT And LPRINT USING Statements 7-104
LSET And R SET Statements 7-105
MERGECommand ... 7-106
MID$ Statement .. 7-107
MID$ Function .. 7-108
MKDIR Statement ... 7-109
MK/$, MKS$, MKD$ Functions 7-110
NAME Statement .. 7-111

n
r,
r,
r,
r,
r, ,,
n
r,

n
n
n
n
n
r,
r,

Ka
yp
roJ
ou
rna
l

u
7.99 NEWCommand ... 7-112

u 7.100
7.101

OCT$Function ... 7-113
ON COM Statement .. 7-114

7.102 ON ERROR GOTO Statement 7-116

u 7.103
7.104

ON . .. GOSUB And ON . . . GOTO Statements 7-117
ON KEY Statement... .. 7-118

7.106 ON PLAY Statement.. ... 7-121

u 7.107
7.108

ON STRIGStatement ... 7-123
ON TIMER Statement .. 7-125

7.109 OPENStatement .. 7-127

u 7.110
7.111

OPEN COM Statement.. 7-131
OPTION BASE Statement.. 7-134

7.112 OUTStatement .. 7-135

u 7.113
7.115

PAINTStatement ... 7-136
PEEK Function .. 7-139

7.118 PLAYStatement ... 7-140

u 7.119
7.120

PLAY Function .. 7-143
PLAY ON, PLAY OFF, PLAY STOP Statements .. 7-144

7.121 PMAPFunction ... 7-145

u 7.122
7.123

POINT Function .. 7-147
POKE Statement .. 7-149

7.124 POS Function ... 7-150

u 7.125
7.126

PRESETStatement ... 7-151
PRINT Statement .. 7-152

7.127 PRINT USING Statement 7-155

u 7.128
7.129

PRINT# And PRINT# USING Statements 7-159
PSETStatement ... 7-161

7.130 PUTStatement- File 1/0 7-163

u 7.131
7.132

PUTStatement- Graphics 7-164
RANDOMIZE Statement 7-167

7.133 READ Statement .. 7-169

u 7.134
7.135

REM Statement .. 7-171
RENUMCommand ... 7-172

7.136 RESET Command .. 7-173

u 7.137
7.138

RESTORE Statement ... 7-174
RESUMEStatement .. 7-175

7.139 RETURNStatement .. 7-176

u 7.140
7.141

RIGHT$ Function ... 7-177
RMDIR Statement ... 7-178

7.142 RND Function .. 7-179

u 7.143
7.144

RUN Statement/Command 7-180
SAVECommand .. 7-181

7.145 SCREEN Statement .. 7-182

u 7.146 SCREEN Function ... 7-183

Ka
yp
roJ
ou
rna
l

7.147
7.148
7.149
7.150
7.151
7.152
7.153
7.154
7.155
7.156
7.157
7.158

7.159
7.160
7.161
7.162
7.163
7.164
7.165
7.166

7.167
7.168
7.169
7.170
7.171
7.172
7.174
7.175
7.176
7.177
7.178
7.179

APPENDIX A

APPENDIX B

APPENDIXC

APPENDIX D

SGN Function .. 7-184
SHELL Statement .. 7-185
SIN Function .. 7-187
SOUND Statement .. 7-188
SPACE$Function .. 7-189
SPCFunction ... 7-190
SOR Function .. 7-191
STICK Function .. 7-192
STOP Statement ... 7-193
STR$Function .. 7-194
STRIG Function .. 7-195
STRIG ON, STRIG OFF,

STRIG STOPStatements 7-196
STRING$ Function .. 7-197
SWAP Statement .. 7-198
SYSTEM Command ... 7-199
TAB Function ... 7-200
TAN Function ... 7-201
TIME$ Statement ... 7-202
TIME$ Function .. 7-203
TIMER ON, TIMER OFF,

TIMER STOP Statements 7-204
TRON/TROFF Statements/Commands 7-205
USR Function .. 7-206
VAL Function .. 7-207
VARPTR Function .. 7-208
VARPTR$ Function .. 7-209
VIEW Statement ... 7-210
WAITStatement .. 7-212
WHILE. .. WEND Statements 7-213
WIDTH Statement .. 7-214
WINDOWStatement .. 7-216
WR/TE Statement .. 7-219
WRITE# Statement ... 7-220

ASCII CHARACTER CODES

ERROR CODES AND ERROR MESSAGES

MICROSOFT GW-BASIC RESERVED WORDS

MATHEMATICAL FUNCTIONS NOT INTRINSIC TO
GW-BASIC 3.2

r,

n
n
r,
r,
r,

n ,,
r,

n
r,

n
n
r,

n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u Chapter One

Introduction
u
u
u
u
u
u
u
u
u
u
u
u

Ka
yp
roJ
ou
rna
l

r,

n
r,
n i

n
r,
n
n
n
r,
r,

n.
n
n ,,
r,·

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
LJ
u
u
u
LJ
u
u
u

CHAPTER 1
INTRODUCTION

In 1975, Microsoft wrote the first BASIC interpreter for microcomputers.
Today, Microsoft BASIC has well over 1,000,000 installations and is used
in many operating environments. It's the BASIC you will find on all of the
most popular microcomputers. Many users, manufacturers, and software
vendors have written application programs in Microsoft® BASIC.

The BASIC interpreter is a general-purpose programming language: it is
effective for many applications, including business, science, games, and
education. It is interactive; that is, without writing a program, a user can
perform processes, calculations, and program testing.

Microsoft GW™-BASIC 3.2 is the most extensive implementation of Mi­
crosoft BASIC available for microprocessors. It meets the requirements
for the ANSI subset standard for BASIC, and supports many features
rarely found in other BASIC interpreters. In addition, the Microsoft GW­
BASIC 3.2 Interpreter has sophisticated screen handling, graphics, and
structured programming features that are especially suited for application
development.

1.1 Overview
GW-BASIC 3.2 includes several features not found in other BASICS, and
has been designed to take advantage of the MS™-DOS 3.2 environment
to enhance programming power.

Some of the new features and improvements over GW-BASIC 1.0 are:

• Re-direction of Standard Input (INPUT, LINE INPUT) and Standard
Output (PRINT)

• Character Device support which allows BASIC to initialize and com­
municate with user-installed devices

1-1

Ka
yp
roJ
ou
rna
l

• Improved Disk 1/0 facilities for handling larger files

• SHELL which allows COMMAND or Child processes to run without
having to leave BASIC

• Multilevel directories for better disk organization

• Directory management (MKDIR/CHDIR/RMDIR)

• Improved Graphics: Line Clipping, VIEW, WINDOW

• Screen Editor enhancements including text window support

• Additional Event Trapping: PLAY, TIMER

• User definable Keyboard trapping

• More precise error reporting with the new system functions: ERDEV
and ERDEV$

• Double Precision Transcendentals (optional with the /D switch)

• More precise control of BASIC's memory allocation for user routines
with the /M: switch

1-2

n
n
r,
r,
r,

n
n
r,

n
r,

n
n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

1.2 Syntax Notation
When commands are discussed in this document, the following notation
will be followed:

[] Square brackets indicate that the enclosed entry is optional.

< > Angle brackets indicate user-entered data. When the angle
brackets enclose lowercase text, the user must type in an en­
try defined by the text; for example, < filename > . When the
angle brackets enclose uppercase text, the user must press
the key named by the text; for example, < RETURN > .

{ } Braces indicate that the user has a choice between two or more
entries. At least one of the entries enclosed in braces must be
chosen unless the entries are also enclosed in square brackets.

Vertical bars separate choices within braces. At least one of
the entries separated by bars must be chosen unless the en­
tries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many times
as needed or desired.

CAPS Capital letters indicate portions of statements or commands
that must be entered exactly as shown.

All other punctuation, such as commas, colons, slash marks, and equal
signs, must be entered exactly as shown.

Examples
Command Line Explanation

SAVE < filespec > [I A I PI I
"' 'j' 1'"--____ These two entries are optional as in-

I dicated by the square brackets. They
: also must be typed in as shown. The
1 braces indicate an either/or choice.
I
'-I ________ The lowercase filespec means you

must supply the filespecification (disk
drive.filename and extension).

-----------~Capital letters indicate that the word
must be entered exactly as shown.

1-3

Ka
yp
roJ
ou
rna
l

1.3 Resources For Learning BASIC
This manual provides complete instructions for using Microsoft BASIC.
However, no training material for BASIC programming has been pro­
vided. If you are new to BASIC or need help in learning programming, we
suggest you read one of the following:

Dwyer, Thomas A. and Critchfield, Margot. BASIC and the Personal Com­
puter. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

Albrecht, Robert L., Finkel, LeRoy, and Brown, Jerry. BASIC. New York:
Wiley lnterscience, 2nd ed., 1978.

Billings, Karen and Moursund, David. Are You Computer Literate? Beav­
erton, Oregon: Dilithium Press, 1979.

Coan, James. Basic BASIC. Rochelle Park, N.J.: Hayden Book Company,
1978.

1-4

r,

n ,,
r,
r,

n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Chapter Two
Using the GWBASIC Interpreter

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u

1U
u
u
u
u
u
u
u
u
u

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

CHAPTER2
USING THE GW·BASIC INTERPRETER

2.1 Invoking BASIC

To begin operating the GW·BASIC Interpreter, load the MS-DOS operat­
ing system and then enter:

BASIC

To begin operating a specific program as soon as BASIC has started,
load the operating system and enter:

BASIC < fi1espec >

where < filespec > is a filename preceded by an optional device desig•
nator, and followed by an optional extension name.

For example, to start the program FILE.BAS which is on disk drive A:,
enter:

BASIC "A:FlLE.BAS"

2.2 Command Line Option Switches

The BASIC operating environment may be altered somewhat by specify­
ing option switches following BASIC on the command line. The format of
BAStC's command line is:

BASIC [< stdin]
[> stdout]
[< filespec >]
[/C: < buffer size >]
[/D]
[/F: < number of files>]
[/I]
[/M:[< highest memory location>] [, < maximum block
size>]]
[/S: < lrecl >]

2-1

Ka
yp
roJ
ou
rna
l

WHERE:

< stdin

BASIC input is redirected from the file specified by stdin. When present,
this syntax must appear before any switches. Note that the less-than
character " < " is literally that character, and not an angle bracket indicat­
ing a required argument.

> stdout

BASIC output is redirected to the file specified by stdout. When present,
this syntax must appear before any switches. If two greater-than signs
appear (" > > "), the output is appended to an existing output file. If an
existing file is to be written to, this is the way to prevent that file from
being overwritten. Note that the greater-than character " > " is literally
that character, and not an angle bracket indicating a required argument.

<filespec >
This is the file specification of a BASIC program. If < filespec > is pres­
ent, BASIC proceeds as if a RUN < filespec > command were given
after initialization is complete. This allows BASIC programs to be initiated
by a batch flle by putting this form of the command line in an AUTO­
EXEC.BAT file. Programs run in this manner will need to exit via the SYS­
TEM statement in order to allow the next command from the
AUTOEXEC.BAT file to be executed.

/F: < number of files >
This switch is ·ignored unless the /I switch is specified on the command
line. Please refer to the /I switch documentation below.

If this switch and the /I switch are present, the maximum number of files
that may be open simultaneously during the execution of a BASIC pro­
gram is set to < number of files> . Each file requires 62 bytes for the File
Control Block (FCB) plus 128 bytes for the data buffer. The data buffer
size may be altered via the JS: option switch. If the /F: option is omitted,
the number of files is set to 3.

The number of open files that MS-DOS supports depends upon the value
of the FILES= parameter in the CON FIG.SYS file. It is recommended that
FILES= 10 for BASIC. Keep in mind tbat the first 3 are taken by Stdin,
Stdout, Stderr, Stdaux, and Stdprn. One additional handle is needed by
BASIC for LOAD, SAVE, CHAIN, NAME, and MERGE. This leaves 6 for
BASIC File 1/0, thus /F:6 is the maximum supported by MS-DOS when
FILES= 10 appears in the CONFIG.SYS file.

2-2

n
n
n
n
n
n
n
n
n
ni
n
r,

n
r,

n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Attempting to OPEN a file after all the file handles have been exhausted
will result in a "Too many files" error.

/S: < lrecl>
This switch is ignored unless the /I switch is specified on the command
line. Please refer to the /I switch documentation below.

If this switch and the /I switch are present, then the maximum record size
allowed for use with random files is set to < lrecl > . NOTE: the record
size option to the OPEN statement cannot exceed this value. If the /S:
option is omitted, the record size defaults to 128 bytes.

/C: < buffer size >
If present, this switch controls RS232 Communications. If RS232 cards
are present, /C:0 disables RS232 support. Any subsequent 1/0 attempts
will result in a "Device Unavailable" error. Specifying /C: < n > allocates
space for communications buffers. The amount of space allocated is de­
pendent on the machine-specific portion of GW-BASIC.

/D
If present, this switch causes the Double Precision Transcendental math
package to remain resident. If omitted, this package is discarded and the
space is freed for program use.

/I
GW-BASIC is able to dynamically allocate space required to support file
operations. For this reason, GW-BASIC does not need to support the /S
and /F switches. However, certain applications have been written in such
a manner that certain BASIC internal data structures must be static. In
order to provide compatibility with these BASIC programs, GW-BASIC
will statically allocate space required for file operations based on the /S
and /F switches when the /I switch is specified.

2-3

Ka
yp
roJ
ou
rna
l

/M:

[< highest memory location >) [, < max block size >) When present, this
switch sets the highest memory location that will be used by BASIC. BASIC
will attempt to allocate 64k of memory for the data and stack segment. If
machine language subroutines are to be used with BASIC programs, use
the /M: switch to set the highest location that BASIC can use. When omit­
ted or 0, BASIC attempts to allocate all it can up to a maximum of 65536
bytes.

1f you intend to load things above the highest location that BASIC can
use, then use the optional parameter < maximum block size> to pre­
serve space for them. This is necessary if you intend to use the SHELL
statement {see Section 7.148). Failure to do so will result in COMMAND
being loaded on top of your routines when a SHELL statement is executed.

< maximum block size > must be in paragraphs (byte multiples of 16).
When omitted, &H1000 (4096) is assumed. This allocates 65536 bytes
(65536 = 4096 x 16) for BASIC's data and stack segment. For example, if
you wanted 65536 bytes for BASIC and 512 bytes for machine language
subroutines, then use /M:,&H101 0 (4096 paragraphs for BASIC + 16
paragraphs for your routines).

This option can also be used to shrink the BASIC block in order to free
more memory for shelling other programs. /M:,2048 allocates 32768 bytes
for data and stack. /M:32000,2048 allocates 32768 bytes maximum, but
BASIC will only use the lower 32000. This leaves 768 bytes for the user.

NOTE: < number of files> , < lrecl > , < buffer size>, < highest
memory location> , and < maximum block size > are numbers
that may be decimal, octal (preceded by &0), or hexadecimal (pre­
ceded by &H).

Example:
A> BASIC PAYROLL

A> BASIC INVENT/1/F:6

A> BASIC /C:0/M:32768

Use 64k of memory and 3 files, load and ex­
ecute PAYROLL.BAS.
Use 64k of memory and 6 files, load and ex­
ecute INVENT.BAS.
Disable RS232 support and use only the first
32k of memory. The memory above that is free
for the user.

2-4

n
n
n
n
r,

n
n
n
n
n
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

A> BASIC /I/F:4/S:512 Use 4 files and allow a maximum record length
of 512 bytes.

A> BASIC TTY/C:512 Use 64k of memory and 3 files. Allocate 512
bytes to RS232 receive buffers and 128 bytes
to transmit buffers, load and execute
TTY.BAS.

2.3 Modes Of Operation
The Microsoft GW-BASIC Interpreter may be used in either of two modes:
direct mode or indirect mode.

In direct mode, statements and commands are executed as they are en­
tered. They are not preceded by line numbers. After each direct statement
followed by a carriage return, the screen will display the "Ok" prompt.
Results of arithmetic and logical operations may be displayed immedi­
ately and stored for later use, but the instructions themselves are lost
after execution. Direct mode is useful for debugging and for using the
GW-BASIC Interpreter as a calculator for quick computations that do not
require a complete program.

Indirect mode is used for entering programs. Program lines are preceded
by line numbers and may later be stored in memory. The program stored
in memory is executed by entering the RUN command.

2.4 Line Format
Microsoft GW-BASIC program lines have the following format (square
brackets indicate optional input):

< nnnnn > < BASIC statement> [:BASIC statement. ..] < carriage
return>

More than one GW-BASIC statement may be placed on a line, but each
must be separated from the last by a colon.

A Microsoft GW-BASIC program line always begins with a line number
and ends with a carriage return. Line numbers indicate the order in which
the program lines are stored in memory. Line numbers are also used as
references in branching and editing. Line numbers must be in the range O
to 65529.

2-5

Ka
yp
roJ
ou
rna
l

A line may contain a maximum of 255 characters.

With the interpreter, you can extend a logical line over more than one
physical line by entering a < linefeed> . <linefeed> lets you continue
typing a logical line on the next physical line without entering a < carriage
return> . Alternatively, you may type up to 255 characters on a logical
line without issuing either a line feed or a carriage return; the text is
wrapped and continues on the next physical line.

A period(.) may be used in EDIT, LIST, AUTO, and DELETE commands
to refer to the current line.

2.5 Active And Visual (Display) Pages
The size of these pages is set by the SCREEN statement (See SCREEN
Statement, Section 7.145)

2-6

n
n
n
n
n
n
r,

n
r,

n ,,
n
n
r,

n

Ka
yp
roJ
ou
rna
l

u
I

u
u

:U
i

u
u
u
u
u
u
u
u
u
u
u
u

Chapter Three
Learning the Language

Ka
yp
roJ
ou
rna
l

r,
r,
r,
n
n
n
n
n
r,
r,
n
n
n
n
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

----------------------------,

CHAPTER3
LEARNING THE LANGUAGE

Like any language, BASIC has an alphabet and common phrases. This
chapter presents the BASIC character set, and the rules for the con­
stants, variables, and expressions that the programming language uses.

3.1 Character Set
The Microsoft GW-BASIC character set consists of alphabetic charac­
ters, numeric characters, and special characters.

The alphabetic characters in GW-BASIC are the uppercase and lower­
case letters of the English alphabet.

The GW-BASIC numeric characters are the digits O through 9. The alpha­
betic characters A,B,C,D,E, and F may be used as part of hexadecimal
numbers.

3-1

Ka
yp
roJ
ou
rna
l

r,
3.1.1 Special Characters
The following special characters and terminal keys are recognized by GW- n BASIC:
Character Action

Blank n = Equals sign or assignment symbol
+ Plus sign

Minus sign n . Asterisk or multiplication symbol
I Slash or division symbol
/',,. Up arrow or exponentiation symbol r, (Left parenthesis
) Right parenthesis
% Percent r, # Number (or pound) sign
$ Dollar sign

Exclamation point n [Left bracket
] Right bracket

Comma n Period or decimal point
Single quotation mark (apostrophe)
Semicolon r, Colon

& Ampersand
? Question mark r, < Less than
> Greater than
\ Backslash or integer division symbol n @ At sign

Underscore
< rubout> Deletes last character typed. n <escape> Escapes edit mode subcommands.
<tab> Moves print position to next tab stop. Tab stops are

set every eight columns. n <linefeed> Moves to next physical line.
<return> Terminates input of a line.

n
r,

n
3-2

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

3.1.2 Control Characters

Microsoft GW-BASIC supports the following control characters:

Control Character Action
Control-A Enters edit mode on the line being typed.
Control-B Moves cursor to previous word.
(and Ctrl-left arrow)
Control-C With the interpreter, interrups program execution and

returns to BASIC command level.
Control-E Clears to end of line.
(and Ctrl-End)
Control-F Moves cursor to the next word.
(and Ctrl-right arrow)
Control-G Sounds the speaker.
Control-H Backspaces. Deletes the last character typed.
(and Backspace)
Control-I
(and Tab)
Control-K
(and Home)
Control-L
(and Ctrl-Home)
Control-N
(and End)
Control-O

Control-a
Control-A
(and Ins)
Control-S
Control.:Y
Control-U
Control-W
Control-X

Control Y

Control-Z
Control-Break

Del
Arrow Keys

Tabs to the next tab stop. Tab stops are set every eight
columns.
Sends cursor to home location.

Clears the screen.

Moves cursor to the end of the line.

Halts program output while execution continues. A
second Control-O resumes output.
Resumes program execution after a Control-S.
Toggles the insert and typeover modes.

Suspends program execution.
Updates the function key display line.
Deletes the line that is currently being typed.
Deletes the word that is at the cursor.
Displays the next program line if the line at the cursor
starts with a number.
Displays the previous program line if the line at the
cursor starts with a number.
Clears from the cursor to the end of the screen.
Interrupts program execution and returns to BASIC
command level.
Deletes one character to right of cursor.
Moves cursor one space in the direction of arrow.

3-3

Ka
yp
roJ
ou
rna
l

3.2 Constants
Constants are the values that cannot be changed during execution. There
are two types of constants: string and numeric.

3.2.1 String and Numeric Constants

A string constant is a sequence of up to 255 alphanumeric and specified
control characters enclosed in double quotation marks.

Examples:

"HELLO"
"$25,000.00"
"Number of Employees"

Numeric constants are positive or negative numbers. Microsoft GW-BASIC
numeric constants cannot contain commas. There are five types of nu­

meric constants:

1. Integer constants Whole numbers between -32768 and 32767.
Integer constants do not contain decimal
points.

2. Fixed-point Positive or negative real numbers,
constants i.e., numbers that contain decimal points.

3. Floating-point constants Positive or negative numbers represented in
exponential form (similar to scientific nota­
tion). A floating-point constant consists of an
optionally signed integer or fixed-point num­
ber (the mantissa) followed by the letter E and
an optionally signed integer (the exponent).
The allowable range for floating-point con­
stants is 10-Ja to 10+38_
Examples:
235.988E- 7 = .0000235988
2359E6 = 2359000000

(Double precision floating-point constants are
denoted by the letter D instead of E.)

3-4

r,

n
n
n ,, ,,
r,
n ,,
n
n
n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
LJ

u
u
u
u
u
u
u
u

4. Hex constants

5. Octal constants

Hexadecimal numbers, denoted by the prefix
&H. Hex constants may be no greater than
decimal 64K.
Examples:

&H76
&H32F

Octal numbers, denoted by the prefix &O or
&. Octal constants may not exceed decimal
64K.
Examples:

&0347
&1234

3.2.2 Single/Double Precision Numeric Constants
Numeric constants may be either single precision or double precision
numbers. Single precision numeric constants are stored with 7 digits of
precision and printed with up to 6 digits of precision. Double precision
numeric constants are stored with 16 digits of precision and printed with
up to 16 digits.

3-5

Ka
yp
roJ
ou
rna
l

A single precision constant is any numeric constant that has one of the
following characteristics:

1. Seven or fewer digits

2. Exponential form using E

3. A trailing exclamation point{!)

Examples: 46.8
-1.09E-06
3489.0
22.5!

A double precision constant is any numeric constant that has one of these
characteristics:

1. Eight or more digits
2. Exponential form using D
3. A trailing number sign(#)

Examples:

3.3 Variables

345692811
-1 .09432D-06
3489.0#
7654321.1234

Variables are names used to represent values used in a GW-BASIC pro­
gram. The value of a variable may be assigned explicitly by the program­
mer, or it may be assigned as the result of calculations in the program.
Before a variable is assigned a value, its value is assumed to be zero (or
null for a string variable).

3.3.1 Variable Names and Declaration Characters

Microsoft GW-BASIC variable names may be any length. Up to 40 char­
acters are significant. Variable names can contain letters, numbers, and
the decimal point. However, the first character must be a letter. Special
type declaration characters (listed below) are also allowed.

3-6

n
n
n
r,
r,

n
n
r,

n
r,

n
n ,,
,.,
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
LJ
u
u
u
u
u
u
u
u
u

A variable name may not be a reserved word, but embedded reserved
words are allowed, with one exception: no variable may start with the
letters USA. For example, the variable USRNAM$ will generate a syntax
error. Reserved words include all Microsoft GW-BASIC commands,
statements, function names, and operator names. If a variable begins
with FN, it is assumed to be a call to a user-defined function.

Variables may represent either a numeric value or a string. String variable
names are written with a dollar sign ($) as the last character. For example:
A$ = "SALES REPORT". The dollar sign is a variable type declaration
character; that is, it "declares" that the variable will represent a string.

Numeric variable names may be declared as integer, single precision, or
double precision values. The type declaration characters for these varia­
ble names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a variable name is single precision. However, if a
number specified in a program has too many significant digits to be rep­
resented by a single precision number, it will be represented as a double
precision number, and the" "which signifies double precision will follow
the number in the program listing.

Integer variables produce the fastest and most compact object code. For
example, the following program executes approximately 30 times faster
when the loop control variable "I" is replaced with "1%", or when I is
declared an integer variable with DEFINT.

100 FOR I = 1 TO 10
120 A(I) = 0
140 NEXT I

Examples of Microsoft GW-BASIC variable names:

Pl#
MINIMUM!
LIMIT%
N$
ABC

Declares a double precision value.
Declares a single precision value.
Declares an integer value.
Declares a string value.
Represents a single precision value.

The default variable type may be selectively changed by using the GW­
BASIC statements DEFINT, DEFSTR, DEFDBL, and DEFSNG. These
statements are described in detail in Section 7.33.

3-7

Ka
yp
roJ
ou
rna
l

3.3.2 Array Variables
An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable that is
subscripted with an integer or an integer expression. An array variable
name has as many subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one-dimension array, T(1,4)
would reference a value in a two-dimension array, and so on. The maxi­
mum number of dimensions for an array is 255. The maximum number of
elements per dimension is 32,767. The maximum amount of space that
may be taken for an array is 64K.

3.3.3 Space Requirements
The following list gives only the number of bytes occupied by the values
represented by the variable names. Additional requirements may vary ac­
cording to implementation.
Variables Type

Arrays

Integer
Single precision
Double precision
String
Type
Integer
Single precision
Double precision
String

3.4 Expressions And Operators

Bytes
2
4
8
3
Bytes
2 per element
4 per element
8 per element
3 per element

An expression may be a string or numeric constant, a variable, or a com­
bination of constants and variables with operators. An expression always
produces a single value.

Operators perform mathematical or logical operations on values. GW­
BASIC operators may be divided into three categories:

1 . Arithmetic

2. Relational

3. Logical

Each category is described in the following sections.

3-8

,,
n
r,
r,

n
n
n
n
n

n
n
r,

n
n ,,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u

3.4.1 Precedence of Operations
The GW-BASIC operators have an order of precedence; that is, when
several operations take place within the same program statement, certain
kinds of operations will be performed before others. If the operations are
of the same level of precedence, the first to be executed will be the left­
most, and the last, the rightmost. The following is the order in which op­
erations are executed.

1 . Exponentiation
2. Negation
3. Multiplication & Division
4. Integer Division
5. Modulus Arithmetic
6. Addition & Subtraction
7. Relational Operators
8.NOT
9.AND

10. OR &XOR
11. EQV
12. IMP

3.4.2 Arithmetic Operators
LJ The arithmetic operators, in order of evaluation, are:

u
u
u
u
u
u
LJ

Operator Operation

t:::,,

•. I

\

MOD

+' -

Exponentiation

Negation

Multiplication,
Floating-point Division

Integer division

Modulus arithmetic

Addition, Subtraction

Sample Expression

X6.Y

-X

x·v
X/Y

12\62

10 MOD 4=2 (10/4=2 with
remainder 2)

X+Y

You can change the order of evaluation by using parentheses. Operations
within parentheses are performed first. Inside parentheses, the usual or­
der of operations is maintained.

3-9

Ka
yp
roJ
ou
rna
l

The following list gives some sample algebraic expressions and their Mi­
crosoft GW-BASIC counterparts.

Algebraic Expression

X+2Y

xv
z

X(-Y)

BASIC Expression

x+r2

X-Y/2

X"Y/Z

(X +Y)/2

X*(-Y)
Two consecutive opera­
tors must be separated by
parentheses.

3.4.2.1 Integer Division and Modulus Arithmetic
In addition to the six standard operators (addition, subtraction, multipli­
cation, division, negation, and exponentiation), GW-BASIC supports in­
teger division and modulus arithmetic.

Integer division is denoted by the backslash(\). The operands are rounded
to integers (must be in the range -32768 to 32767) before the division is
performed, and the quotient is truncated to an integer.

Examples:

100 LET DIV1 = 10\4
200 LET DIV2 = 25.68\6.99
300 PRINT DIV1, DIV2

will yield

2 3

3-10

n
n
n
n
r,
n
n
r,
n
n
n .

n
n
M r l

n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Modulus arithmetic is denoted by the operator MOD. Modulus arith­
metic yields the integer value that is the remainder of an integer division.

Examples:

10 PRINT 10.4 MOD 4, 25.68 MOD 6.99

will yield

2 5

because (10/4 = 2 with a remainder 2) and (26/7 = 3 with a remainder 5).

3.4.2.2 Overflow and Division by Zero

If division by zero is encountered during the evaluation of an expression,
a "Division by zero" error message is displayed. Machine infinity (the
largest number that can be represented in floating-point format) with the
sign of the numerator is supplied as the result of the division, and execu­
tion continues. If the evaluation of an exponentiation operator results in
zero being raised to a negative power, the "Division by zero" error mes­
sage is displayed, positive machine infinity is supplied as the result of the
exponentiation, and execution continues.

If overflow occurs, the interpreter displays an "Overflow" error message,
supplies machine infinity with the algebraically correct sign as the result,
and continues execution.

3.4.3 Relational Operators
Relational operators are used to compare two values. The result of the
comparison is either "true" (-1) or "false" (0). This result may then be
used to make a decision regarding program flow. (See IF Statement, Sec­
tion 7.59.)

3-11

Ka
yp
roJ
ou
rna
l

The relational operators are:

Operator Relation Tested Example

= Equality X=Y

<> Inequality X< >Y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X< =Y

>= Greater than or equal to X> =Y

(The equal sign is also used to assign a value to a variable. See the LET
statement, Section 7.78.)

When arithmetic and relational operators are combined in one expres­
sion, the arithmetic is always performed first. For example, the expres­
sion X + Y < (T-1)/Z

is true if the value of X plus Y is less than the value of T-1 divided by Z.

More examples:

IF SIN(X) < 0 GOTO 1000
IF I MOD J < > 0 THEN K = K + 1

3.4.4 Logical Operators

The logical operator performs bit-by-bit calculation and returns a result
which is either "true" (not zero) or "false" (zero). In an expression, logical
operations are performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in Table 3-1. The
operators are listed in order of precedence.

3-12

n
n
n
n
n
n
n
n
n
n
n
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
Table 3-1. GW-BASIC Relational Operators Truth Table

u Operation Value Value Result
NOT

X NOTX

u T F
F T

LJ AND
X y XANDY
T T T

u T F F
F T F
F F F

u OR
X y XORY

u T T T
T F T
F T T

1u F F F

XOR

LJ X y XXORY
T T F
T F T

u F T T
F F F

u EOV
X y XEQVY
T T T

u T F F
F T F
F F T

u IMP
X y XIMPY

LJ T T T
T F F
F T T

u F F T

LJ
3-13

Ka
yp
roJ
ou
rna
l

Just as the relational operators can be used to make decisions regard­
ing program flow, logical operators can connect two or more relations
and return a true or false value to be used in a decision (see IF State­
ments, Section 7.59).

Example:

IF D < 200 AND F < 4 THEN 80
IF I > 10 OR K < 0 THEN 50

IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit, signed,
two's complement integers in the range -32768 to 32767. (If the op­
erands are not in this range, an error results.) If both operands are
supplied as O or -1, logical operators return O or -1 . The given opera­
tion is performed on these integers bit-by-bit; i.e., each bit of the result
is determined by the corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a partic­
ular bit pattern. For instance, the AND operator may be used to "mask"
all but one of the bits of a status byte at a machine 1/0 port. The OR
operator may be used to "merge" two bytes to create a particular
binary value. The following examples, all using decimal numbers,
demonstrate how the logical operators work.

63AND16=16

15 AND 14 = 14

-1 AND 8 = 8

4 OR 2 = 6

10 OR 10 = 10

-1 OR -2 = -1

63 = binary 111111 and 16 = binary
10000, so63 AND 16 = 16.

15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110).

-1 = binary 1111111111111111 and 8 =
binary 1000, so -1 AND 8 = 8.

4 = binary 100 and 2 = binary 10, so 4
OR 2 = 6 (binary 110).

10 = binary 1010, so 1010 OR 1010 =
1010 (decimal 10).

-1 = binary 1111111111111111 and -2 =
binary 1111111111111110, so -1 OR -2 =
-1. The bit complement of sixteen zeros is
sixteen ones, which is the two's comple­
ment representation of -1 .

3-14

n
n
n
n
n
r,

n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
LJ

u
u
LJ

u
u
u
u
u
u
u
LJ

NOT X = -(X + 1) The two's complement of any integer is the
bit complement plus one.

3.4.5 String Operators
Strings may be concatenated by using the plus sign (+). For example:

10 A$= "FILE" : B$; = "NAME"
20 PRINT A$+ B$
30 PRINT "NEW"+ A$+ B$

will yield

FILENAME
NEW FILENAME

Strings may be compared using the same relational operators that are

used with numbers:

= <> < > <= >=

String comparisons are made by taking one character at a time from each

string and comparing the ASCII codes. If all the ASCII codes are the same,

the strings are equal. If the ASCII codes differ, the lower code number
precedes the higher. If during string comparison the end of one string is

reached, the shorter string is said to be smaller. Leading and trailing blanks

are significant.
For example:

"AA" is less than "AB"
"FILENAME" is equal to "FILENAME"
"X&" is greater than "X#"

{because # comes before &)

"CL " is greater than "CL"
(because of the trailing space)

"kg" is greater than "KG"
"SMYTH" is less than "SMYTHE"
B$ is less than "9/12/78"

{where B$ = "8/12/78")
Thus, string comparisons can be used to test string values or to alpha­
betize strings. All string constants used in comparison expressions must
be enclosed in quotation marks.

3-15

Ka
yp
roJ
ou
rna
l

3.5 Type Conversion

When necessary, Microsoft GW-BASIC will convert a numeric constant
from one type to another. The following rules and examples apply to
conversions.
1. If a numeric variable of one type is set equal to a numeric constant of a

different type, the number will be stored as the type declared in the
variable name.

Example:
10 PERCENT%= 23.42
20 PRINT PERCENT%

will yield
23

2. During expression evaluation, all of the operands in an arithmetic or
relational operation are converted to the same degree of precision as
that of the most precise operand. Also, the result of an arithmetic op­
eration is returned to this degree of precision.

Examples:
10 DEDUCTION#= 6#/7
20 PRINT DEDUCTION#

will yield
.8571428571428571

The arithmetic was performed in double precision and the result was
returned in DEDUCTION# as a double precision value.

10 DEDUCTION= 6#/7
20 PRINT DEDUCTION

will yield
.857143

The arithmetic was performed in double precision, and the result is
rounded to single precision and returned to DEDUCTION (single preci­
sion variable), and printed.

3. Logical operators (see Section 3.4.4) convert their operands to inte­
gers and return an integer result. Operands must be in the range
-32768 to 32767 or an "Overflow" error occurs.

3-16

n
n
n
n
r,

n
r,

n
n
n
n
n
n
r,

n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

4. When a floating-point value is converted to an integer, the fractional

portion is rounded.

Example:
10 CASH%= 55.88
20 PRINT CASH%

will yield
56

5. If a double precision variable is assigned a single precision value, only

the first seven digits (rounded) of the converted number will be valid.

This is because only seven digits of accuracy were supplied with the

single precision value. The absolute value of the difference between

the printed double precision number and the original single precision

value will be less than 6.3E-8 times the original single precision value.

Example:
10 A= 2.04
20 8# =A
30 PRINT A; B#

will yield
2.04 2.039999961853027

3.6 Functions
GW-BASIC incorporates two kinds of functions: intrinsic and user-defined.

3.6.1 Intrinsic Functions
When a function is used in an expression, it calls a predetermined oper­

ation that is to be performed on an operand. Microsoft GW-BASIC has

functional operators that reside in the system, such as SQR (square root)

or SIN (sine), and these resident functions are called "intrinsic functions".

3.6.2 User-Defined Functions
Microsoft GW-BASIC also allows "user-defined" functions that are writ­

ten by the programmer. See DEF FN Statement, Section 7.32.

3-17

Ka
yp
roJ
ou
rna
l

n
n
n
n
n
n
n
n
n
n
n
r,
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u Chapter Four

Writing Programs
u
u
u
u
u
u
u
u
u
u
u
u

Ka
yp
roJ
ou
rna
l

r,

n
n
n
r,

n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

CHAPTER4
WRITING PROGRAMS USING THE GW-BASIC EDITOR

GW-BASIC provides two ways to enter and edit text: you can issue an
EDIT command to place you in edit mode or use the full screen editor.

4.1 EDIT Command

The EDIT command places the cursor on a specified line so that changes
can be made to the line. See EDIT command, Section 7.39.

4.2 Full Screen Editor

The full screen editor gives you immediate visual feedback, so that pro­
gram text is entered in a "what you see is what you get" manner. If the
user has a program listing on the screen, the cursor can be moved to a
program line, the line edited, and the change entered by pressing the
return key. This time-saving capability is made possible by special keys
for cursor movement, character insertion and deletion, and line or screen
erasure. Specific functions and key assignments are discussed in the fol­
lowing sections.

With the full screen editor, you can move quickly around the screen, mak­
ing corrections where necessary. The changes are entered by placing the
cursor on the changed line and pressing <RETURN>.

When input processes are directed from the screen, the user may use the
full-screen editor features in responding to INPUT and LINE INPUT
statements.

4-1

Ka
yp
roJ
ou
rna
l

4.2.1 Writing Programs
You are using the full screen editor any time between the interpreter's
"OK" prompt and the execution of a RUN command. Any line of text that
is entered is processed by the editor. Any line of text that begins with a
number is considered a program statement.

It is possible to extend a logical line over more than one physical line by
continuing typing beyond the last column of the screen. The editor wraps
the logical line so that it continues on the next physical line. A carriage
return signals the end of the logical line; when a carriage return is entered,
the entire logical line is passed to GW-BASIC. Up to 255 characters may
be present in one logical line.

Program statements are processed by the editor in one of the following
ways:

1. A new line is added to the program. This occurs if the line number is
valid (0 through 65529) and at least one non-blank character follows
the line number.

2. An existing line is modified. This occurs if the line number matches that
of an existing line in the program. The existing line is replaced with the
text of the new line.

3. An existing line is deleted. This occurs if the line contains only the line
number, and the number matches that of an existing line.

4. The statements are passed to the command scanner for interpretation
(i.e., the statement is executed).

5. An error is produced.

If an attempt is made to delete a non-existent line, an "Undefined line"
error message is displayed.

If program memory is exhausted, and a line is added to the program,
an "Out of memory" error message is displayed, and the line is not
added.

More than one statement may be placed on a line. If this is done, the
statements must be separated by a colon(:). The colon need not be sur­
rounded by spaces.

4-2

n
r,

n ,,
r,
r,
r,
r,
r,
r,

n
n
r,

n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
LJ
LJ
u
u
u
u
u
u
u
u
u

4.2.2 Editing Programs

Use the LIST command to display an entire program or range of lines on
the screen so that they can be edited with the full screen editor. Text can
then be modified by moving the cursor to the place where the change is
needed and then performing one of the following actions:

1 . Typing over existing characters

2. Deleting characters to the right of the cursor

3. Deleting characters to the left of the cursor

4. Inserting characters

5. Appending characters to the end of the logical line

These actions are performed by special keys assigned to the various full
screen editor functions (see the next section).

Changes to a line are recorded when a carriage return is entered while
the cursor is somewhere on that line. The carriage return enters all
changes for that logical line, and, up to the 255 character line limitation,
no matter how many physical lines are included and no matter where the
cursor is located on the line.

4.2.3 Control Characters

Table 4-1 lists the hexadecimal codes for the GW-BASIC control charac­
ters and summarizes their functions. The Control-key sequence normally
assigned to each function is also listed.

Individual control functions are described following Table 4-1.

4-3

Ka
yp
roJ
ou
rna
l

r,
Table 4-1. GW-BASIC Control Functions.

Hex. Control n Code Key Function
01 Ctrl-A Enter edit mode
02 Ctrl-B Move cursor to start of previous word n 03 Ctrl-C Break
04 Ctrl-D Ignored
05 Ctrl-E Truncate line (clear text to end of logical n line)
06 Ctrl-F Move cursor to start of next word
07 Ctrl-G Beep n 08 Ctrl-H Backspace, deleting characters passed

over
09 Ctrl-I Tab (8 spaces) r,
OA Ctrl-J Linefeed
OB Ctrl-K Move cursor to home position
oc Ctrl-L Clear window r,
OD Ctrl-M Carriage return (enter current logical line)
OE Ctrl-N Append to end of line
OF Ctrl-O Suspend or restart program output ,,
10 Ctrl-P Ignored
11 Ctrl-Q Restart suspended program
12 Ctrl-R Toggle insert/typeover mode n 13 Ctrl-S Suspend program
14 Crtl-T Display function key contents
15 Ctrl-U Clear logical line r,
16 Ctrl-V Ignored
17 Ctrl-W Delete word
18 Ctrl-X Display previous program line r,
19 Ctrl-Y Display following program line
1A Ctrl-Z Clear to end of window
1B Ctrl-[Ignored or start of control sequence (GW- n BASIC option)
1C Ctr!-\ Cursor right
1D Ctrl-] Cursor left n 1E Ctrl-.6. Cursor up
1F Ctrl-_ Cursor down (underscore)
7F Ctrl-DEL Delete character at cursor n Ctrl-NUMLOCK Suspend program listing

n ,,
4-4

Ka
yp
roJ
ou
rna
l

u
u
LJ

u
u
u
u
u
LJ
u
u

u
u

4.2.4 Logical line Definition with INPUT
Normally, a logical line consists of all the characters on each of the phys­
ical lines that make up the logical line. During execution of an INPUT or
LINE INPUT statement, however, this definition is modified slightly to al­
low for forms input. When either of these statements is executed, the
logical line is restricted to characters actually typed or passed over by the
cursor. The insert and delete modes move only characters that are within
that logical line, and delete mode will decrement the size of the line.
Insert mode increments the logical line except when the characters moved
will write over non-blank characters that are on the same physical line but
not part of the logical line. In this case, the non-blank characters not part
of the logical line are preserved and the characters at the end of the logi­
cal line are thrown out. This preserves labels that existed prior to the
INPUT statement.

4.2.5 Editing Lines with Syntax Errors
When a syntax error is encountered during program execution, GW-BASIC
prints the line containing the error and enters direct mode. You can cor­
rect the error, enter the change. and reexecute the program. When a line
is modified, all files are closed, and all variables are lost. Thus, if the user
wishes to examine the contents of variables just before the syntax error
was encountered, the user should print the values before modifying the
program line. Alternative ways to get to direct mode without erasing vari­
able values or closing files are the STOP and END commands.

4-5

Ka
yp
roJ
ou
rna
l

n
n
n
n
r,
r,

n. ,,
r,
r,

n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

LJ

u
u
u Chapter Five

Files and Devices
u
u
u
LJ

u
u
u
u
u
LJ

u
u

Ka
yp
roJ
ou
rna
l

r,

n
n
n
n
n
n
r,
r,

n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

CHAPTERS
WORKING WITH FILES AND DEVICES

This chapter discusses the way files and devices are used and addressed
in GW-BASIC, and the way information is input and output through the
system.

5.1 Default Device

When a filespec is given (in commands or statements such as FILES,
OPEN, KILL), the default (current) disk drive is the one that was the de­
fault in MS-DOS before GW-BASIC was invoked.

5.2 Device-Independent Input/Output

Microsoft GW-BASIC provides device-independent input/output that per­
mits flexible approaches to data processing. Using device independent I/
0 means that the syntax for access is the same for any device.

The following statements, commands, and functions support device-in­
dependent 1/0 (see individual descriptions in Chapter 7):

BLOAD • LOF

BSAVE MERGE

CHAIN OPEN

CLOSE POS

EOF PRINT

GET PRINT USING

INPUT PUT

INPUT$ RUN

LINE INPUT SAVE

LIST WIDTH

LOAD WRITE

LOG

5-1

Ka
yp
roJ
ou
rna
l

5.3 Filenames And Paths

GW-BASIC uses MS-DOS enhanced directory structure, allowing files to
be accessed through their pathname.

5.3.1 Filename Specifications

File specifications follow MS-DOS naming conventions. All fi1especs may
begin with a device specification such as A: or B: or COM1: or LPT1:. If
no device is specified, the current drive is assumed. The default extension
.BAS is appended to filenames used in LOAD, SAVE, MERGE and RUN
<filename> commands, if no period (.) appears in the filespec and if

the filename is less than nine characters long.

Examples:

RUN "NEWFILE.BAS"
RUN "A:NEWFILE.BAS"
RUN "KYBD:NEWFILE.BAS"
SAVE "NEWFILE" (file is saved with .BAS extension on default device)

5.3.2 Pathnames

A pathname is a sequence of directory names followed by a simple file­
name, each separated from the previous one by a backslash(\), and no
longer than 128 characters. tf a device is specified, it must be specified at
the beginning of the pathname. A simple filename is a sequence of char­
acters that can optionally be preceded by a drive designation, be devoid
of backslashes, and be optionally followed by an extension.

[< d >:][<directory>]\[<directory ... >]\[<filename>]

n
n
n
n ,,
n
r,
r,
r,
r,
r,

n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

GAMES BIN

I
JOE

ROOT

USER

I
SUE

ACCOUNTS

I
MARY

PROGRAMS

L-,
Text.txt FORMS Text.txt

I
1A

A Sample Hierarchical Directory Structure

In the structure shown above, directories are in all upper-case letters. The
two entries named Text.txt, and the entry named 1 A are files.

If a pathname begins with a backslash, MS-DOS searches for the file
beginning at the root (or top) of the tree. Otherwise, MS-DOS begins at
the user's current directory, known as the working directory, and searches
downward from there.

The pathname of Sue's TEXT.TXT file is \USER\SUE\ TEXT.TXT.

When you are in your working directory, a filename and its corresponding
pathname may be used interchangeably. Some sample names are:

\ Indicates the root directory.

\PROGRAMS Sample directory under the root directory
containing program files.

\USER\MARY\FORMS\ 1A A typical full pathname. This one happens
to be a file named 1 A in the directory named
FORMS belonging to the subdirectory of
USER named MARY.

5-3

Ka
yp
roJ
ou
rna
l

USER\SUE

TEXT.TXT

A relative pathname; it names the file or di­
rectory SUE in subdirectory USER of the
working directory. If the working directory
is the root(\), it names \USER\SUE.

Name of a file or directory in the working
directory.

MS-DOS provides special shorthand notations for the working directory

and the parent directory (one level up) of the working directory:

MS-DOS uses this shorthand notation to indicate the name of the
working directory in all hierarchical directory listings. MS-DOS au­
tomatically creates this entry when a directory is made.

.. The shorthand name of the working directory's parent directory. If

you type:
DIR ..

then MS-DOS will list the files in the parent directory of your work­
ing directory. If you type:

DIR .. \ ..
then MS-DOS will list the files in the parent's PARENT directory.

5.3.3 Working With Pathnames in BASIC

Not only can BASIC provide the ability to access files from other directo­

ries using pathname approaches, but it can also be used to create, change,

and remove paths, using the BASIC commands MKDIR, CHOIR, and

RMDIR.

The BASIC statement MKDIR "ACCOUNTS" would create a new direc­

tory, ACCOUNTS, in the working directory of the current drive.

The BASIC statement CHOIR "B:EXPENSES" would change the current

directory on B: to EXPENSES.

The BASIC statement RMDIR "CLIENTS" would delete an existing direc­

tory, CLIENTS, as long as that directory was empty of all files with the
exception of"." and" .. ".

For further information on handling paths in BASIC, see CHOIR, ENVI­
RON, ENVIRON$, MKDIR, and RMDIR Statements in Chapter 7.

5-4

n
n
n
n
n
n
n
n
n
r,
n
n
r,

n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
LI
u
u
u
u
u
u
u
u

5.4 Re-direction Of Standard Input And Standard Output

BASIC can be re-directed to read from standard input and write to stand­
ard output by providing the input and output filenames on the command
line:

BASIC [program name] [<input file] [>output file]

Note that the characters " < " before the input file, and " > " before the
output file are literally those characters, and not angle brackets indicating
a required argument. If two greater-than characters(" > > ") appear be­
fore the output file name, the output is appended to that file.

Rules:

1. When re-directed, all INPUT, LINE INPUT, INPUT$, and INKEY$ state­
ments will read from the input file.

2. If the program does not specify a file number in a PRINT statement,
that output is redirected to the declared output file instead of the stand­
ard output device, the screen.

3. Error messages go to standard output.

4. File input from "KYBD:" still reads from the keyboard.

5. File output to "SCRN:" still outputs to the screen.

6. BASIC will continue to trap keys from the keyboard when the ON KEY(n)
statement is used.

7. The printer echo key will not cause LPT1 : echoing if Standard Output
has been re-directed.

8. Typing Control-Break will cause BASIC to close any open files, issue
the message "Break in line < line_number >" to standard output,
and exit BASIC.

9. When input is redirected, BASIC will continue to read from this source
until an end-of-file character is detected. This condition may be tested
with the EOF function. If the file is not terminated by a Control-Z, or a
BASIC input statement tries to read past end-of-file, then any open files
are closed, the message "Read past end" is written to standard output.
and BASIC terminates.

5-5

Ka
yp
roJ
ou
rna
l

Examples:

BASIC MYPROG > DATA.OUT

Data read by INPUT and LINE INPUT will continue to come from the key­
board. Data output by PRINT will go into the file DATA.OUT.

BASIC MYPROG < DATA.IN

Data read by INPUT and LINE INPUT will come from DATA.IN. Data output
by PRINT will continue to go to the screen.

BASIC MYPROG < MYINPUT.DAT > MYOUTPUT.DAT

Data read by INPUT and LINE INPUT will now come from the file MYIN­
PUT.DAT and data output by PRINT will go into MYOUTPUT.DAT.

BASIC MYPROG < \SALES\JOHN\ TRANS. > > \SALES\SALES.DAT

Data read by INPUT and LINE INPUT will now come from the file
\SALES\JOHN\ TRANS. Data output by PRINT will be appended to the
file \SALES\SALES.DAT.

5-6

n
n
n
n
n
n
r,

n
n
n
n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
LJ
u
u
u
u

5.5 Handling Files
File 1/0 procedures for the beginning BASIC user are examined in this
section. 1f you are new to BASIC, or if you are encountering file-related
errors, read through these procedures and program examples to make
sure you are using all the file statements correctly.

5.5.1 Program File Commands
The following is a review of the commands and statements used in pro­
gram file manipulation. All file specifications may include the device and
pathname.

SAVE < filespec > {[,A I P]}
Writes the program that currently resides in memory to the specified file.
Option A writes the program as a series of ASCII characters. With option
P, BASIC will encode the file in a read-protected format.

LOAD < filespec > [,R]
Loads the program from file into memory. The optional R runs the pro­
gram immediately. LOAD always deletes the current contents of memory
and closes all files before loading. If R is included, however, open data
files are kept open. Thus, programs can be chained or loaded in sections
and access the same data files. (LOAD FILESPEC > ,R and RUN FILES­
PEC),R are equivalent.)

RUN < filespec > [,R]
Loads the program from file into memory and runs it. RUN deletes the
current contents of memory and closes all files before loading the pro­
gram. If the R option is included, however, all open data files are kept
open. (RUN < filespec >,Rand LOAD < filespec >,Rare equivalent.)

MERGE < filespec >
Loads the program from file into memory but does not delete the current
contents of memory. The program line numbers in the file are merged
with the line numbers in memory. If two lines have the same number, only
the line from the file program is saved. After a MERGE command is exe­
cuted, the "merged" program resides in memory, and BASIC returns to
command level. In order to successfully MERGE a program, the < files­
pee > must have been saved in ASCII format.

5-7

Ka
yp
roJ
ou
rna
l

CHAIN [MERGE] < filespec > [,[<line number exp>] [,ALL]
[,DELETE <range>]]
where < line number expression > is the line number in the new pro­
gram at which the program is to start execution. Passes control to the
named program, and passes the use of the variables and their current
values to the new program. The user may choose to start the new pro­
gram on a specified line, delete some lines, or transfer the values of only
some of the variables.

KILL < filespec >
Deletes the file from the disk. < filespec > can be a program file or a
sequential or random access data file.

NAME < old filespec > AS < new filespec >
Changes the name of a file. NAME AS < filespec > can be used with
program files, random access files, or sequential files. Pathnames are not
permitted.

5.5.2 Protecting Program Files
If you wish to have a program saved in an encoded binary format, use the
"Protect" option with the SAVE command. For example: SAVE
"MYPROG",P

A program saved this way cannot be listed or edited. You may also want
to save an unprotected copy of the program for listing and editing
purposes.

5-8

n
n
r,

n ,,
r,

n
n
n
n
n
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

5.6 Data Files: Sequential And Random Access 1/0

There are two types of disk data files that can be created and accessed
by a BASIC program: sequential files and random access files.

5.6.1 Sequential Files
Sequential files are easier to create than random access files, but are
limited in flexibility and speed when it comes to locating data. The data
written to a sequential file is a series of ASCII characters stored, one item
after another (sequentially), in the order sent. The data is read back se­
quentially, one item after another.

The following statements and functions are used with sequential data
files in sequential order.

OPEN
WIDTH
PRINT#
PRINT USING#
WRITE#
INPUT#

INPUT$
LINE INPUT#
EOF
LOC
LOF
CLOSE

5.6.1.1 Creating a Sequential File
Program 1 is a short program that creates a sequential file, "DATA," from
information you input at the keyboard.

Program 1-Create a Sequential Data File

10OPEN "O",#1,"DATA"
20 INPUT "NAME"; N$
25 IF N$ = "DONE" THEN END
30 INPUT "DEPARTMENT"; DEPT$
40 INPUT "DATE HIRED"; HIREDATE$
50 PRINT#1,N$; ",";DEPT$;","; HIREDATE$
60 PRINT
70GOTO20

RUN

5-9

Ka
yp
roJ
ou
rna
l

NAME?SAMUELGOLDWYN
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? MARVIN HARRIS
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? DEXTER HORTON
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27 /81

NAME? STEVEN SISYPHUS
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/81

NAME? etc.

As illustrated in Program 1, the following program steps are required to
create a sequential file and access the data in it:

1. OPEN the file in "O" mode.

2. Write data to the file using the PRINT# statement. (WRITE# can be
used instead.)

3. To access the data in the file, you must CLOSE the file and reopen it
in "I" mode.

4. Use the INPUT# statement to read data from the sequential file into
the program.

5.6.1.2 Reading Data From a Sequential File

n
n
n
n
n
n
n
n
n
n
n

Now look at Program 2. It accesses the file "DATA" that was created in n
Program 1 and displays the name of everyone hired in 1981.

Program 2-Accessing a Sequential File r,
10 OPEN"l",#1,"DATA"
20 INPUT#1,N$,DEPT$,HIREDATE$
30 IF RIGHT$(HIREDATE$,2) = "81" THEN PRINT N$ n
40 GOTO20

RUN r,
r,

5-10

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
LJ

u
u
u
u
u
u
u
u

DEXTER HORTON
STEVEN SISYPHUS
Input past end in 20

Program 2 reads, sequentially, every item in the file, and prints the names
of employees hired in 1981. When all the data has been read, line 20
causes an INPUT PAST END error. To avoid this error, use the
WHILE ... WEND control structure, which uses the EOF function to test
for the end-of-file. The revised program looks like:

10 OPEN''l",#1,"DATA"
15 WHILE NOT EOF(1)
20 INPUT#1,N$,DEPT$,HIREDATE$
30 IF RIGHT$(HIREDATE$,2) = "81" THEN PRINT N$
40WEND

A program that creates a sequential file can also write formatted data to
the disk with the PRINT# USING statement. For example, the statement

PRINT#1,USING"####.##,"; A,B,C,D

could be used to write numeric data to the file without explicit delimiters.
The commas at the end of the format string separate the items in the disk
file.

If the user wants commas to appear in the file as delimiters between
variables, the WRITE statement can be used. For example, the statement

WRITE 1, A, B$

could be used to write these two variables to the file with commas delim­
iting them.

The LOC function, when used with a sequential file, returns the number
of sectors that have been written to or read from the file since it was
opened. A sector is a 128-byte block of data.

5.6.1.3 Adding Data to a Sequential File
If you have a sequential file residing on disk and want to add more data
to the end of it, you cannot simply open the tile in "O" mode and start
writing data. As soon as you open a sequential file in the output ("0")
mode, you destroy its current contents.

5-11

Ka
yp
roJ
ou
rna
l

Instead, use the append ("A") mode. If the file doesn't already exist, the
open statement will work exactly as it would if output ("O") mode had
been specified.

The following procedure can be used to add data to an existing file called
"FOLKS".

Program 3-Adding Data to a Sequential File

110 OPEN "A",#1,"FOLKS"
120 REM ADD NEW ENTRIES TO FILE
130 INPUT "NAME"; N$
140 IF N$ =""THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
150 LINE INPUT "ADDRESS?"; ADDA$
160 LINE INPUT "BIRTHDAY?"; BIRTHDATE$
170 PRINT#1,N$
180 PRINT#1,ADDR$
190 PRINT#1,BIRTHDATE$
200 GOTO 120
210 CLOSE 1

5.6.2 Random Access Files

Creating and accessing random access files requires more program steps
than creating and accessing sequential files. However, there are advan­
tages to using random access files. One advantage is that random access
files require less room on the disk, since BASIC stores them in a packed
binary format. (A sequential file is stored as a series of ASCII characters.)

The biggest advantage of using random access files is that data can be
accessed randomly, i.e., anywhere on the disk. However, it is not neces­
sary to read through all the information from the beginning of the file, as
with sequential files. This is possible because the information is stored
and accessed in distinct units called records, each of which is numbered.

5-12

n
n
n
r;

n
n
n
r,

n
n
n
r,
r,
r,

n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
LJ
u
u
u
LJ
u
u
u
u

The statements and functions that are used with random access files are:

Statements Functions

OPEN CVD

FIELD CVI

GET CVS

LOC MKS$

LOF MKD$

LSET MKI$

RSET PUT

CLOSE

5.6.2.1 Creating a Random Access File

Program 4-Create a Random File

10OPEN "R",#1,"FILE",32
20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE"; CODE%
40 INPUT "NAME"; PERSON$
50 INPUT "AMOUNT'; AMOUNT
60 INPUT "PHONE"; TELELPHONE$
65 PRINT
70 LSET N$ = PERSON$
80 LSET A$ = MKS$(AMOUNT)
90 LSET P$ = TELEPHONE$
100 PUT #1,CODEo/o
110 GOTO 30

As illustrated by Program 4, the following program steps are required to
create a random access file.

1 . OPEN the file for random access ("R" mode). The following example
specifies a record length of 32 bytes. If the record length is not speci­
fied, the default is 128 bytes unless it was set to another value with the
/I/S: switches when invoking BASIC (See Chapter 2 for details).

Example:
OPEN "R", 1,"FILE",32

Ka
yp
roJ
ou
rna
l

n
2. Use the FIELD statement to allocate space in the random buffer for

the variables that will be written to the random access file. n
Example:

FIELD #1, 20 AS N$, 4 AS ADDR$, 8 ASP$

3. Use LSET to move the data into the random access buffer. Numeric
values must be made into strings when placed in the buffer. To do this,
use the "make" functions: MKI$ to make an integer value into a string,
MKS$ to make a single precision value into a string, and MKD$ to make
a double precision value into a string.

Example:
LSET N$=X$
LSET ADDR$ = MKS$(AMT)
LSET P$ = TEL$

4. Write the data from the buffer to the disk using the PUT statement.

Example:
PUT #1,CODE%

Program 4 takes information that is input at the terminal and writes it to a
random access file. Each time the PUT statement is executed, a record is
written to the file. The two-digit code that is input in line 30 becomes the
record number.

NOTE
Do not use a fielded string variable in an IN­
PUT or LET statement. Doing so causes that
variable to be redeclared; BASIC will no longer
associate that variable with the file buffer, but
with the new program variable.

5.6.2.2 Accessing a Random Access File
Program 5 accesses the random access file "FILE" that was created in
Program 4. By entering a three-digit code at the keyboard terminal, the
information associated with that code is read from the file and displayed.

5-14

n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
LJ

u
u
u
u
u
u
u
u
u
u
u
u
u
u

Program 5 - Access a Random File

10 OPEN "R",#1,"FlLE",32
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE"; CODE%
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING"$$###.##"; CVS(A$)
70 PRINT P$:PRINT
80GOTO30

The following program steps are required to access a random access file:

1. OPEN the file in "R" mode.

Example:
OPEN "R", 1,"FILE",32

2. Use the FIELD statement to allocate space in the random access buffer
for the variables that will be read from the file.

Example:
FIELD #1 20 AS N$, 4 AS A$, 8 ASP$

NOTE
In a program that performs both input and out­
put on the same random access file, you can
often use just one OPEN statement and one
FIELD statement.

3. Use the GET statement to move the desired record into the random
access buffer.

Example:
GET #1,CODE%

4. The data in the buffer can now be accessed by the program. Numeric
values that were converted to strings by the MKS$, MKD$ or MKI$
statements must be converted back to numbers using the "convert"
functions: CVI for integers, CVS for single precision values, and CVD
for double precision values. The MKI$ and CVI processes mirror each
other, the former converting a number into a format for storage in ran­
dom files, the latter converting the random file storage into a format
usable by the program.

5-15

Ka
yp
roJ
ou
rna
l

Example:
PRINT N$
PRINT CVS(A$)

The LOC function when used with random access files, returns the "cur­
rent record number." The current record number is the last record num­
ber that was used in a GET or PUT statement. For example, the statement
IF LOC(1) > 50 THEN END ends program execution if the current record
number in file#1 is greater than 50.

5.6.2.3 Random File Operations

Program 6 is an inventory program that illustrates random file access.

Program 6-lnventory

120 OPEN"R",#1,"INVEN.DAT",39
125 FIELD#1,1 AS F$,30 AS D$, 2 AS 0$,2 AS R$,4 ASP$
130 PRINT:PRINT "FUNCTlONS:":PRINT
135 PRINT "1,INITIALIZE FILE"
140 PRINT "2,CREATE A NEW ENTRY"
150 PRINT "3,DlSPLAY INVENTORY FOR ONE PART"
160 PRINT "4,ADD TO STOCK"
170 PRINT "5,SUBTRACT FROM STOCK"
180 PRINT "6,DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION"; FUNCTION
225 IF (FUNCTION < 1) OR (FUNCTION > 6) THEN PRINT "BAD
FUNCTION NUMBER":GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM•• BUILD NEW ENTRY**
260 GOSUB 840
270 IF ASC(F$) < > 255 THEN INPUT "OVERWRITE"; ADDA$: IF
ADDA$ < > "Y" THEN RETURN
280 LSET F$ = CHR$(0)
290 INPUT "DESCRIPTION"; DESCRIPTION$
300 LSET D$ = DESCRIPTION$
310 INPUT "QUANTITY IN STOCK"; QUANTITY%
320 LSET 0$ = MKl$(QUANTITY%)
330 INPUT "REORDER LEVEL"; REORDER%
340 LSET R$ = MKl$(REORDER%)
350 INPUT "UNIT PRICE"; PRICE
360 LSET P$ = MKS$(PRICE)
370 PUT#1,PART%
380 RETURN
390 REM ** DISPLAY ENTRY **

5-16

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
LJ
u
u

400 GOSUB 840
410 IF ASC(F$) = 255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###"; PART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND#####"; CVl(Q$)
450 PRINT USING "REORDER LEVEL#####"; CVl(R$)
460 PRINT USING "UNIT PRICE$$##.##"; CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$) = 255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT □$:INPUT "QUANTITY TO ADD"; ADDITIONAL%
520 0% = CVl{Q$) +ADDITIONAL%
530 LSET Q$ = MKl$(Q%)
540 PUT#1,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$) = 255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT"; LESS%
610 0% = CVl(Q$)
620 IF (Q%-LESS%) < 0 THEN PRINT "ONLY"; Q%;" IN
STOCK":GOTO 600
630 Q% = Q%-LESS%
640 IF 0% = < CVl(R$) THEN PRINT "QUANTITY NOW"; 0%; "
REORDER LEVEL"; CVl(R$)
650 LSET 0$ = MKl$(Q%)
660 PUT#1,PART%
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I = 1 TO 100
710 GET#1,I
720 IF CVl(Q$) < CVl{R$) THEN PRINT D$; "QUANTITY";
CVl(Q$) TAB(S0) "REORDER LEVEL"; CVl(R$)
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER"; PART%
850 IF(PART%< 1)OR(PART%>100) THEN PRINT "BAD PART
NUMBER":GOTO 840 ELSE GET#1,PART%:RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE"; CONFIRM$:IF CONFIRM$< > "Y"
THEN RETURN

5-17

Ka
yp
roJ
ou
rna
l

920 LSET F$ = CHR$(255)
930 FOR I = 1 TO 1 00
940 PUT#1,I
950 NEXT I
960 RETURN

In this program, the record number is used as the part number. It is as­
sumed the inventory will contain no more than 100 different part numbers.
Lines 900-960 initialize the data file by writing CHR$(255) as the first char­
acter of each record. This is used later (line 270 and line 500) to determine
whether an entry already exists for that part number.

Lines 130-220 display the various inventory functions that the program
performs. When you type in the desired function number, line 230 branches
to the appropriate subroutine.

5.7 BASIC And Child Processes
Through the use of the SHELL statement, GW-BASIC is able to use one
of the most powerful features of MS-DOS: the ability to create child pro­
cesses. SHELL enables the user to run part of a BASIC program, tem­
porarily exit to MS-DOS to perform a specified function, and return to the
BASIC program at the statement after the SHELL statement to proceed
with the rest of the program.

BASIC will produce a child program when it uses the SHELL statement.
It is not possible for BASIC to totally protect itself from its children. When
a SHELL statement is executed, many things may be going on. For ex­
ample, files may be OPEN and devices may be in use. It is advisable for
programmers to thoroughly read about the SHELL Statement, Chapter 7,
before using this powerful statement.

5-18

n
r,
r,
r, ,,
n
n
n
n
n ,,
n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Chapter Six
Using Advanced Features

Ka
yp
roJ
ou
rna
l

n
n
r,
r,
n
r,

n
r,
r,

n
n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

CHAPTERS
USING ADVANCED FEATURES

6.1 Assembly Language Subroutines
You may call assembly language subroutines from your GW-BASIC pro­
gram with the USR function or the CALL or CALLS statement.

It is recommended that you use the CALL or CALLS statement for inter­
facing 8086 machine language programs with GW-BASIC. These state­
ments are more readable and can pass multiple arguments. In addition,
the CALL statement is compatible with more languages than its alterna­
tive, the USR function.

6.1.1 Memory Allocation
Memory space must be set aside for an assembly language subroutine
before it can be loaded. To do so, use the /M: switch during start-up. The
/M: switch sets the highest memory location to be used by GW-BASIC.

In addition to the GW-BASIC code area, GW-BASIC uses up to 64K of
memory beginning at its data (DS) segment.

If more stack space is needed when an assembly language subroutine is
called, you can save the GW-BASIC stack and set up a new stack for use
by the assembly language subroutine. The GW-BASIC stack must be re­
stored, however, before you return from the subroutine.

The assembly language subroutine can be loaded into memory in several
ways, the most simple being to use the BLOAD command (see BLOAD
Command, Section 7.6). Also, the user could SHELL a program that exits,
but stays resident, leaving the linked, relocated image in memory. As a
third choice, the user could execute a program that exits but stays resi­
dent, and then run BASIC.

6-1

Ka
yp
roJ
ou
rna
l

The following guidelines must be observed if you choose to BLOAD, or
read and poke, an EXE file into memory:

1. Make sure the subroutines do not contain any long references, ad­
dress offsets that exceed 64K or that take the user out of the code
segment. These long references require handling by the EXE loader.

2. Skip over the first 512 bytes (the header) of the linker's output file (EXE),
then read in the rest of the file.

6.1.2 Internal Representation
The following section describes the internal representation of numbers in
GW-BASIC. Knowledge of these arrangements is critical for many as­
sembly language programming routines.

Single Precision - 24 bit mantissa
I O I 1 I 2 I 3

I loman I I S I himan I exp I

where loman the low mantissa
S the sign
himan = the high mantissa
exp the exponent
man himan: ... :loman
- If < exp > = 0, then < number> = 0.
- lf < exp > < > 0, then the mantissa is normalized and
<number> = < sgn > * .1 <man};,- • 2 ** (<exp> -80h)

That is, in single precision (hex notation bytes low to high)
00000080 = .5
00008080 = -.5

Double Precision • 56 bit mantissa
IO I 1121314151 6 I 7 I

llomanl IS lhimanlexpl

6·2

n
n
n ,,
n
n
n
n
n
n
r,

n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
Li
u
u
u
LJ
u
u
u
u
u
u
u

6.1.3 CALL Statement
The CALL statement is the recommended way of interfacing 8086 ma­
chine language subroutines with GW-BASIC. Do not use the USR func­
tion unless you are running previously written subroutines that already
contain USR functions.

The syntax of the CALL statement is:

CALL < variable name> [(<argument list>)]

where < variable name > contains the offset into the current segment
that is the starting point in memory of the subroutine being called. The
current segment is either the default, or that which has been defined by a
DEF SEG statement.

< argument list> contains the variables or constants, separated by
commas, that are to be passed to the subroutine.

Invoking the CALL statement causes the following to occur:

1. For each argument in the argument list, the two-byte offset of the ar­
gument's location within the BASIC segment is pushed onto the stack.

2. Control is transferred to the subroutine with an 8086 long call to the
segment address given in the last DEF SEG statement and the offset
given in < variable name > .

Figures 6.1 and 6.2 illustrate the state of the stack at the time the CALL
statement is executed, and the condition of the stack during execution of
the called subroutine, respectively.

6-3

Ka
yp
roJ
ou
rna
l

high
addresses

C

S 0

t u
a n
C t
k e

r

V
low

addresses

r,
+--------------+
: argument O : n··
T- - - - - - - - - - - - - -T SP + 4 + (2*n) • I • I
1 • 1 Each argument is a 2-byte
T--------------T pointer into memory "·
1 argument n-1 1 f 1.
L--------------isP+6
: argument n : n·
+-------------- ➔ SP+4
I return segment addresses I
t--------------fsP+2 n
1 return offset 1
-1---------------.L SP ~--- stack pointer
: : (SP register n·
I I ro~~
I I

n
Figure 6.1 . Stack layout when CALL statement is activated ,,

r,
r,
r,

After the CALL statement has been activated, the subroutine has con­
trol. Arguments may be referenced by moving the stack pointer (SP) to
the base pointer (BP) and adding a positive offset to BP.

6-4

n
r,

n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
LJ

u
u
u
u
u
u

,LJ
I
!u

u
u
u
u

high
addresses

s
t
a
C

k

C

0

u
n
t
e
r

low
addresses

+--------------+

argument 0
argument 1

•
•
•
argument n

Absent if any argument is
referenced within a nested
procedure

r-;~;~~;;n~~~r;s~-T} Absent in local procedure i ______________ i

I I
1 return offset 1

I I stack pointer t--------------i<-sp register contents)

: local variables :
1 (data pushed on I
1 stack) I
I I
I • I
I • I
I I
I • I
I I r--------------T

This space may be
used during procedure
execution

I
I
I
I
I
I
I •
I •
I •
I
I
I

Stack Pointer may change
during procedure execution

Figure 6.2. Stack layout during execution of a CALL statement

6-5

Ka
yp
roJ
ou
rna
l

Observe the following rules when coding a subroutine:

1. The called routine must preserve segment registers OS, ES, SS, and
the base pointer (BP). If interrupts are disabled in the routine, they must
be enabled before exiting. The stack must be cleaned up on exit.

2. The called program must know the number and length of the argu­
ments passed. The following routine shows an easy way to reference
arguments:

BP
BP,SP

PUSH
MOV
ADD
Then:

BP, (2*number of arguments) + 4

argument O is at BP
argument 1 is at BP-2
argument n is at BP-2*n
(number of arguments = n + 1)

3. Variables may be allocated either in the code segment or on the stack.
Be careful not to modify the return segment and offset stored on the
stack.

4. The called subroutine must clean up the stack. A preferred way to do
this is to perform a RET < n > statement (where < n > is two times
the number of arguments in the argument list) to adjust the stack to the
start of the calling sequence.

5. Values are returned to GW-BASIC by including in the argument list the
name of the variable that will receive the result. The internal format for
numbers in GW-BASIC is discussed in "Internal Representation," Sec­
tion 6.1.2.

6. If the argument is a string, the argument's offset points to 3 bytes which,
as a unit, are called the "string descriptor." Byte O of the string descrip­
tor contains the length of the string (0 to 255). Bytes 1 and 2, respec­
tively, are the lower and upper 8 bits of the string starting address in
string space.

6-6

n
r,

n
r,

n
n
n ,,
n
r,

n
r,
r,

n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
LJ
u
u
u
u
u
u
u
u
u
u

WARNING
If the argument is a string literal in the program, the string de­
scriptor will point to program text. Be careful not to alter or
destroy your program this way. To avoid unpredictable results,
add +""to the string literal in the program. For example, use

20 A$ = "BASIC" + '"'
This will force the string literal to be copied into string space.
Then the string may be modified without affecting the program.

7. The contents of a string may be altered by user routines, but the de­
scriptor must not be changed. Do not write past the end-of-string. GW­
BASIC cannot correctly manipulate strings if their lengths are modified
by external routines.

8. Data areas needed by the routine must be allocated either in the CODE
segment of the user routine or on the stack. It is not possible to declare
a separate data area in the user assembler routine.

Example of CALL statement

100 DEF SEG = &H8000
110 FOO= &H7FA
120 CALL FOO(A,B$,C)

Line 100 sets the segment to 8000 Hex. The value of variable FOO is
added into the address as the low word after the DEF SEG value is left
shifted 4 bits. Here, the long call to FOO will execute the subroutine at
location 8000:?FA Hex (absolute address 807FA Hex).

The following sequence in 8086 assembly language demonstrates ac­
cess to the arguments passed. The returned result is stored in the
variable 'C'.

PUSH
MOV
ADD
MOV
MOV
MOV

BP
BP,SP
BP,(4 + 2*3)
BX,[BP-2]
CL,[BX]
DX,1[BX]

; Set up pointer to arguments

; Get address of 8$ descriptor.
; Get length of B$ in CL.
; Get addr of B$ text in DX.

6-7

Ka
yp
roJ
ou
rna
l

MOV
MOV
MOVS
POP
RET

Sl,[BP]
Dl[BP-4]
WORD
BP
6

; Get address of 'A' in SI.
; Get pointer to 'C' in DI.
; Store variable 'A' in 'C'.
; Restore pointer.
; Restore stack, return.

IMPORTANT
The called program must know the variable type for the nu­
meric arguments passed. In the previous example, the
instruction

MOVSWORD
will copy only two bytes. This is fine if variables A and C are
integer. You would have to copy four bytes if the variables were
single precision format and copy 8 bytes if they were double
precision.

6.1.4 CALLS Statement
The CALLS statement should be used to access subroutines that were
written using MS-FORTRAN calling conventions. CALLS works just like
CALL, except that with CALLS the arguments are passed as segmented
addresses, rather than as unsegmented addresses.

Because MS-FORTRAN routines need to know the segment value for
each argument passed, the segment is pushed and then the offset is also
pushed. For each argument, four bytes are pushed rather than 2, as in
the CALL statement. Therefore, if your assembler routine uses the CALLS
statement, n in the RET < n > statement is four times the number of
arguments.

6.1.5 USR Function
Although using the CALL statement is the recommended way of calling
assembly language subroutines, the USR function is also available for
this purpose. This ensures compatibility with older programs that contain
USR functions.

USR[<digit>][(< argument>)]

where <digit> is from Oto 9. <digit> specifies which USR routine is
being called. If <digit> is omitted, USR0 is assumed.

<argument> is any numeric or string expression. Arguments are dis­
cussed in detail in the following paragraphs.

6-8

r, ,,
n
n
n
r, ,,
n
n
n
n
r,
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ

In the GW-BASIC Interpreter, a DEF SEG statement must be executed
prior to a USR function call to assure that the code segment points to the
subroutine being called. The segment address given in the DEF SEG
statement determines the starting segment of the subroutine.

For each USR function, a corresponding DEF USR statement must be
executed to define the USR function call offset. This offset and the cur­
rently active DEF SEG address determine the starting address of the
subroutine.

When the USR function call is made, register AL contains a value that
specifies the type of argument that was given. The value in AL may be
one of the following:

Value in AL

2
3
4
8

Type of Argument

Two-byte integer (two's complement)
String
Single precision floating-point number
Double precision floating-point number

If the argument is a number, the BX register points to the Floating-Point
Accumulator (FAG) where the argument is stored.

If the argument is an integer:

FAC-2 contains the upper 8 bits of the integer.
FAC-3 contains the lower 8 bits of the integer.

For versions of GW-BASIC that use binary floating-point:

FAG is the exponent minus 128, and the binary point is to the left of the
most significant bit of the mantissa.

FAC-1 contains the highest 7 bits of mantissa with leading 1 suppressed
(implied). Bit 7 is the sign of the number (0 = positive, 1 = negative).

If the argument is a single precision floating-point number:

FAC-2 contains the middle 8 bits of mantissa;
FAC-3 contains the lowest 8 bits of mantissa.

6-9

Ka
yp
roJ
ou
rna
l

If the argument is a double precision floating-point number:

FAC-7 through FAC-4 contain four more bytes of mantissa (FAC-7 con­
tains the lowest 8 bits).

If the argument is a string, the DX register points to 3 bytes which, as a
unit, are called the "string descriptor." Byte O of the string descriptor con­
tains the length of the string (0 to 255 characters). Bytes 1 and 2, respec­
tively, are the lower and upper 8 bits of the string starting address in the
GW-BASIC data segment.

WARNING
If the argument is a string literal in the program, the string de­
scriptor will point to program text. Be careful not to alter or
destroy the program this way.

Usually, the value returned by a USR function is the same type (integer,
string, single precision, or double precision) as the argument that was
passed to it.

GW-BASIC has extended the USR function interface to allow calls to
MAKI NT and FRCINT. This allows access to these routines without giving
their absolute addresses. The address ES:BP is used as an indirect far
pointer to the routines FRCINT and MAKI NT.

To call FRCINT from a USA routine use CALL DWORD ES:[BP]. To call
MA KINT from a USR routine use CALL DWORD ES:[BP + 4].

Example:

n
n
n
r,

n
n
n ,,
r,

n
110 DEF USR0 = &H8000 'Assumes decimal argument /M:32767 n
120X=5
130 Y = USRO(X)
140 PRINTY ,,

The type (numeric or string) of the variable receiving the function call must
be consistent with that of the argument used. r,

6-10

n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
LJ
u
u
u
u
u
u
u
u
u
u
u
LJ

6.2 Event Trapping
Event trapping allows a program to transfer control to a specific program
line when a certain event occurs. Control is transferred as if a GOSUB
statement had been executed to the trap routine starting at the specified
line number. The trap routine, after servicing the event, executes a RE­
TURN statement that causes the program to resume execution at the
place where it was when the event trap occurred.

The events that can be trapped are receipt of characters from a commu­
nications port (ON COM), detection of certain keystrokes (ON KEY), time
passage (ON TIMER), emptying of the background music queue (ON
PLAY), joystick trigger activation (ON STRIG), and lightpen activation (ON
PEN).

This section gives an overview of event trapping. For more details on
individual statements, see Chapter 7.

Event trapping is controlled by the following statements:

< event specifier > ON to turn on trapping
< event specifier> OFF to turn off trapping
< event specifier> STOP to temporarily turn off trapping

where < event specifier> is one of the following:

COM (n)
where n is the number of the communications channel. The n in (n) is the
same device referred to in COMn:. The COM channels are numbered 1
through n, where n is implementation dependent.

Typically, the COM trap routine will read an entire message from the COM
port before returning. We do not recommend using the COM trap for sin­
gle character messages because at high baud rates the overhead of trap­
ping and reading for each character may allow the interrupt buffer for
COM to overflow.

KEY (n)
where n is a trappable key number. Trappable keys are numbered 1
through n, where n is implementation dependent.

Note that KEY (n) ON is not the same statement as KEY ON. KEY(n) ON
sets an event trap for the specified key. KEY ON displays the values of all
the function keys on the twenty-fifth line of the screen (see Sections 7 .70
and 7.71).

6-11

Ka
yp
roJ
ou
rna
l

When the GW-BASIC Interpreter is in direct mode function keys maintain
their standard meanings.

When a key is trapped, that occurrence of the key is destroyed. There­
fore, you cannot subsequently use the INPUT or INKEY$ statements to
find out which key caused the trap. So if you wish to assign different
functions to particular keys, you must set up a different subroutine for
each key, rather than assigning the various functions within a single
subroutine.

PEN
Since there is only one lightpen, no number is given when PEN trapping
is enabled. For discussion of PEN used as a function, see Section 7 .117.

TIMER
ON TIMER(n), where (n) is a numeric expression representing a number
of seconds since the previous midnight. The ON TIMER statement can be
used to perform background tasks at defined intervals.

PLAY
ON PLAY(n), where (n) is a number of notes left in the music buffer. The
ON PLAY statement is used to retrieve more notes from the background
music queue, to permit continuous background music during program
execution.

STRIG (n)
where n is the number of the joystick trigger. For most machines, the
range for n is O through 2.

For discussion of STRIG used as a function, see Section 7.157.

6.2.1 ON GOSUB Statement

n
n
n
n
n
n ,,
n
r,

n
n

The ON GOSUB statement sets up a line number for the specified event n
trap. The format is:

ON < event specifier> GOSUB < line number> n
A < line number> of zero disables trapping for that event.

When an event is ON and if a non-zero line number has been specified in
the ON GOSUB statement, every time GW-BASIC starts a new statement
it will check to see if the specified event has occurred (e.g., the lightpen
has been struck or a COM character has come in}. When an event is OFF,
no trapping takes place, and the event is not remembered even if it takes
place.

6-12

n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

When an event is stopped (< event specifier > STOP), no trapping takes
place, but the occurrence of an event is remembered so that an immedi­
ate trap will take place when an < event specifier > ON statement is
executed.

When a trap is made for a particular event, the trap automatically causes
a STOP on that event, so recursive traps can never occur. A return from
the trap routine automatically executes an ON statement unless an ex­
plicit OFF has been performed inside the trap routine.

Note that once an error trap takes place, all trapping is automatically dis­
abled. In addition, event trapping will never occur when GW-BASIC is not
executing a program.

6.2.2 RETURN Statement
When an event trap is in effect, a GOSUB statement will be executed as
soon as the specified event occurs. For example, the statement

ON PEN GOSUB 1000
specifies that the program go to line 1000 as soon as the pen is used. If a
simple RETURN statement is executed at the end of this subroutine, pro­
gram control will return to the statement following the one where the trap
occurred. When the RETURN statement is executed, its corresponding
GOSUB return address is cancelled.

GW-BASIC includes the RETURN < line number> enhancement, which
lets processing resume at a definable line. Normally, the program returns
to the statement immediately following the GOSUB statement when the
RETURN statement is encountered. However, RETURN < line num­
ber> enables the user to specify another line. If not used with care, how­
ever, this capability may cause problems. Assume, for example, that your
program contains:

10 ON PEN GOSUB 1000
20 FOR I = 1 TO 10
30 PRINT I
40 NEXT I
50 REM NEXT PROGRAM LINE
200 REM PROGRAM RESUMES HERE
1000 'FIRST LINE OF SUBROUTINE

1050 RETURN 200

6-13

Ka
yp
roJ
ou
rna
l

n
If the pen is activated while the FOR/NEXT loop is executing, the subrou-

tine will be performed, but program control will return to line 200 instead n
of completing the FOR/NEXT loop. The original GOSUB entry will be can-

celled by the RETURN statement, and any other GOSUB, WHILE, or FOR

(e.g., an ON STRIG statement) that was active at the time of the trap will n
remain active. But the current FOR context will also remain active, and a

"FOR without NEXT" error may result.

6-14

n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Chapter Seven
Commands, Functions, and Statements

Ka
yp
roJ
ou
rna
l

n
n
n
r,

n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
' "' u
u
u
u
u
u
u
u
u

CHAPTER 7
BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7 .1 ABS Function

Syntax

ABS(X)

Purpose
To return the absolute value of the expression X.

Example
PRINT ABS(?*(-5))

will yield

35

7-1

Ka
yp
roJ
ou
rna
l

7.2 ASC Function

Syntax
ASC(X$)

Purpose
To return a numerical value that is the ASCII code for the first character
of the string X$. (See Appendix A for ASCII codes.)

Remarks
If X$ is null, an "Illegal function call" error is returned.

Example
10 X$ = "TEST"
20 PRINT ASC(X$)

will yield

84

See the CHA$ function, Section 7.14, for details on ASCII-to-string
conversion.

7-2

n
r,
r,
·n
r,

n
r,

n
n
n
r,

n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .3 ATN Function

Syntax
ATN(X)

Purpose
To return the arctangent of X, where X is in radians. Result is in the
range -pi/2 to pi/2 radians.

Remarks
The expression X may be any numeric type, but the default evalua­
tion of ATN is performed in single precision. This may be overridden
if the /D switch is used when invoking GW-BASIC.

Example
10 LET X = 3
20 PRINT ATN(X)

will yield

1.249046

7-3

Ka
yp
roJ
ou
rna
l

7.4 AUTO Command

Syntax
AUTO [< line number>[, <increment>]]

Purpose
To automatically generate line numbers during program entry.

Remarks
AUTO begins numbering at < line number> and increments each sub­
sequent line number by <increment>. The default for both values is 10.
If < line number > is followed by a comma but < increment> is not
specified, the last increment specified in an AUTO command is assumed.
If AUTO generates a line number that is already being used, an asterisk
is printed after the number to warn the user that any input will replace the
existing line. However, typing a carriage return immediately after the as­
terisk will save the existing line and generate the next line number.
If the cursor is moved to another line on the screen, numbering will re­
sume there.
AUTO is terminated by typing a termination key that is specified by the
implementor. IBM, for example, uses the Break key. The line in which the
termination key is typed will not be saved. After the termination key is
typed, Microsoft GW-BASIC returns to command level.

Example
AUTO 100,50

Generates line numbers 100, 150, 200 ...

AUTO

Generates line numbers 10, 20, 30, 40 ...

7-4

n
n
n
n
r,

n
r,
r,
r,

n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.5 BEEP Statement

Syntax

BEEP

Purpose
To sound the speaker.

Remarks
The BEEP statement sounds the ASCII bell character. This statement has
the same effect as PRINT CHR$(7) in nongraphics versions of MS-BASIC.

Example

20 IF X < 20 THEN BEEP

This example executes a beep when X is less than 20.

7-5

Ka
yp
roJ
ou
rna
l

7.6 BLOAD Command

Syntax

BLOAD < filespec > [, <offset>]

The device designation portion of the filespec is optional. The filename,
not including the device designation, may be 1 to 8 characters long.

<offset> is a numeric expression returning an unsigned integer in the
range Oto 65535. This is the offset address at which loading is to start in
the segment declared by the last DEF SEG statement.

Purpose

To load a specified memory image file into memory from any input device.

Remarks

The BLOAD statement allows a program or data that has been saved as
a memory image file to be loaded anywhere in memory. A memory image
file is a byte-for-byte copy of what was originally in memory. See BSAVE
Command, in Section 7.7, for information about saving memory image
files.

If the offset is omitted, the segment address and offset contained in the
file (i.e., the address specified by the BSAVE statement when the file was
created) are used. Therefore, the file is loaded into the same location from
which it was saved.

If offset is specified, the segment address used is the one given in the
most recently executed DEF SEG statement. If no DEF SEG statement
has been given, the GW-BASIC data segment will be used as the default
(because it is the default for DEF SEG).

CAUTION

BLOAD does not perform an address range check. It is therefore possible
to load a file anywhere in memory. The user must be careful not to load
over GW-BASIC or the operating system.

7-6

n
r,

n
n
r,
r,
r,

n
n
r,

n
n
n
r,
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Example

10 • Load subroutine at 60: F0O0
20 DEF SEG = &H6000 ·set segment to 6000 Hex
30 BLOAD"PROG1 ",&HF00O 'Load PROG1

This example sets the segment address at 6000 Hex and loads PROG1
at F000.

7-7

Ka
yp
roJ
ou
rna
l

7. 7 BSAVE Command

Syntax

BSAVE < filespec >,<offset>, <length>

The device designation portion of the filespec is optional. The filename,
not including the device specification, must be 1 to 8 characters long.

<offset> is a numeric expression returning an unsigned integer in the
range 0 to 65535. This is the offset address to start saving from in the
segment declared by the last DEF SEG statement.

< length> is a numeric expression returning an unsigned integer in the
range 1 to 65535. This is the length in bytes of the memory image file to
be saved.

Purpose

To transfer the contents of the specified area of memory to any output
device.

Remarks

The < filespec > , < offset> , and < length > are required in the syntax.

The BSAVE command allows data or programs to be saved as memory
image files on disk or cassette. A memory image file is a byte-for-byte
copy of what is in memory.

If the offset is omitted, a "Bad file name" error message is issued and the
save is terminated. A DEF SEG statement must be executed before the
BSAVE. The last known DEF SEG address will be used for the save.

If length is omitted, a "Bad file name" error message is issued and the
save is terminated.

Example

10 'Save PROG1
20 DEF SEG = &H6000
30 BSAVE"PROG1",&HF000,256

This example saves 256 bytes starting at 6000:F00O in the file PROG1.

7-8

n
r,
r, ,,
r,

n
r,
r,
r,
r,
r,

n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .8 CALL Statement

Syntax

CALL < variable name> [(< argument list>)]

where < variable name > contains an address that is the starting point
in memory of the subroutine. < variable name> may not be an array
variable name.

< argument list> contains the arguments that are passed to the exter­
nal subroutine. < argument list > may contain only variables.

Purpose

To call an assembly language subroutine or a compiled routine written in
another high level language.

Remarks

The CALL statement is one way to transfer program flow to an external
subroutine. (See also the USR function, Section 7.168.)

See Section 6.1.3., CALL Statement, for a detailed discussion of calling
sequences.

Example

110 MYROUT = &HDOOO
120 CALL MYROUT(l,J,K) ...

7.9

Ka
yp
roJ
ou
rna
l

n
7.9 CALLS Statement

The CALLS statement is just like CALL, except that the segmented ad- r,
dresses of all arguments are passed. (CALL passes unsegmented ad­
dresses.) CALLS should be used when accessing routines written with r,
the FORTRAN calling convention. All FORTRAN parameters are call-by- •
reference segmented addresses.

CALLS uses the segment address defined by the most recently executed ,,
DEF SEG statement to locate the routine being called.

7-10

r, ,,
n
n
r,
r,

n
n
n
r,
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
LJ
u
LJ

7 .10 CDBL Function

Syntax

CDBL(X)

Purpose

To convert X to a double precision number.

Example

10 LET Pl = 22/7
20 PRINT Pl,CDBL(PI)

will yield

3.142857 3.14285707 4 737549

7-11

Ka
yp
roJ
ou
rna
l

7 .12 CHAIN Statement

Syntax

CHAIN [MERGE] < filespec > [,[< line number exp>] [,ALL]
[,DELETE < range>]]

See the examples below for illustration of the syntax options.

Purpose

To call a program and pass variables to it from the current program.

Remarks

< filespec > is a string expression containing a name that conforms to
MS-DOS 2.0 rules for disk filenames or GW-BASIC rules for device
specifications.

< line number exp > is a line number or an expression that evaluates to
a line number in the called program. It is the starting point for execution
of the called program. If it is omitted, execution begins at the first line.
< line number exp> is not affected by a REN UM command.

With the ALL option, every variable in the current program is passed to
the called program. lf the ALL option is omitted, the current program must
contain a COMMON statement to list the variables that are passed. See
Section 7.22 for information about COMMON.

If the ALL option is used and < line number exp> is not, a comma must
hold the place of < line number exp>. For example, CHAIN
"NEXTPROG",,ALL is correct; CHAIN "NEXTPROG",ALL is incorrect. In
the latter case, GW-BASIC assumes that ALL is a variable name and eval­
uates it as a line number expression.

The MERGE option allows a subroutine to be brought into the GW-BASIC
program as an overlay. That is, the current program and the called pro­
gram are merged (see MERGE Command, Section 7.92). The called pro­
gram must be an ASCII file if it ls to be merged.

After an overlay is used, it is usually desirable to delete it so that a new
overlay may be brought in. To do this, use the DELETE option.

The line numbers in < range > are affected by the REN UM command.

7-12

n
r,
r,
r,

n
n
n
n ,,
n
n
n
n
r,

n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ
u

Examples

CHAIN is used in different ways in the two examples below. In the first.
the two string arrays are dimensioned, and declared as common varia­
bles. When the program gets to line 90, it chains to the other program,
which loads the B$s. At line 90 of PROG2, control chains back to the first
program, but line 100 is delineated, and so the first program executes
from that line. This process can be observed through the descriptive text
that prints as the programs execute.

Example 1
10 REM THIS PROGRAM DEMONSTRATES CHAINING USING COM­

MON TO PASS VARIABLES.
20 REM SAVE THIS MODULE ON DISK AS "PROG1" USING THE A

OPTION.
30 DIM A$(2),B$(2)
40 COMMON A$(),8$()
50 A$(1) = "VARIABLES IN COMMON MUST BE ASSIGNED"
60 A$(2) = "VALUES BEFORE CHAINING."
70 B$(1)= ""
80 B$(2) = ""
90 CHAIN "PROG2"
100 PRINT
110 PRINT B$(1)
120 PRINT
130 PRINT B$(2)
140 PRINT
150 END

10 REM THE STATEMENT "DIM A$(2),B$(2)" MAY ONLY BE EXECUTED
ONCE.

20 REM HENCE, IT DOES NOT APPEAR IN THIS MODULE.
30 REM SAVE THIS MODULE ON THE DISK AS "PROG2" USING THE

A OPTION.
40 COMMON A$(),8$()
50 PRINT
60 PRINT A$(1); A$(2)
70 8$(1) = "NOTE HOW THE OPTION OF SPECIFYING A STARTING LINE

NUMBER"
80 8$(2) = "WHEN CHAINING AVOIDS THE DIMENSION STATEMENT

IN 'PROG1'."
90 CHAIN "PROG1 ",100
100 END

7-13

Ka
yp
roJ
ou
rna
l

In the second example, the MERGE, ALL, and DELETE options are illus­
trated. After A$ is loaded in the first program, control chains to line 1010
of the second. At the second program's line 1040, it chains to line 1010 of
the third program, keeping all variables and deleting all the second pro­
gram's lines. Control passes to the third program. This process can be
observed through the descriptive text that prints as the programs execute.

Example2
10 REM THIS PROGRAM DEMONSTRATES CHAINING USING THE

MERGE, ALL, AND DELETE OPTIONS.
20 REM SAVE THIS MODULE ON THE DISK AS "MAINPRG".
30 A$= "MAINPRG"
40 CHAIN MERGE "OVRLAY1",1010,ALL
50 END

1000 REM SAVE THIS MODULE ON THE DISK AS "OVRLAY1" USING
THE A OPTION.

1010 PRINT A$; "HAS CHAINED TO OVRLAY1."
1020 A$= "OVRLAY1"
1030 B$ = "OVRLAY2"
1040 CHAIN MERGE "OVRLAY2",101 0,ALL, DELETE 1000-1050
1050 END

1000 REM SAVE THIS MODULE ON THE DISK AS "OVRLAY2" USING
THE A OPTION.

1010 PRINT A$; "HAS CHAINED TO"; B$:"."
1020 END

Note

The CHAIN statement with MERGE option leaves the files open and pre­
serves the current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve variable types
or user-defined functions for use by the chained program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN statements containing
shared variables must be restated in the chained program.
When using the MERGE option, user-defined functions should be placed
before any CHAIN MERGE statements in the program. Otherwise, the
user-defined functions will be undefined after the merge is complete.

7-14

n
r, ,,
r, ,,
r,

n
r,

n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
LJ
u
LJ
u
u
u
u
u
u
u
u
u
u

7 .13 CHOIR Statement

Syntax

CHOIR PATHNAME

Purpose

To change the current operating directory.

Remarks

PATHNAME is a string specifying the name of the directory which is to be
the current directory. CHOIR works exactly like the MS-DOS command
CHOIR. The PATHNAME must be a string of less than 128 characters.

Example

CHOIR "SALES"

This makes SALES the current directory.

CHOIR "B:USERS"

This changes the current directory to USERS on drive B. It does NOT,
however, change the default drive to B:.

Also see the MKOIR and RMDIR statements.

7-15

Ka
yp
roJ
ou
rna
l

7.14 CHR$ Function

Syntax
CHR$(1)

Purpose
To return a string whose one character is ASCII character I.
(ASCII codes are listed in Appendix A.)

Remarks
CH A$ is commonly used to send a special character to the screen or
printer. For instance, the BELL character (CHR${7)) could be sent as a
preface to an error message, or a form feed (CHR$(12)) could be sent to
clear a terminal screen and return the cursor to the home position.

Example
PRINT CHR$(66)

will yield

B

See the ASC function, Section 7.2, for details on ASCII-to-numeric
conversion.

7-16

n
n
n
n
r,
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .15 CINT Function

Syntax

CINT(X)

Purpose
To convert X to an integer by rounding the fractional portion.

Remarks

If X is not in the range -32768 to 32767, an "Overflow" error occurs.

Example

PRINT CINT(45.67)

will yield

46

See the CDBL and CSNG functions for details on converting numbers to

the double precision and single precision data type, respectively. See also

the FIX and INT functions, both of which return integers.

7-17

Ka
yp
roJ
ou
rna
l

7.16 CIRCLE Statement

Syntax

CIRCLE [STEP](< xcenter > . < ycenter >), < radius>
[, <color>[, <start> , <end>[, <aspect>]]]

The [STEP] option makes the specified xcenter and ycenter coordinates
relative to the "most recent point", instead of absolute, mapped
coordinates.

< xcenter > is the x coordinate for the center of the circle.

< ycenter > is they coordinate for the center of the circle.

< radius > is the radius of the circle in the current logical coordinate
system.

<color> is the numeric symbol for the color desired (see COLOR State­
ment, Section 7.20). The default color is the foreground color.

<start> and <end> are the start and end angles in radians. The
range is -2 • pi through 2 • pi. These angles allow the user to specify
where an ellipse will begin and end. If the start or end angle is negative,
the ellipse will be connected to the center point with a line, and the angles
will be treated as if they were positive. Note that this is different from
adding 2 ·pi.The start angle may be less than the end angle.

<aspect> is the aspect ratio, i.e., the ratio of the x radius to they radius.
Default ratios depend on the machine that is being used. When default
ratios are specified for the corresponding screen mode, a round circle is
drawn.

If the aspect ratio is less than one, the radius given is the x radius. If it is
greater than one, they radius is given.

Purpose

To draw an ellipse or circle with the specified center and radius.

Remarks

The last point referenced after a circle is drawn is the center of the circle.

It is not an error to supply coordinates that are outside the screen or
viewport.

7-18

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
LJ
u
u
u
u
u
u
u
u

Coordinates can be shown as absolutes, as in the syntax shown above,
or the STEP option can be used to reference a point relative to the most
recent point used. The syntax of the STEP option is:

STEP (< xoffset > , < yoffset >)

For example, if the most recent point referenced were (10, 10), STEP (10,5)
would reference a point offset 1 O from the current x coordinate and offset
5 from the current y coordinate, that is, the point (20, 15).

Example

Assume that the last point plotted was 100,50. Then,

CIRCLE (200,200),50

and

CIRCLE STEP (100,150),50

will both draw a circle at 200,200 with radius 50. The first example uses
absolute notation; the second uses relative notation.

7-19

Ka
yp
roJ
ou
rna
l

7 .17 CLEAR Statement

Syntax

CLEAR [,[< expression1 >)[, < expression2 >)]

Purpose
To set all numeric variables to zero, all string variables to null, and to close
all open files; and, optionally, to set the end of memory and the amount of
stack space.

Remarks

< expression1 > is a memory location that, if specified, sets the highest
location available for use by Microsoft GW-BASIC.

< expression2 > sets aside stack space for Microsoft GW-BASIC. The
.. default is 768 bytes or one-eighth of the available memory, whichever is

smaller.

Note
The CLEAR statement performs the following actions:

Closes all files.
Clears all COMMON variables.
Resets numeric variables and arrays to zero.
Resets the stack and string space.
Resets all string variables and arrays to null.
Releases all disk buffers.
Resets all DEF FN and DEF SNG/DBL/STR statements.

Examples

CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

7-20

n
n
n
n
n
n
n
r,

n
n
n
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
LJ
LJ

u
u
u
u

7 .18 CLOSE Statement

Syntax
CLOSE[[#]< file number>[,[#]< file number ... >]]

Purpose

To conclude 1/0 to a file. The CLOSE statement is complementary to the
OPEN statement.

Remarks

< file number> is the number under which the file was opened. A CLOSE
with no arguments closes all open files.

The association of a particular file and a file number terminates upon
execution of a CLOSE statement. The file may then be reopened using
the same or a different file number. Once a file is closed, that file's number
may be used for any unopened file.

A CLOSE for a sequential output file writes the final buffer of output.

The SYSTEM, CLEAR, and END statements and the NEW and RESET
commands always close all files automatically.

Example
CLOSE #1,#2

7-21

Ka
yp
roJ
ou
rna
l

7.19 CLS Statement

Syntax

CLS

Purpose

Erases contents of entire current screen.

Remarks

The screen may also be cleared with the Clear Window key (see discus­
sion of CLEAR WINDOW in Section 4.2, "Full Screen Editor").

Example

10 CLS 'Clears the screen

7-22

n
n
n
n
r,

n
n
n
n
n
n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

I

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.20 COLOR Statement

Syntax

COLOR [< foreground >][,[<background >],[< border>]]
COLOR [< background >][,[<palette>]]
COLOR [<foreground >]

< foreground > is a numeric expression in the range 0 to 31.

< background > is a numeric expression in the range Oto 7.

< border> is a numeric expression in the range 0 to 15.

< palette > is a numeric expression in the range Oto 1, representing the
palette selection.

Purpose
The first command, for use in text mode only, sets the color of the char­
acters, background, and the border of the screen. It also selects blinking
or non-blinking characters.

The second command, for use in medium resolution graphics mode only,
selects the background color and 1 of 2 foreground palettes of three colors
each.

The third command, for use in high resolution graphics mode only, selects
the forground color of the high resolution screen.

Remarks
The colors available are as follows:

0-Black 8-Gray
1-Blue 9-Light Blue
2-Green 10-Light Green
3-Cyan 11-Light Cyan
4-Red 12-Light Red
5-Magenta 13-Light Magenta
6-Brown 14-Yellow
7-White 15-High-lntensity White

Add 16 for blinking characters in text mode

The palettes available are as follows:
COLOR PALETTE O PALETTE 1

1
2
3

Green
Red
Brown

7-23

Cyan
Magenta
White

Ka
yp
roJ
ou
rna
l

7.21 COM Statement

Syntax

COM(n)ON
COM(n) OFF
COM(n) STOP

Where (n) is the number of the communications port. The range for (n) is
specified by the implementor.

Purpose

To enable or disable event trapping of communications activity on the
specified port.

Remarks

The COM{n) ON statement enables communications event trapping by an
ON COM statement (see ON COM Statement, Section 7 .101). While trap­
ping is enabled, and if a non-zero line number is specified in the ON COM
statement, GW-BASIC checks between every statement to see if activity
has occurred on the communications channel. If it has, the ON COM
statement is executed.

COM(n) OFF disables communications event trapping. If an event takes
place, it is not remembered.

COM(n) STOP disables communications event trapping, but if an event
occurs, it is remembered. If there is a subsequent COM(n) ON statement,
the remembered event will be successfully trapped.

Note

For additional information on communications event trapping, see "Event
Trapping," Section 6.2, and ON COM Statement, Section 7 .101.

Example

10 COM(1) ON

Enables error trapping of communications activity on channel 1.

7-24

n
n
n
n
n
r,
r,

n
n
r,

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
LJ
u
u .

' J u
u
u
u
u
u

7.22 COMMON Statement

Syntax

COMMON < list of variables>

Purpose

To pass variables to a chained program.

Remarks

The COMMON statement is used in conjunction with the CHAIN state­
ment. COMMON statements may appear anywhere in a program, though
it is recommended that they appear at the beginning. The same variable
cannot appear in more than one COMMON statement. Array variables
are specified by appending "()" to the variable name. If all variables are to
be passed, use CHAIN with the ALL option and omit the COMMON
statement.

Some Microsoft products allow the number of dimensions in the array to
be included in the COMMON statement. GW-BASIC will accept that syn­
tax, but will ignore the numeric expression itself. For example, the follow­
ing statements are both valid and are considered equivalent:

COMMON A()
COMMON A(3)
The number in parentheses is the number of dimensions, not the dimen­
sions themselves. For example, the variable A(3) in this example might
correspond to a DIM statement of DIM A(S,8,4).

Example

100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3",10 ...

7-25

Ka
yp
roJ
ou
rna
l

7 .23 CONT Command

Syntax

CONT

Purpose
To continue program execution after a Break has been typed or a STOP
statement has been executed.

Remarks
Execution resumes at the point where the break occurred. If the break
occurred after a prompt from an INPUT statement, execution continues
with the reprinting of the prompt("?" or prompt string).

CONT is usually used in conjunction with STOP for debugging. When ex­
ecution is stopped, intermediate values may be examined and changed
using direct mode statements. Execution may be resumed with CONT or
a direct mode GOTO, which resumes execution at a specified line num­
ber. CONT may be used to continue execution after an error has occurred.

CONT is invalid it the program has been edited during the break.

Example

See STOP Statement, Section 7 .155.

7-26

n
r,

n

n
n
r,

n

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.24 COS Function

Syntax
COS(X)

Purpose
To return the cosine of X, where X is in radians.

Remarks
The calculation of COS(X) is performed in single precision, unless the /D
switch is specified when BASIC is invoked and either the argument that
receives the value of the cosine is a double precision variable or (X) is
specified a double precision number with the # sign.

Example
10 X = 2*COS(.4)
20 PRINT X

will yield

1.842122

7-27

Ka
yp
roJ
ou
rna
l

7 .25 CSNG Function

Syntax

CSNG(X)

Purpose
To convert X to a single precision number.

Example

10 A# = 975.3421115#
20 PRINT A#, CSNG(A#)

will yield

975.3421115 975.3421

See the CINT and CDBL functions for converting numbers to the integer
and double precision data types, respectively.

7-28

n
n
n
r,

n
r,
r,
r,
r,

n
n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
.

U

.

u
u

7.27 CSRLIN Function

Syntax

CSRLIN

CSRLIN returns the current line position.

Purpose

To obtain the current line position of the cursor in a numeric variable.

Remarks

To return the current column position, use the POS function (Section

7.124).

Example

10 y = CSRLIN 'Record current line.
20 x = POS(0) 'Record current column.
30 LOCATE 24, 1
40 PRINT "HELLO"
50 LOCATE x,y 'Restore position to old line and column.

7-29

Ka
yp
roJ
ou
rna
l

7 .28 CVi, CVS, CVD Functions

Syntax
CV!(< 2-byte string >)
CVS(< 4-byte string >)
CVD(< 8-byte string >)

Purpose
To convert string values to numeric values.

Remarks
Numeric values that are read in from a random disk file must be converted
from strings back into numbers. CVI converts a 2-byte string to an integer.
CVS converts a 4-byte string to a single precision number. CVD converts
an 8-byte string to a double precision number.

Example
70 FIELD #1,4 AS N$, 12 AS B$, ...
80 GET #1
9p Y = CVS(N$)

See also MKI$, MKS$, MKD$ Functions, Section 7.96.

7-30

n
r,

n
r,
r,
r,

n
n
n
r,

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .29 DATA Statement

Syntax
DATA < list of constants >

Purpose
To store the numeric and string constants that are accessed by the pro­
gram's READ statement(s). (See READ Statement, Section 7.133.)

Remarks
DATA statements are nonexecutable and may be placed anywhere in the
program. A DATA statement may contain as many constants as will fit on
a line (separated by commas). Any number of DATA statements may be
used in a program. READ statements access DATA statements in order
(by line number). The data contained therein may be thought of as one
continuous list of items, regardless of how many items are on a line or
where the lines are placed in the program.

< list of constants> may contain numeric constants in any format; i.e.,
fixed-point, floating-point, or integer.
(No numeric expressions are allowed in the list.) String constants in DATA
statements must be surrounded by double quotation marks only if they
contain commas, colons, or significant leading or trailing spaces. Other­
wise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the RE­
STORE statement (Section 7.137).

Example
See READ Statement, Section 7.133.

7-31

Ka
yp
roJ
ou
rna
l

7 .30 DATE$ Statement

Syntax

DATE$ = < string expression >

< string expression> must be a string in one of the following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

Purpose

To set the current date. This statement complements the DATE$ function,

which retrieves the current date.

Example

10 DATE$= "07-01-1983"

The current date is set at July 1, 1983.

7-32

n
n
n
n
n
n
n
n
r,
r,

n
r,
r,

n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .31 DATE$ Function

Syntax

DATE$

Purpose
To retrieve the current date. (To set the date, use the DATE$ statement,
described in Section 7.30.)

Remarks
The DATE$ function returns a ten-character string in the form mm-dd­
yyyy, where mm is the month (01 through 12), dd is the day (01 through
31), and yyyy is the year (1980 through 2099).

Example

10 PRINT DATE$

The DATE$ function prints the date, calculated from the date set with the
DATE$ statement.

7-33

Ka
yp
roJ
ou
rna
l

7 .32 DEF FN Statement

Syntax

DEF FN < name> [(< parameter list>)] = < function definition >

Purpose

To define and name a function that is written by the user.

Remarks

1 <name> must be a legal variable name. This name, preceded by FN,
becomes the name of the function.

< parameter list> consists of those variable names in the function defi­
nition that are to be replaced when the function is called. The items in the
list are separated by commas.

< function definition > is an expression that performs the operation of
the function. It is limited to one logical line. Variable names that appear in
this expression serve only to define the function; they do not affect pro­
gram variables that have the same name. A variable name used in a func­
tion definition may or may not appear in the parameter list. If it does, the
value of the parameter is supplied when the function is called. Otherwise,
the current value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis, the
argument variables or values that will be given in the function call.

This statement may define either numeric or string functions. If a type is
specified in the function name, the value of the expression is forced to
that type before it is returned to the calling statement. If a type is specified
in the function name and the argument type does not match, a "Type
mismatch" error occurs.

A DEF FN statement must be encountered before the function it defines
may be called. If a function is called before it has been defined, an "Un­
defined user function" error occurs. DEF FN is illegal in the direct mode.

7-34

n
n
n
r,
r,
r,

n
r,

n
n
n
n
r,

n
r,
r,

Ka
yp
roJ
ou
rna
l

u
Exa,mple

u 4·10 DEF FNAB(X,Y) = X/\3/Y/\2
4,20 T = FNAB(l,J)

u Line 410 defines the function FNAB.
The function is called in line 420.

u
u
u
u
u
u
u
u
u
u
u
LJ
u

7-35

Ka
yp
roJ
ou
rna
l

7 .33 DEFINT /SNG/DBL/STR Statements

Syntax

DEF< type> < range(s) of letters>

where <type> is INT, SNG, DBL, or STR

Purpose

To declare variable types as integer, single precision, double precision, or
string.

Remarks:
Any variable names beginning with the letter(s) specified in < range of
letters > will be considered the type of variable specified in the < type >
portion of the statement. However, a type declaration character always
takes precedence over a DEFtype statement. (See "Variable Names and
Declaration Characters," Section 3.3.1.)

If no type declaration statements are encountered, GW-BASIC assumes
that all variables without declaration characters are single precision
variables.

Examples
10 DEFDBL L-P

All variables beginning with the letters L, M, N, 0, and P will be double
precision variables.

10 DEFSTR A

All variables beginning with the letter A will be string variables.

n
n
n
r,

n
n
n
n
n
r,
r,

10 DEFINT I-N,W-Z n
All variables beginning with the letters I, J, K, L, M, N, W, X, Y, Z will be n·
integer variables.

7-36

n
n
n

Ka
yp
roJ
ou
rna
l

u
LJ
u
u
LJ
u
u
u
u
u
u
u
u
u
u
u

7 .34 DEF SEG Statement

Syntax
DEF SEG [= < address >]

where <address> is a numeric expression returning an unsigned inte­
ger in the range Oto 65535.

Purpose
To assign the current segment address to be referenced by a subsequent
BLOAD, BSAVE, CALL, CALLS, or POKE statement or by a USR or PEEK
function.

Remarks
The address specified is saved for use as the segment required by BLOAD,
BSAVE, CALL, CALLS, POKE, USR, and PEEK.

Entry of any value outside the <address> range 0 through 65535 will
result in an "Illegal function call" error, and the previous value will be
retained.

If the <address> option is omitted, the segment to be used is set to the
GW-BASIC data segment. This is the initial default value.

Note
DEF and SEG must be separated by a space. Otherwise, GW-BASIC will
interpret the statement DEFSEG = 100 to mean "assign the value 100 to
the variable DEFSEG."

Example
10 DEF SEG = &HB800 'Seg segment at B800 Hex
20 DEF SEG 'Restore segment to GW-BASIC data segment

Ka
yp
roJ
ou
rna
l

7 .35 DEF USR Statement

Syntax
DEF USA[< digit>] = < integer expression >

Purpose

To specify the starting address of an assembly language subroutine.

Remarks
<digit> may be any digit from Oto 9. The digit corresponds to the num­
ber of the USA routine whose address is being specified. If <digit> is
omitted, DEF USAO is assumed. The value of < integer expression> is
the starting address of the USA routine.

Any number of DEF USA statements may appear in a program to redefine
subroutine starting addresses, thus allowing access to as many subrou­
tines as necessary.

Example

200 DEF USAO = 24000
210 X = USAO{Y /\2/2.89)

7-38

n
n
n
n
n
n
n
r,

n
r,

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
LJ

u
LJ

u

7 .36 DELETE Command

Syntax

DELETE {[<line number>][-< line number>][< line number>-]}

Purpose

To delete program lines.

Remarks

Microsoft GW-BASIC always returns to command level after a DELETE is
executed. tf < line number> does not exist, an "Illegal function call"
error occurs.

Examples

DELETE 40
Deletes line 40.

DELETE 40-100
Deletes lines 40 through 100, inclusive.

DELETE-40
Deletes all lines up to and including line 40.

u DELETE40-

u
u
u
u
LJ

LJ

u

Deletes lines 40 through the end, inclusive.

7-39

Ka
yp
roJ
ou
rna
l

7.37 DIM Statement

Syntax

DIM < list of subscripted variables>

Purpose

To specify the maximum values for array variable subscripts and allocate
storage accordingly.

Remarks

If an array variable name is used without a DIM statement, the maximum
value of the array's subscript(s) is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a "Subscript out of range"
error occurs. The minimum value for a subscript is 0, unless otherwise
specified with the OPTION BASE statement (see Section 7 .111).

The DIM statement sets all the elements of the specified numerical arrays
to an initial value of zero and elements of string arrays to null strings.

Theoretically, the maximum number of dimensions allowed in a DIM
statement is 255. In reality, however, that number would be impossible,
since the name and punctuation are also counted as spaces on the line,
and the line itself has a limit of 255 characters.

If the default dimension (10) has already been established for an array
variable, and that variable is later encountered in a DIM statement, an
"Array already dimensioned" error results. Therefore, it is good program­
ming practice to put the required DIM statements at the beginning of a
program, outside of any processing loops.

Example

10 DIM A(20)
20 FOR I = 0 TO 20
30 READ A(I)
40 NEXT I ...

7-40

n
r,

n
n
n
n
r,

n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .38 DRAW Statement

Syntax

DRAW < string expression >

where < string expression > is one of the subcommands described be­
low in "Remarks."

Purpose

To draw an object defined by the subcommands described below.

Remarks

The DRAW statement combines many of the capabilities of the other
graphics statements into the Graphics Macro Language. The Graphics
Macro Language defines a set of characteristics that comprehensively
describe a particular image. In this case, the characteristics include mo­
tion (up, down, left, right), color, angle, and scale factor.

Each of the following subcommands initiates movement from the current
graphics position. This is usually the coordinate of the last graphics point
plotted with another GML command. The current position defaults to the
center of the screen when a program is run.

Prefixes
The following prefix commands may precede any of the movement
commands:

B Move but don't plot any points.

N Move but return to original position when done.

Cursor Movement
The following commands specify movement in units. The size of a unit
may be modified by the S command. The default unit size is one point. If
no argument is supplied, the cursor is moved one unit.

U [< n >] Move up (scale factor *n) points
D [< n >] Move down
L [< n >] Move left
R [< n >] Move right
E [< n >] Move diagonally up and right
F [< n >] Move diagonally up and left
G [< n >] Move diagonally down and left
H [< n >] Move diagonally down and right

7-41

Ka
yp
roJ
ou
rna
l

Other Commands
M < x,y > Move absolute or relative. If xis preceded by a plus (+)or
minus (-), x and y are added to the current graphics position and con­
nected with the current position by a line. Otherwise, a line is drawn to
point x,y from the current cursor position.

A < n > Set angle n. n may range from Oto 3, where 0 is 0 degrees, 1 is
90, 2 is 180, and 3 is 270. Figures rotated 90 or 270 degrees are scaled
so they will appear the same size as with 0 or 180 degrees on a monitor
screen with the standard aspect ratio of 4/3.

TA <degrees> - rotate <degrees> . DEGREES must be in the range
-360 to 360 degrees. If DEGREES is positive, rotation is counter- clock­
wise. If DEGREES is negative, rotation is clockwise.

Example:

FOR D = 0 TO 360 'Draw spokes
DRAW "TA= D;NU50"
NEXTD

C < n > Set color n.

S < n > Set scale factor. n may range from 1 to 255. The scale factor
multiplied by the distances given with U, D, L, R, or relative M commands
gives the actual distance traveled.

X < string expression> Execute substring. This powerful command al­
lows you to execute a second substring from a string, much like GOSUB
in Microsoft BASIC. You can have one string execute another, which ex­
ecutes a third, and so on.

Numeric arguments can be constants like "123" or"= <variable>"
where <variable> is the name of a variable.

P < paintcolor > , < bordercolor > . < paintcolor > is an integer paint
attribute, and < bordercolor > is the integer border attribute. "Tile"
painting is not supported ln Draw.

7-42

. n
n
n
n
n
n
n
n
" , ~
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Examples

DRAW "U50R50D50L50" 'Draw a box
DRAW"BE10"
'Move up and right into box
DRAW "P1,3"
• Paint interior

10 U$ = "U30;"
20 D$ = "D30;"
30 L$ = "L40;"
40 R$ = "R40;"
50 BOX$= LI$ + R$ + D$ + L$
60 DRAW "XBOX$;"

The statement DRAW "XU$; XR$: XO$; XL$:" would have drawn the same
box.

7-43

Ka
yp
roJ
ou
rna
l

7 .39 EDIT Command

Syntax

EDIT < line number>

Purpose

To edit the specified line.

Remarks

When EDIT is used, GW-BASIC types the specified program line and
leaves the user in direct mode. The cursor is placed on the first character
of the program line.

See Chapter 4, "Writing Programs Using the GW-BASIC Editor," for full
details on screen editing capabilities.

7-44

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
LJ
u
u
u
u

7.40 END Statement

Syntax

END

Purpose

To terminate program execution, close all files, and return to command

level.

Remarks

END statements may be placed anywhere in the program to terminate
execution. Unlike the STOP statement, END does not cause a "Break in

line nnnnn" message to be printed. An END statement at the end of a

program is optional. Microsoft GW-BASIC always returns to command

level after an END is executed.

Example

520 IF K > 1000 THEN END ELSE GOTO 20

7-45

Ka
yp
roJ
ou
rna
l

7 .41 ENVIRON Statement

Syntax

ENVIRON < string >

Purpose

To modify a parameter in MS-DOS's Environment String Table.

Remarks

<string> is a string expression. The value of the expression must be
of the form <parameter-id> = <text> , or <parameter-id>
<text> . Everything to the left of the equal sign or space will be assumed
to be a parameter, and everything to the right, text.

If the parameter-id has not previously existed in the Environment String
Table, it will be appended to the end of the table. If the parameter-id exists
on the table when the ENVIRON statement is executed, the existing pa­
rameter-id is deleted and the new one appended to the end of the table.

The text string is the new parameter text. If the text is a null string(""), or
consists only of a semicolon (";") then the existing parameter-id will be
removed from the Environment String Table, and the remaining body of
the file compressed.

This statement could be used to change the "PATH" parameter tor a child
process, or to pass parameters to a child by inventing a new Environment
Parameter. (See the PATH Command in the MS-DOS User's Guide.)

Errors include parameters that are not strings and an "out of memory"
when no more space can be allocated to the Environment String Table.
The amount of free space in the table will usually be quite small.

Example

The following MS-DOS command will create a default "PATH" to the root
directory on DISK A:

PATH= A:

The PATH may be changed to a new value by:

ENVIRON "PATH= A:SALES; A:ACCOUNTING"

A new parameter may be added to the Environment String Table:

ENVIRON "SESAME= PLAN"

7-46

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ

The Environment String Table now contains:

PATH= A:SALES; A:ACCOUNTING SESAME= PLAN

If you then entered:

ENVIRON "SESAME= ;"

then you would have deleted SESAME, and you would have a table
containing:

PATH= A:SALES; A:ACCOUNTING

Also see ENVIRON$ Function and SHELL Command, Sections 7.42 and
7.148, respectively.

7-47

Ka
yp
roJ
ou
rna
l

7 .42 ENVIRON$ Function

Syntax

ENVIRON$ (< string parameter>)
ENVIRON$ { < n >)

where n is an integer.

Purpose

To retrieve a parameter string from BASIC's Environment String Table.

Remarks
The string result returned by the ENVIRON$ function may not exceed 255
characters. If a parameter name is specified, and if it either cannot be
found or it has no text following it, a null string is returned by ENVIRON$.
When the parameter name is specified, ENVIRON$ returns all the asso­
ciated text that follows " < parameter> = " in the Environment String
Table.

If the argument is numeric, the nth string in the Environment String Table
is returned. It includes all the text, including the parameter name. If the
nth string does not exist, a null string is returned.

7-48

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .43 EOF Function

Syntax

EOF(< file number>)

Purpose

To test for the end-of-file condition.

Remarks

Returns -1 (true) if the end of a sequential file has been reached. Use EOF
to test for end-of-file while inputting, to avoid "Input past end" errors.

When EOF is used with random access files, it returns "true" if the last

executed GET statement was unable to read an entire record because of

an attempt to read beyond the end.

When EOF is used with a communications device, the definition of the

end-of-file condition is dependent on the mode (ASCII or binary) that the

device was opened in. In binary mode, EOF is true when the input queue

is empty (LOC(n) = 0). It becomes false when the input queue is not empty.

In ASCII mode, EOF is false until a Control-Z is received, and from then

on it will remain true until the device is closed.

Example

10 OPEN "l",1,"OATA"
20C=0
30 IF EOF(1) THEN 100
40 INPUT #1,M(C)
50 C = C + 1 :GOTO 30

7-49

Ka
yp
roJ
ou
rna
l

7 .44 ERASE Statement

Syntax
ERASE < list of array variables>

Purpose
To eliminate arrays from memory.

Remarks

Arrays may be redimensioned after they are erased, or the previously
allocated array space in memory may be used for other purposes. If an
attempt is made to redimension an array without first erasing it, a "Dupli­
cate definition'' error occurs.

Example

450 ERASE A,B
460 DIM 8(99)

7-50

n
n
n
r,

n
n
n ,,
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.45 ER0EV,ERDEV$ FUNCTIONS

Syntax

ERDEV
ERDEV$

Purpose

To provide a way to obtain device-specific status information.
ERDEV is an integer function which contains the error code returned by
the last device to declare an error. ERDEV$ is a string function which
contains the name of the Device Driver which generated the error.

Remarks

These functions may not be set by the programmer.

ERDEV is set by the Interrupt X'24' handler when an error within DOS is
detected.

ER DEV will contain the INT 24 error code in the lower eight bits.

Example

If a user-installed Device Driver, ''MYLPT2", ran out of paper, and the
Driver's error number for that problem was "9":

PRINT ERDEV, ERDEV$

will yield

9 MYLPT2

7-51

Ka
yp
roJ
ou
rna
l

7 .46 ERR And ERL FUNCTIONS

Syntax

ERR
ERL

Remarks

When an error handling routine is entered, the function ERR contains the
error code for the error and the function ERL contains the line number of
the line in which the error was detected. The ERR and ERL functions are
usually used in IF ... THEN statements to direct program flow in the error
handling routine.

With the GW-BASIC Interpreter, if the statement that caused the error
was a direct mode statement, ERL will contain 65535.

If the line number is not on the right side of the relational operator, it
cannot be renumbered with RENUM. Because ERL and ERR are re­
served words, neither may appear to the left of the equal sign in a LET
(assignment) statement. Microsoft GW-BASIC error codes are listed in
Appendix B.

Example

To test whether an error occurred in a direct statement, the user could
enter:

IF 65535 = ERL THEN PRINT "Direct Error"

When testing within a program, use:

IF ERR= error code THEN .. .

IF ERL= line number THEN .. .

7-52

n
n
n
n
r,

n
n
n
r,

n
n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
LJ
u
u
u

7.47 ERROR Statement

Syntax

ERROR < integer expression >

Purpose

To simulate the occurrence of a BASIC error, or to allow error codes to
be defined by the user.

Remarks

ERROR can be used as a statement (part of a program source line) or as
a command (in direct mode).

The value of < integer expression > must be greater than O and less
than 256. If the value of < integer expression > equals an error code
already in use by BASIC (see Appendix B), the ERROR statement will
simulate the occurrence of that error and the corresponding error mes­
sage will be printed. (See Example 1.)

To define your own error code, use a value that is greater than any used
by Microsoft GW-BASIC error codes. (It is preferable to use the highest
available values, so compatibility may be maintained when more error
codes are added to Microsoft GW-BASIC.) This user-defined error code
may then be conveniently handled in an error handling routine. (See Ex­
ample 2.)

If an ERROR statement specifies a code for which no error message has
been defined, Microsoft GW-BASIC responds with the "Unprintable er­
ror" error message. Execution of an ERROR statement for which there is
no error handling routine causes an error message to be printed and
execution to halt.

Example 1
20 S = 15
30ERROR S
40 END

will yield

String too long in line 30

7-53

Ka
yp
roJ
ou
rna
l

Or, in direct mode (interpreter only):

Ok
ERROR15
String too long
Ok

Example 2

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET"; B
130 IF B > 5000 THEN ERROR 210

(You type this line.)
(GW-BASIC types this line.)

400 IF ERR= 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL= 130 THEN RESUME 120

7-54

n
r,

n
r,
r,

n
n ,,
n
r,

n
r,

n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .48 EXP Function

Syntax
EXP(X)

Purpose
To return e (base of natural logarithms) to the power of X. X must be < =
88.02969.

Remarks
If x is greater than 88.02969, the "Overflow" error message is displayed,
machine infinity with the appropriate sign is supplied as the result, and
execution continues.

The EXP function will return a single precision value unless the /D switch
was used when BASIC was invoked and a double precision variable is
used as the argument.

Example
10X=5
20 PRINT EXP(X-1)

will yield

54.59815

7-55

Ka
yp
roJ
ou
rna
l

7.49 FIELD Statement

Syntax
FIELD[#)< file number>,< field width> AS < string variable> ...

Purpose

To allocate space for variables in a random file buffer.

Remarks

Before a GET statement or PUT statement can be executed, a FIELD
statement must be executed to format the random file buffer.

< file number> is the number under which the file was opened. < field
width > is the number of characters to be allocated to < string variable> .

The total number of bytes allocated in a FIELD statement must not ex­
ceed the record length that was specified when the file was opened.
Otherwise, a ''Field overflow" error occurs. (The default record length is
128 bytes.)

Any number of FIELD statements may be executed for the same file. All
FIELD statements that have been executed will remain in effect at the
same time.

Note

Do not use a fielded variable name in an INPUT or LET statement. Once
a variable name is fielded, it points to the correct place in the random file
buffer. If a subsequent INPUT or LET statement with that variable name
is executed, the variable no longer refers to the random file record buffer,
but to the variables stored in string space.

Example 1
FIELD 1,20 AS N$, 10 AS ID$,40 AS ADD$

Allocates the first 20 bytes in the random file buffer to the string variable
N$, the next 10 bytes to ID$, and the next 40 to ADD$. FIELD does not
place any data in the random file buffer. (See also GET Statement, Sec­
tion 7.54, and LSET and RSET Statements, Section 7.91 .)

7-56

r,

n
r,
r,
r,
r,
r,
r,
r,

n
n
n ..

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Example 2
10 OPEN "R,"#1,"A:PHONELST",35
15 FIELD #1,2 AS RECNBR$,33 AS DUMMY$
20 FIELD #1,25 AS NAMES, 10 AS PHONENBR$
25 GET #1
30 TOTAL= CVl(RECNBR)$
35 FOR I = 2 TO TOTAL
40GET #1, I
45 PRINT NAMES, PHONENBR$
50 NEXT I

tllustrates a multiple defined FIELD statement. In statement 15, the 35-
byte field is defined for the first record to keep track of the number of
records in the file. In the next loop of statements (35-50), statement 20
defines the field for individual names and phone numbers.

Example 3
10 FOR LOOP%= 0 TO 7
20 FIELD #1,(LOOP%*16) AS OFFSET$,16 AS A$(LOOP%)
30 NEXT LOOP%

Shows the construction of a FIELD statement using an array of elements
of equal size. The result is equivalent to the single declaration:

FIELD #1, 16 AS A$(0), 16 AS A$(1), ... , 16 AS A$(6), 16 AS A$(7)

Example 4
10 DIM SIZE% (4%): REM ARRAY OF FIELD SIZES
20 FOR LOOP% = 0 TO 4%
30 READ SIZE% (LOOP%)
40 NEXT LOOP%
59 DATA 9, 10, 12,21,41

120 DIM A$(4%): REM ARRAY OF FIELDED VARIABLES
130 OFFSET% = 0
140 FOR LOOP%= 0 TO 4%
150 Fl ELD #1,OFFSET¾ AS OFFSET$,SIZE%(LOOP%) AS A$(LOOP%)
160 OFFSET%= OFFSET%+ SIZE%(LOOP%)
170 NEXT LOOP%

Creates a field in the same manner as Example 3. However, the element
size varies with each element. The equivalent declaration is:

FIELD #1,SIZE%(0) AS A${0),SIZE%(1) AS A$(1), ... SIZE%(4%) AS
A$(4%)

7-57

Ka
yp
roJ
ou
rna
l

7 .50 FILES Statement

Syntax

FILES [< filespec >]

where < filespec > includes either a filename or a pathname and op­
tional device designation.

Purpose

To print the names of files residing on the specified disk.

Remarks

If < filespec > is omitted, all the files on the currently selected drive will
be listed. < filespec > is a string formula which may contain question
marks (?) or asterisks (*) used as wild cards. A question mark will match
any single character in the filename or extension. An asterisk will match
one or more characters starting at that position. The asterisk is a short­
hand notation for a series of question marks. The asterisk need not be
used in the case where all the files on a drive are requested, e.g., FILES

If a filespec is used, and no explicit path is given, the current directory is
the default.

Examples

FILES

Shows all files on the current directory.

FILES "*.BAS"

Shows all files with extension .BAS.

FILES "B:*.*"

Shows all files on drive B.

FILES "B:" (equivalent to "B:*.*")

FILES "TEST?.BAS"

Shows all five-letter files whose names start with "TEST" and end with
the .BAS extension.

7-58

n
n
n
r,
r,
r,

n
r,

n
r,

n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

FILES "\SALES"

If SALES is a subdirectory of the current directory, this statement displays
SALES< dir >. If SALES is a file in the current directory, this statement
displays SALES.

FILES "\SALES\MARY"
Displays MARY < dir > if MARY is a subdirectory of SALES or if MARY
is a file, displays its name.

7-59

Ka
yp
roJ
ou
rna
l

7.51 FIX Function

Syntax

FIX(X)

Purpose

To return the truncated integer part of X.

Remarks

FlX(X) is equivalent to SGN(X)*INT(ABS(X)). The difference between FIX
and INT is that FIX does not return the next lower number for negative X.

Examples
PRINT FIX(58.75)

will yield

58

PRINT FIX(-58.75)

will yield

-58

7-60

n
n
r,

n
n
r,

n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
LJ
u
u
u
u

7.52 FOR ... NEXT Statement

Syntax

FOR <variable> = x TO y [STEP z]

NEXT [< variable>][,< variable> ...]

where x, y, and z are numeric expressions.

Purpose

To allow a series of instructions to be performed in a loop a given number
of times.

Remarks

< variable > is used as a counter. The first numeric expression (x) is the
initial value of the counter. The second numeric expression (y) is the final
value of the counter. The program lines following the FOR statement are
executed until the NEXT statement ls encountered. Then the counter is
adjusted by the amount specified by STEP. A check is performed to see if
the value of the counter is now greater than the final value {y). If it is not
greater, GW-BASIC branches back to the statement after the FOR state­
ment and the process is repeated. 1f it is greater, execution continues with
the statement following the NEXT statement. This is a FOR ... NEXT loop.

lf STEP is not specified, the increment is assumed to be one. If STEP is
negative, the final value of the counter is set to be less than the initial
value. The counter is decreased each time through the loop. The loop is
executed until the counter is less than the final value.

The counter must be an integer or single precision numeric constant. If a
double precision numeric constant is used, a "Type mismatch" error will
result.

The body of the loop is skipped if the initial value of the loop times the
sign of the STEP exceeds the final value times the sign of the STEP.

Nested Loops
FOR .. NEXT loops may be nested; that is, a FOR ... NEXT loop may be
placed within the context of another FOR ... NEXT loop. When loops are
nested, each loop must have a unique variable name as its counter. The
NEXT statement for the inside loop must appear before that for the out­
side loop. If nested loops have the same end point, a single NEXT state­
ment may be used for all of them.

7-61

Ka
yp
roJ
ou
rna
l

The variable(s) in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding FOR statement, a
"NEXT without FOR" error message is issued and execution is terminated.

Example 1
10 K = 10
20 FOR I = 1 TO 10 STEP 2
30 PRINT I;
40 LET K = K + 10
50 PRINT K
60 NEXT I

will yield

1 20
3 30
5 40
7 50
9 60

In this example, the loop counter, I, advances + 2 on each cycle. The
loop prints the counter, increments K, and prints K.

Example 2
10J = 0
20 FOR I = 1 TO J
30 PRINT I
40 NEXT I

In this example, the loop does not execute because the initial value of the
loop exceeds the final value.

Example3
10 I= 5
20 FOR I= 1 TO I + 5
30 PRINT I;
40 NEXT I

will yield

12345678910

In this example, the loop executes ten times. The final value for the loop
variable is always set before the initial value is set.

7-62

n
r,

n1

n
n
r,

n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
LJ
u
u
u
u
u

7 .53 FRE Function

Syntax
FRE(O)
FRE('"')

Purpose
With a numeric argument, FRE returns the number of bytes in memory
that are not being used by Microsoft GW-BASIC. Arguments to FRE are
dummy arguments.

FRE("") forces a garbage collection before returning the number of free
bytes.

Remarks

GW-BASIC will not initiate garbage collection until all free memory has
been used up. Therefore, using FRE('"') periodically will result in shorter
delays for each garbage collection.

Example
PRINT FRE(O)

might yield

14542

7-63

Ka
yp
roJ
ou
rna
l

7 .54 GET Statement - File 1/0

Syntax

GET[#]< file number>[,< record number>]

Purpose

To read a record from a random disk file into a random buffer.

Remarks

< file number> is the number under which the file was OPENed. If
< record number> is omitted, the next record (after the last GET) is read
into the buffer. The largest possible record number is 16,777,215.

The GET and PUT statements allow fixed-length input and output for GW­
BASIC COM files. However, because of the low performance associated
with telephone line communications, we recommend that you do not use
GET and PUT for telephone communication.

Example

GET #1,75

Note

After a GET statement has been executed, INPUT# and LINE INPUT#
may be executed to read characters from the random file buffer. The EOF
function may be used after a GET statement to see if that GET was be­
yond the end of file marker.

7-64

n
n
n
n
n
n
n
n
n

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
LJ
u
u
LJ
u
u
u
u
• J
LJ

u
u
u
u

7 .55 GET Statement - Graphics

Syntax

GET (x1 ,y1)-(x2,y2), < array name>

used with

PUT (x1 ,y1), < array name > [,action verb]

where (x1 ,y1) -(x2,y2) is a rectangular area on the display screen. The
rectangle is defined with (x1 ,y1) and (x2,y2) being the upper-left and the
lower right vertices.

< array name > is the name assigned to the place that will hold the im­
age. The array can be any type except string. It must be dimensioned
large enough to hold the entire image. Unless the array is type integer,
the contents of the array after a GET will be meaningless when inter­
preted directly (see below).

Purpose
The GET and PUT statements are used together to transfer graphic im­
ages to and from the screen.

The GET statement transfers the screen image bounded by the rectangle
described by the specified points into the array.

The PUT statement transfers the image stored in the array onto the screen.

Remarks
One of the most useful things that can be done with GET and PUT is
animation. (See PUT Statement, Section 7 .131 for discussion of animation.)

To calculate the proper array dimension, use the following formula:
4 + INT((X* < bitsperpixel > + 7)/8)*Y
where X and Y are the X and Y length of the rectangle to be used for
the GET, and < bitsperpixel > is the number of bits in a pixel (2 in
med. res. and 1 in high res.).

7-65

Ka
yp
roJ
ou
rna
l

7.56 GOSUB ... RETURN Statements

Syntax

G,OSUB < line number>
R.ETURN [<line number>]

Purpose

To branch to, and return from, a subroutine.

Remarks

< line number> in the GOSUB statement is the first line of the subroutine.

A subroutine may be called any number of times in a program. A subrou­
tine also may be called from within another subroutine. Such nesting of
subroutines is limited only by available memory.

Simple RETURN statement(s) in a subroutine cause Microsoft GW-BASIC
to branch back to the statement following the most recent GOSUB state­
ment. A subroutine may contain more than one RETURN statement.

The < line number> option may be included in the RETURN statement
to return to a specific line number from the subroutine. Use this type of
return with care, however, because any other GOSUBs, WHILEs, or FORs
that were active at the time of the GOSUB will remain active, and errors
such as "FOR without NEXT" may result.

Subroutines may appear anywhere in the program, but it is recommended
that the subroutine be readily distinguishable from the main program. To
prevent inadvertent entry into the subroutine, precede it with a STOP, END,
or GOTO statement that directs program control around the subroutine.

Example

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT "IN";
60 PRINT "PROGRESS"
70 RETURN

will yield

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

7-66

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

LJ
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ
u

7.57 GOTO Statement

Syntax

GOTO < line number>

Purpose

To branch unconditionally to a specified line number.

Remarks

If < line number> is an executable statement, that statement and those
following are executed. If it is a nonexecutable statement, execution pro­
ceeds at the first executable statement encountered after < line
number>.

Example

10 READ R
20 PRINT "R = ";R,
30 A= 3.14 *R!\2
40 PRINT "AREA = ";A
50 GOTO 10
60 DATA 5,7,12

will yield

R = 5
R = 7
R = 12
Out of DATA in 10

AREA= 78.5
AREA = 153.86
AREA = 452.16

7-67

Ka
yp
roJ
ou
rna
l

7 .58 HEX$ Function

Syntax
HEX$(X)

Purpose
To return a string that represents the hexadecimal value of the decimal
argument.

Remarks

Xis rounded to an integer before HEX$(X) is evaluated.

Example
10 INPUT X
20 A$ = H EX$(X)
30 PRINT X "DECIMAL IS " A$ "HEXADECIMAL"

will yield

? 32
32 DECIMAL IS 20 HEXADECIMAL

See the OCT$ function, Section 7.100, for details on octal conversion.

7-68

n
n
n
n
r,
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
LJ

u
u
u
u

7.59 IF ... THEN[... ELSE]/IF ... GOTO Statements

Syntax

IF <expression> [,]THEN { < statement(s) >

[,[ELSE { < statement(s) > I < line number> }]]

Syntax

IF < expression > [,]GOTO < line number>

[.[ELSE { < statement(s) > I < line number> }]]

Purpose

< line number> }

To make a decision regarding program flow based on the result returned
by an expression.

Remarks
If the result of <expression> is not zero, the THEN or GOTO clause is
executed. THEN may be followed by either a line number for branching or
one or more statements to be executed. GOTO is always followed by a
line number. If the result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if present, is executed. Execution
continues with the next executable statement. A comma is allowed before
THEN.

Nesting of IF Statements

IF. .. THEN ... ELSE statements may be nested. Nesting is limited only by
the length of the line. For example,

IF X>Y THEN PRINT "GREATER" ELSE IF X<Y THEN PRINT "LESS
THAN" ELSE PRINT "EQUAL''

is a legal statement. If the statement does not contain the same number
of ELSE and THEN clauses, each ELSE is matched with the closest un­
matched THEN. For example

IF A= B THEN IF B = C THEN PRINT "A= C" ELSE PRINT "A< > C"

will not print ''A< > C'' when A< > B.

If an IF ... THEN statement is followed by a line number in direct mode, an
"Undefined line" error results, unless a statement with the specified line
number had previously been entered in indirect mode.

7-69

Ka
yp
roJ
ou
rna
l

Note

When using IF to test equality for a value that is the result of a floating­
point computation, remember that the internal representation of the value
may not be exact. Therefore, the test should be against the range over
which the accuracy of the value may vary. For example, to test a com­
puted variable A against the value 1.0, use:

IF ABS (A-1.0) < 1.0E-6 THEN ...

This test returns true if the value of A is 1.0 with a relative error of less
than 1.0E-6.

Example 1
200 IF I THEN GET#1,I

This statement GETs record number I if I is not zero.

Example2
100 IF(I < 20)'(1 > 10) THEN DB= 1979-1 :GOTO 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if I is greater than 10 and less than 20.
If I is in this range, DB is calculated and execution branches to line 300. If
I is not in this range, execution continues with line 110.

Example3
210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the screen or the line
printer, depending on the value of the variable IOFLAG. If IOFLAG is zero,
output goes to the line printer; otherwise, output goes to the screen.

7-70 •

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
LJ
u
u
u
u
u
u
u
u
u
u
u
u

7.60 INKEY$ Function

Syntax

INKEY$

Purpose

To return either a one-character string containing a character read from

the standard input device or a null string if no character is pending there.
The keyboard is usually the standard input device.

Remarks

No characters will be echoed. All characters are passed through to the
program except for Break, Ctrl-Numlock, Ctrl-Alt-Del, and PrtSc.

Example

1000 TIMED INPUT SUBROUTINE
1010 RESPONSE$= '"'
1020 FOR 1% = 1 TO TIMELIMIT%
1030 A$= INKEY$
1035 IF LEN(A$) = 0 THEN 1060
1040 IF ASC(A$) = 13 THEN TIMEOUT%= 0
1045 IF TIMEOUT%= 0 THEN RETURN
1050 RESPONSE$= RESPONSE$+ A$
1060 NEXT 1%
1070 TIMEOUT%= 1: RETURN

Note

If 00 is returned, it is the first byte of a two-byte key code. The next byte
returned will be the second byte of the code.

7-71

Ka
yp
roJ
ou
rna
l

7.61 INP Function

Syntax
INP(I)

Purpose
To return the byte read from port I. I must be in the range O to 65535.

Remarks
INP is the complementary function to the OUT statement.

Example
100 A= INP(54321)

In 8086 assembly language, this is equivalent to:

MOV DX,54321
INAL,DX

7-72

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .62 INPUT Statement

Syntax
INPUT[;] [<"prompt string">;]< list of variables>

Purpose
To allow input from the keyboard during program execution.

Remarks
When an INPUT statement is encountered, program execution pauses
and a question mark is printed to indicate the program is waiting for data.
If < "prompt string" > is included, the string is printed before the ques­
tion mark. The required data is then entered at the keyboard.

BASIC can be re-directed to read from standard input and write to stand­
ard output by providing the input and output filenames when invoking
BASIC. (See Section 2.1, "Invoking BASIC.")

A comma may be used instead of a semicolon after the prompt string to
suppress the question mark. For example, the statement INPUT "ENTER
BIRTH DATE" ,B$ will print the prompt with no question mark.

If INPUT is immediately followed by a semicolon, then the carriage return
typed by the user to input data does not echo a carriage return/linefeed
sequence.

The data that is entered is assigned to the variable(s) given in < variable
list>. The number of data items supplied must be the same as the num­
ber of variables in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item that is input
must agree with the type specified by the variable name. (Strings input to
an INPUT statement need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items or with the wrong
type of value (numeric instead of string, etc.) causes the message "?Redo
from start" to be printed. No assignment of input values is made until an
acceptable response is given.

7-73

Ka
yp
roJ
ou
rna
l

Examples
10 INPUT X
20 PRINT X "SQUARED IS" X/\2
30 END

will yield

? 5 (The 5 was typed in by the user in response to the question mark.)

5 SQUARED IS 25

10 Pl= 3.14
20 INPUT "WHAT IS THE RADIUS"; R
30A=Pl•RA2
40 PRINT "THE AREA OF THE CIRCLE IS"; A
50 PRINT
60GOTO20

will yield
WHAT IS THE RADIUS? 7.4 (User types 7.4)

THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS? etc.

7-74

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ

u

7.63 INPUT# Statement

Syntax

INPUT#< file number> , < variable list>

Purpose

To read data items from a sequential device or file and assign them to
program variables.

Remarks

< file number> is the number used when the file was OPENed for input.
< variable list > contains the variable names that will be assigned to the
items in the file. (The variable type must match the type specified by the
variable name.) With INPUT#, no question mark is printed, as with INPUT.

The data items in the file should appear just as they would if data were
being typed in response to an INPUT statement. With numeric values,
leading spaces, carriage returns, and linefeeds are ignored. The first
character encountered that is not a space, carriage return, or linefeed is
assumed to be the start of a number. The number terminates on a space,
carriage return, linefeed, or comma.

If GW-BASIC is scanning the sequential data file for a string item, it will
also ignore leading spaces, carriage returns, and linefeeds. The first char­
acter encountered that is not a space, carriage return, or linefeed is as­
sumed to be the start of a string item. If this first character is a quotation
mark ("), the string item will consist of all characters read between the
first quotation mark and the second. Thus, a quoted string may not con­
tain a quotation mark as a character. If the first character of the string is
not a quotation mark, the string is an unquoted string, and will terminate
on a comma, carriage return, or linefeed (or after 255 characters have
been read). If end-of-file is reached when a numeric or string item is being
INPUT, the item is terminated.

Example

INPUT 2,A,B,C

7-75

Ka
yp
roJ
ou
rna
l

7.64 INPUT$ Function

Syntax

INPUT$(X[,[#]Y])

Purpose
To return a string of X characters, read from file number Y. If the file num­
ber is not specified, the characters will be read from the standard input
device. If input has not been redirected, the keyboard is the standard
input device).

Remarks

If the keyboard is used for input, no characters will be echoed on the
screen. All control characters are passed through except Break which is
used to interrupt the execution of the INPUT$ function.

BASIC can be re-directed to read from standard input by providing the
input filename on the command line.
(See Section 2.1, "Invoking BASIC.")

Example 1
5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN HEXADECIMAL
10 OPEN"l",1,"DATA"
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1)));
40GOTO20
50 PRINT
60END

Example2

100 PRINT "TYPE PTO PROCEED OR S TO STOP"
110 X$ = INPUT$(1)
120 IF X$ = "P" THEN 500
130 IF X$ = "S" THEN 700 ELSE 100

7-76

n
n
n
n
n
r,

n
n
r,

n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .65 INSTR Function

Syntax

INSTR([l,]X$,Y$}

Purpose

To search for the first occurrence of string Y$ in X$, and to return the
position at which the match is found. Optional offset I sets the position for
starting the search.

Remarks

I must be in the range 1 to 255. If I is greater than the number of charac­
ters in X$ (LEN(X$)), or if X$ is null or Y$ cannot be found, INSTR returns
0. If Y$ is null, INSTR returns I or 1, and if no I was specified, then INSTR
returns 1 . X$ and Y$ may be string variables, string expressions, or string
literals.

Example

10 X$ = "ABCDEB"
20Y$= "B"
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)

will yield

26

1-n

Ka
yp
roJ
ou
rna
l

7 .66 INT Function

Syntax

INT(X)

Purpose
To return the largest integer < = X.

Examples
PRINT INT(99.89)

will yield

99

PRINT INT(-12.11)

will yield

-13

See the CINT and FIX functions, Sections 7.15 and 7.51 , respectively,
which also return integer values.

7-78

n
n ,,
n ,,
n
r,

n
n
n
n ,,
n
n
n
n,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .67 IOCTL Statement

Syntax

IOCTL[#]< filenumber >, <string>

Purpose

To transmit a control character or string to a device driver.

Remarks

IOCTL commands are generally two to three characters followed option­
ally by an alphanumeric argument. An IOCTL$ command string may be
up to 255 bytes long.

The IOCTL statement works only if:

1 . The device driver is installed.

2. The device driver states it processes IOCTL strings.

3. BASIC performs an OPEN on a file on that device.

Most standard MS-DOS device drivers don't process IOCTL strings, and
it is necessary for the programmer to determine whether the specific driver
can handle the command.

Example

If a user wanted to set the page length to 66 lines per page on LPT1 , the
procedure might be:

10 OPEN "\DEV\LPT1" FOR OUTPUT AS #1
20 IOCTL$ #1, "PL66"

Also see the IOCTL$ Function.

7-79

Ka
yp
roJ
ou
rna
l

7 .68 IOCTL$ Function

Syntax
IOCTL$([#]< filenumber >)

Purpose
To receive a control data string from a device driver.

Remarks
The IOCTL$ function is most frequently used to receive acknowledge­
ment that an IOCTL statement succeeded or failed, or to obtain current
status information.

IOCTL$ could be used to ask a communications device to return the cur­
rent baud rate, information on the last error, logical line width, etc.

The IOCTL$ function works only if:

1. The device driver is installed.

2. The device driver states it processes IOCTL strings.

3. BASIC performs an OPEN on a file on that device.

Example
10 OPEN "\DEV\FOO" AS #1
20 IOCTL #1, "RAW"

This example tells the device that the data is raw.

30 IF IOCTL$(1) = "0" THEN CLOSE 1

In this continuation, if the Character Driver 'FOO' responds 'false· from
the raw data mode IOCTL statement, then the file is closed.

Also see the IOCTL Statement.

7-80

n
r,
r,

n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7. 70 KEY Statement

Syntax

KEY n, X$
KEY LIST
KEYON
KEY OFF

n is the number of the function key.

X$ is the text assigned to the-specified key.

Purpose

To assign softkey values to function keys and display the values.

Remarks

The KEY statement allows function keys to be designated for special
"softkey" functions. Each of the function keys may be assigned a 15-byte
string which will be input to GW-BASIC when that key is pressed.

Softkeys can be displayed with the KEY ON, KEY OFF, and KEY LIST
statements.

KEY ON causes the softkey values to be displayed on the bottom line of
the screen.

KEY OFF erases the softkey display from the bottom line, making that line
available for program use. It does not disable the function keys.

KEY LIST displays all softkey values on the screen, with all 15 characters
of each key displayed.

Assigning a null string (string of length 0) to a softkey disables the function
key as a softkey.

If the function key number is not in the range of permissible function key
numbers, an "Illegal function call" error is produced, and the previous key
string expression is retained.

When a softkey is assigned, the INKEY$ function returns one character
of the softkey string per invocation.

7-81

Ka
yp
roJ
ou
rna
l

Example

50 KEY ON 'Displays the softkey on bottom line
60 KEY OFF ' Erases softkey display
70 KEY 1,"MENU" + CHR$(13)'

Assigns the string "MENU" followed by a carriage return to softkey 1.

Such assignments might be used to speed data entry.

80 KEY 1,'"' 'Disables softkey 1

The following routine initializes the first five softkeys:

1 O KEY OFF 'Turns off key display during initialization
20 DATA "EDIT ","LET ","SYSTEM","PRINT ","LPRINT"
30 FOR I = 1 TO 5
40 READ SOFTKEY$(1)
50 KEY I, SOFTKEY$(1)
60 NEXT I
70 KEY ON 'Displays new softkeys

7-82

n
n
n
n
n
n
n
n
n
r,

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u

' u
lu
u
u
u
u

7.71 KEY(n) Statement

Syntax

KEY(n) ON
KEY(n) OFF
KEY(n) STOP

where (n) is the number of a function key, a user-defined key, or cursor
direction key. (See KEY Statement, Section 7.70, for information on as­
signing softkey values to function keys). The cursor direction keys are
numbered sequentially after the function keys in the following order: up,
left, right, down.

Purpose

To enable or disable event trapping of softkey or cursor direction key
activity for the specified trappable key.

Remarks

Note that the KEY statement described in Section 7.70 assigns softkey
and cursor direction values to function keys and displays the values. Do
not confuse KEY ON and KEY OFF, which display and erase these values,
with the event trapping statements described in this section.

The KEY(n) ON statement enables softkey or cursor direction key event
trapping by an ON KEY statement (see ON KEY Statement, Section 7.104).
While trapping is enabled, and if a non-zero line number is specified in the
ON KEY statement, GW-BASIC checks between every statement to see
if a softkey or cursor direction key has been used. If it has, the ON KEY
statement is executed. The text that would normally be associated with a
function key will not be printed.

7-83

Ka
yp
roJ
ou
rna
l

KEY(n) OFF disables the event trap. If an event takes place, it is not
remembered.

KEY(n) STOP disables the event trap, but if an event occurs, it is remem­
bered and an ON KEY statement will be executed as soon as trapping is
enabled.

Note

For additional information on key event trapping, see "Event Trapping,"
Section 6.2, and "ON KEY Statement," Section 7.104.

Example

10 KEY 4,SCREEN 0,0 ' assigns softkey 4
20 KEY(4) ON 'enables event trapping

70 ON KEY(4) GOSUB 200

key 4 pressed

200 'Subroutine for screen

7-84

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
LJ

u
u
u
u
u

7. 72 KILL Statement

Syntax

KILL [< filespec >]

Purpose

To delete a file or a pathname from disk.

Remarks

If a KILL statement is given for a file that is currently open, a "File already
open" error occurs.

KILL is used for all types of disk files: program files, random data files,
and sequential data files. The filespec may contain question marks (?) or
asterisks (*) used as wildcards. A question mark will match any single
character in the filename or extension. An asterisk will match one or more
characters starting at its position.

Since it is possible to reference the same file in a sub-directory via differ­
ent paths, it is nearly impossible for BASIC to know that it is indeed the
same file simply by looking at the path. For example; if MARY is your
current directory, then:

"REPORT" ...
"\SALES\MARY\REPORT" ...
" .. \MARY\REPORT" .. .
" .. \ .. \MARY\REPORT" .. .

all refer to the same file. Therefore, any open file with the same file name
will cause a "file already open" error.

WARNING

Be extremely careful when using wildcards with this command.

Examples

200 KILL "DATA1?.DAT"

The position taken by the question mark will match any valid filename
character. This command will kill any file that has a six character name
starting with "DATA1" and has the filename extension ".DAT".
This includes "DATA 1 0.DAT" and "DATA 1 Z.DAT".

7-85

Ka
yp
roJ
ou
rna
l

210 KILL "DATA 1.*"

Kills all files named DATA 1, regardless of the filename extension.

220 KILL " .. \GREG*.DAT"

Kills all files with the extension ".DAT" in a directory called GREG.

7-86

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7. 76 LEFT$ Function

Syntax
LEFT$(< string > ,I)

Purpose
To return a string comprising the leftmost I characters of X$.

Remarks
I must be in the range Oto 255. If I is greater than the number of charac­
ters in < string > , (LEN(X$)), the entire string (< string >) will be re­
turned. If I = 0, the null string (length zero) is returned.

Example
10 A$= "BASIC LANGUAGE"
20 B$ = LEFT$(A$,5)
30 PRINT B$

will yield

BASIC

Also see the MID$ and RIGHT$ functions, Sections 7 .94 and 7.140,
respectively.

7-87

Ka
yp
roJ
ou
rna
l

7.77 LEN Function

Syntax
LEN(< string >)

Purpose
To return the number of characters in <string> . Nonprinting characters
and blanks are counted.

Example

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN(X$)

will yield

16

7-88

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7. 78 LET Statement

Syntax

[LET] < variable > = < expression >

Purpose

To assign the value of an expression to a variable.

Remarks

Notice that the word LET is optional; i.e., the equal sign is sufficient for
assigning an expression to a variable name.

Example

110 LET D = 12
120 LET E = 12/\2
130 LET F = 12/\4
140 LET SUM= D + E + F

or

1100=12
120 E = 12A2
130 F = 12/\4
140 SUM = D + E + F

7-89

Ka
yp
roJ
ou
rna
l

7. 79 LINE Statement

Syntax

LINE [[STEP](x1 ,y1)]-[STEP](x2,y2)

[,[<color>][,b[f]]][,style]

(x1 ,y1) is the coordinate for the starting point of the line.

(x2,y2) is the ending point for the line.

The [STEP] option makes the specified coordinates relative to the "most
recent point", instead of absolute, mapped coordinates.

<color> is the number of the color in which the line should be drawn.
(See COLOR statement, Section 7.20.) If the ,b or ,bf option is used, the
box is drawn in this color.

,b draws a box with the points (x1 ,y1) and (x2,y2) specifying the upper left
and lower right corners.

,bf draws a filled box.

,style is a 16-bit integer mask used when putting pixels down on the screen.
This is called "line styling".

Purpose
To draw a line or box on the screen.

Remarks
When coordinates specify a point that is not in the current viewport, the
line segment is clipped to the viewport.

The relative coordinate form STEP (xoffset,yoffset) can be used in place
of an absolute coordinate. For example, assume that the most recent
point referenced was (10,10). The statement LINE STEP (10,5) would
specify a point at offset 1 0 from x and offset 5 from y, that is, (20, 15).

If the STEP option is used for the second coordinate on a LINE statement,
it is relative to the first coordinate in the statement. Other ways to estab­
lish a new "most recent point" are to initialize the screen with the CLS
and SCREEN statements (Sections 7.19 and 7.145, respectively). Using
the PSET, PRESET, CIRCLE and DRAW statements will establish a new
"most recent point".

7-90

n
n
n
n
n
n
n
n
n
n
r,

n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
LJ

u
u
u
u
u
u
u
u
u
u

Each time LINE stores a point on the screen, it uses the current circulating
bit in [style]. If that bit is a 0, then no storing will be done; if the bit is a 1
the point is stored. After each point is stored, the next bit position in [style]
is selected. Since a Obit in [style] causes no change to the point on the
screen, the user may prefer to draw a background line before a 'styled'
line in order to force a known background. Style is used for normal lines
and boxes, but has no effect on filled boxes.

Examples

The following examples assume a screen 320 pixels wide by 200 pixels
high.

10 LINE -(x2,y2)

Draws a line from the last point to x2,y2 in the foreground color.

20 LINE (0,0)-(319, 199)

Draws a diagonal line across the screen (downward).

30 LINE (0, 100)-(319, 100)

Draws a line across the screen.

40 LINE (10,10)-(20,20),2

Draws a line in color 2.

10FORx=0to319
20 LINE (x,0)-(x, 199),x AND 1
30 NEXT

Draws an alternating line on-line off pattern on a monochrome display.

10 LINE (0,0)-(100,100),,b

Draws a box in the foreground (note that the color is not included).

20 LINE STEP (0,0)-STEP (200,200),2,bf

Draws a filled box in color 2. Coordinates are given as offsets.

10 LINE (0,0)-(160, 100),3,,&HFFOO

Draws a dashed line from the upper left hand corner to the center of the
screen.

7-91

Ka
yp
roJ
ou
rna
l

7 .80 LINE INPUT Statement

Syntax

LINE INPUT[;] [<"prompt string"> ;] < string variable>

Purpose

To input an entire line (up to 254 characters) to a string variable, without
the use of delimiters.

Remarks

< "prompt string" > is a string literal that is printed at the terminal before
input is accepted. A question mark is not printed unless it is part of
< "prompt string">. All input from the end of < "prompt string"> to
the carriage return is assigned to < string variable>. However, if a line­
feed/carriage return sequence (this order only) is encountered, both char­
acters are echoed; but the carriage return is ignored, the linefeed is put
into < string variable>, and data input continues.

If LINE INPUT is immediately followed by a semicolon, then the carriage
return typed by the user to end the input line does not echo a carriage
return/linefeed sequence at the terminal.

A LINE INPUT statement may be aborted by typing Control-C. GW-BASIC
will return to command level. If you are using the interpreter, typing CONT
resumes execution at the LINE INPUT.

Example

See LINE INPUT# Statement, Section 7.81.

7-92

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
LJ

u
u
u
u
u
u
u
u

7.81 LINE INPUT# Statement

Syntax
LINE INPUT#< file number> , < string variable>

Purpose
To read an entire line (up to 254 characters), without delimiters, from a
sequential disk data file to a string variable.

Remarks
< file number> is the number under which the file was OPENed. < string
variable> is the variable name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential file up to a carriage return.
It then skips over the carriage return/linefeed sequence. The next LINE
INPUT# reads all characters up to the next carriage return. (If a linefeed/
carriage return sequence is encountered, it is preserved.)

LINE INPUT# is especially useful if each line of a data file has been bro­
ken into fields, or if a GW-BASIC program saved in ASCII format is being
read as data by another program. (See SAVE Command, Section 7.144.)
When GW-BASIC is invoked with redirected input and output, all LINE
INPUT statements will read from the input file specified instead of the
keyboard.

When input is redirected, GW-BASIC will continue to read from this source
until a control-Z is detected. This condition may be tested with the EOF
function. If the file is not terminated by a control-Z, or a BASIC file input
statement tries to read past end-of-file, then any open files are closed,
the message "Read past end" is written to standard output, and BASIC
returns to MS-DOS.

Example
10OPEN "O",1,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "I",1,"LIST''
60 LiNE INPUT #1, C$
70 PRINTC$
80 CLOSE 1

will yield

CUSTOMER INFORMATION? LINDA JONES 234.4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

7-93

Ka
yp
roJ
ou
rna
l

7 .82 LIST Command

Syntax

LIST [<line number>] (-[<line number>]][,< device> J < line num­
ber> is in the range Oto 65529.

<device> is a device designation string, such as SCRN: or LPT:, or a
filename.

Purpose

To list all or part of the program currently in memory.

Remarks
GW-BASIC always returns to command level after a LIST is executed.

If < line number> is omitted, the program is listed beginning at the low­
est line number. {Listing is terminated either when the end of the program
is reached or by typing Break.) If < line number> is included, only the
specified line will be listed.

If only the first < line number> is specified, that line and all higher-num­
bered lines are listed.

If only the second < line number> is specified, all lines from the begin­
ning of the program through that line are listed.

If both < line number(s) > are specified, the entire range is listed.

If the < device > is omitted, the listing is shown at the terminal.

7-94

n ,,
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ

Examples

LIST

Lists the program currently in memory.

LIST 500

Lists line 500.

LIST 150-

Lists all lines from 150 to the end.

LIST -1000

Lists all lines from the lowest number through 1000.

LIST 150-1000

Lists lines 150 through 1000, inclusive.

LIST 150-1000,"LPT:"

Lists lines 150 through 1000 on the line printer.

7-95

Ka
yp
roJ
ou
rna
l

7.83 LUST Command

Syntax

LUST [<line number> [-[<line number>]]]

Purpose

To list all or part of the program currently in memory on the line printer.

Remarks

LUST assumes a 132-character-wide printer.

GW-BASIC always returns to command level after an LUST is executed.
The options for LUST are the same as for the LIST Command, Section
7.82.

Example

See the examples for the UST Command, Section 7.82. With the excep­
tion of the last one, which addresses a device, LUST will work in a similar
way.

7-96

,,,
rr,

n

ITT

n

,n

,,
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
LJ
u
u
u
u
u
u
u

7.84 LOAD Command

Syntax
LOAD < filespec > [,R]

Purpose
To load a file from an input device into memory.

Remarks
For loading a program, the < filespec > is an optional device specifica­
tion followed by a filename or pathname that conforms to MS-DOS rules
for fllenames. BASIC appends the default filename extension .BAS if the
user specifies no extensions, when the file is saved to the disk.

The < filespec > must include the filename that was used when the file
was saved, or created by an editor. (BASIC will append a default filename
extension if one was not supplied in the SAVE command.)

The R option automatically runs the program after it has been loaded.

LOAD closes all open files and deletes all variables and program lines
currently residing in memory before it loads the designated program.
However, if the R option is used with LOAD, the program is run after it is
loaded, and all open data files are kept open. Thus, LOAD with the R
option may be used to chain several programs (or segments of the same
program). Information may be passed between the programs using their
disk data files.

Example
LOAD "STRTRK",R

Loads and runs the program STRTRK.BAS

LOAD "B:MYPROG"

Loads the program MYPROG.BAS from the disk in drive B, but does not
run the program.

7-97

Ka
yp
roJ
ou
rna
l

7.85 LOC Function

Syntax

LOG(< file number>)

where < file number> is the number under which the file was opened.

Purpose

With random disk files, LOG returns the actual record number within the
file.

With sequential files, LOG returns the current byte position in the file,
divided by 128.

Remarks

When a file is opened for APPEND or OUTPUT, LOG returns the size of
the file in (bytes/128).

For a communications file, LOC(X) is used to determine if there are any
characters in the input queue waiting to be read. If there are more than
255 characters in the queue, LOC{X) returns 255. Since interpreter strings
are limited to 255 characters, this practical limit alleviates the need for an
interpreter user to test for string size before reading data into it.

If fewer than 255 characters remain in the queue, the value returned by
LOC(X) depends on whether the device was opened in ASCII or binary
mode. In either mode, LOG will return the number of characters that can
be read from the device. However, in ASCII mode, the low level routines
stop queueing characters as soon as end-of-file is received. The end-of­
file itself is not queued and cannot be read. An attempt to read the end­
of-file will result in an "Input past end" error.

Example

200 IF LOC{1) > 50 THEN STOP

7-98

n ,,

rr,

rn
n

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
LJ

u
u
u
u

7 .86 LOCATE Statement

Syntax

LOCATE [row][,[col][,[cursor)[,[start][,stop]]]]

<row> is a line number (vertical) on the screen. Row should be a nu­
meric expression returning an unsigned integer.

< col > is the column number on the screen. It should be a numeric
expression returning an unsigned integer.

< cursor> is a Boolean value indicating whether the cursor should be
visible or not.

<start> is the cursor starting line (vertical) on the screen.
It should be a numeric expression returning an unsigned integer.

< stop > is the cursor stop line (vertical) on the screen. It should be a
numeric expression returning an unsigned integer.

Purpose

Moves the cursor to the specified position. Optional parameters turn the
blinking cursor on and off and define the vertical start and stop lines.

Remarks

Any value outside the specified ranges will result in an "Illegal function
call" error. In this case, previous values are retained.

Any parameter may be omitted from the statement. If a parameter is omit­
ted, the previous value is assumed.

Note that the < start > and < stop> lines are the raster lines that spec­
ify which pixels on the screen are lit. A wider range between the start and
stop lines will produce a taller cursor, such as one that occupies an entire
character block.

If the <start> line is given but the <stop> line is omitted, <stop>
assumes the same value as <start>.

The last tine on the screen is reserved for softkey display and is not ac­
cessible to the cursor unless the softkey display is off and LOCATE is
used to get to it.

7-99

Ka
yp
roJ
ou
rna
l

Example
10 LOCATE 1, 1

Moves cursor to upper-left corner of the screen.

20 LOCATE ,,1

Makes the cursor visible; position remains unchanged.

30LOCATE ,,,7

Position and cursor visibility remain unchanged. Sets the cursor to display
at the bottom of the character starting and ending on raster line 7.

40 LOCATE 5, 1, 1 ,0, 7

Moves the cursor to line 5, column 1; turns cursor on. Cursor will cover
entire character cell starting at scan line O and ending on scan line 7.

7-100

n
n
n
n
r,
r,

r,

n
r,

n
n
n
n
r,

n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
LJ

u
u
u
u
u
u
u
u
u

7 .87 LOF Function

Syntax

LOF(< file number >)

Purpose

To return the length of the named file in bytes.

Remark

When a file is opened for APPEND or OUTPUT, LOF returns the size of
the file, in bytes.

Example

110 IF REC*RECSIZ > LOF(1) THEN PRINT "INVALID ENTRY"

In this example, the variables REC and RECSIZ contain the record num­
ber and record length, respectively. The calculation determines whether
the specified record is beyond the end-of-file.

7-101

Ka
yp
roJ
ou
rna
l

7 .88 LOG Function

Syntax
LOG(X)

Purpose
To return the natural logarithm of X. X must be greater than zero.

Example
PRINT LOG(45/7)

will yield

1.860752

7-102

n
r,
r,
r,

n
n
n
r,

n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .89 LPOS Function

Syntax

LPOS(X)

Where X is the index of the printer being tested; that is LPT1: would be
tested with LPOS(1), LPT2: with LPOS(2), etc.

Purpose

To return the current position of the printer's print head within the printer
buffer.

Remarks

LPOS does not necessarily give the physical position of the print head.

Example

100 IF LPOS(X} > 60 THEN LPRINT CHR$(13)

7-103

Ka
yp
roJ
ou
rna
l

7 .90 LPRINT And LPRINT USING Statements

Syntax
LPRINT [<list of expressions>]

LPRINT USING < string exp> ; < list of expressions>

Purpose
To print data on the printer.

Remarks
Same as PRINT and PRINT USING, except output goes to the line printer,
and the file number option is not permitted. See Sections 7 .126 and 7.127,
respectively.

LPRINT assumes a 132-character-wide printer.

Examples
See Sections 7.126 and 7.127.

7-104

n
n
r, ,, ,,
r,

n
r,

n
n
n
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
LJ
u
u

7 .91 LSET And RSET Statements

Syntax

LSET < string variable > = < string expression >
RSET < string variable > = < string expression >

Purpose

To move data from memory to a random file buffer (in preparation tor a
PUT statement) or to left- or right-justify the value of a string into a string
variable.

Remarks

If < string expression > requires fewer bytes than were fielded to
< string variable > , LSET left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to pad the extra positions.) If
the string is too long for the field, characters are dropped from the right.
Numeric values must be converted to strings before they are LSET or
RSET. See MKI$, MKS$, MKD$ functions, Section 7.96.

Examples

150 LSET A$ = MKS$(AMT)
160 LSET 0$ = MKl$(COUNT%)

Note

LSET or RSET may also be used with a nonfielded string variable to left­
justify or right-justify a string in a given field. For example, the program
lines

110 A$ = SPACE$(20)
120 RSET A$= N$

right-justify the string N$ in a 20-character field. This can be very handy
for formatting printed output.

7-105

Ka
yp
roJ
ou
rna
l

7.92 MERGE Command

Syntax

MERGE < filespec >

Purpose

To merge a specified file into the program currently in memory.

Remarks

For merging a program not in memory, the < filespec > is an optional
device specification followed by a filename or pathname that conforms to
MS-DOS rules for filenames. BASIC appends the default filename exten­
sion ".BAS" if the user specifies no extensions, and the file has been
saved to the disk.

If any lines in the disk file have the same line numbers as lines in the
program in memory, the lines from the file on disk will replace the corre­
sponding lines in memory. (MERGEing may be thought of as "inserting"
the program lines on disk into the program in memory.)

Microsoft GW-BASIC always returns to command level after executing a
MERGE command.

Example

MERGE "NUMBRS"

Inserts, by sequential line number, all lines in the program NUMBRS.BAS
into the program currently in memory.

7-106

n
r,

n
n
r,
r,

n
n ,,
r,
n
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.93 MID$ Statement

Syntax
MID$(< string 1 > ,n[,m]) = < string 2 >

where n and mare integer expressions and < string exp1 > and < string
exp2 > are string expressions.

Purpose
To replace a portion of one string with another string.

Remarks
The characters in < string 1 >, beginning at position n, are replaced by
the characters in < string 2 > . The optional "m" refers to the number of
characters from < string 2 > that will be used in the replacement. If "m"
is omitted, all of < string 2 > is used. However, regardless of whether
"m" is omitted or included, the replacement of characters never goes
beyond the original length of < string 1 >.

Example
10 A$= "KANSAS CITY, MO"
20 MID$(A$,14) = "KS"
30 PRINT A$
will yield
KANSAS CITY, KS

M1D$ is also a function that returns a substring of a given string. See
Section 7.94.

7-107

Ka
yp
roJ
ou
rna
l

7 .94 MIO$ Function

Syntax

MID$(< string> ,n[,m])

Purpose

To return a string of length m characters from X$, beginning with the nth
character.

Remarks

n and m must be in the range 1 to 255. If m is omitted or if there are fewer
than m characters to the right of the nth character, all rightmost charac­
ters beginning with the nth character are returned. If n is greater than the
number of characters in < string> that is, (LEN(< string >)), MID$ re­
turns a null string.

Example

10A$= "GOOD"
20 8$ = "MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(8$,9,7)

will yield

GOOD EVENING

Also see the LEFT$ and RIGHT$ functions, Sections 7.76 and 7.140,
respectively.

7-108

n ,,
n ,, ,,
r,

n
n
r,
r,

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
LJ
u
u

7.95 MKDIR Statement

Syntax
MKDIR < pathname >

Purpose
To create a new directory

Remarks
< pathname > is a string expression specifying the name of the direc­

tory which is to be created. MKDIR works exactly like the MS-DOS com­
mand MKDIR. The <pathname> must be a string of less than 128
characters. (See Section 5.5, "File Handling," for a discussion of tree­
structured directories.)

Example
Assume the current directory is the root.

MKDIR "SALES"

Creates a sub-directory named SALES in the current directory of the cur­
rent drive.

MKDIR "B:USERS"

Creates a sub-directory named USERS in the current directory of drive B.

Also see the CHOIR and RMDIR statements, Sections 7.13 and 7.141,
respectively.

7-109

Ka
yp
roJ
ou
rna
l

7.96 MKI$, MKS$, MKD$ Functions

Syntax
MKI${ < integer expression >)
MKS$(< single precision expression >)
MKD$(< double precision expression >)

Purpose
To convert numeric values to string values.

Remarks
Any numeric value that is placed in a random file buffer with an LSET or
RSET statement must be converted to a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts a single precision number to a 4-byte
string. MKD$ converts a double precision number to an 8-byte string.

Example
90 AMT = (K + T)
100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$ = M KS$(AMT)
120 LSET N$ = A$
130 PUT #1

See also CVI, CVS, CVD Functions, Section 7 .28.

7-110

n
n
n
n ,,
r,

n
n
n
r,

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
LJ
u
u
u

7 .98 NAME Statement

Syntax

NAME < old filename> AS < new filename>

Purpose

To change the name of a disk file.

Remarks

< old filename > must exist and < new filename > must not exist;
otherwise, an error will result. Also, both files must be on the same drive.

A file may not be renamed with a new drive designation. If this is at­
tempted, a "Rename across disks" error will be generated. After a NAME
command, the file exists on the same disk with the new name.

NAME may not be used to rename directories.

< old filename> must be closed before the renaming command is exe­
cuted. Also, there must be one free file handle.

Examples

NAME "ACCTS" AS "LEDGER"

In this example, the file that was formerly named ACCTS will now be
named LEDGER.

NAME may be used to move a tile from one directory to another. For
example:

NAME "\X\CUENTS" AS "\XYZ\P\CLIENTS"

7-111

Ka
yp
roJ
ou
rna
l

7.99 NEW Command

Syntax
NEW

Purpose
To delete the program currently in memory and clear au variables.

Remarks
NEW is entered in direct mode to clear memory before entering a new
program. Microsoft GW-BASIC always returns to command level after a
NEW is executed.

NEW closes all files and turns tracing off.

Example
NEW

7-112

n
n
r,

n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
LJ

u
u
u
LJ

u
u

7 .100 OCT$ Function

Syntax

OCT$(X)

Purpose

To return a string that represents the octal value of the decimal argument.
Xis rounded to an integer before OCT$(X) is evaluated.

Example

PRINT OCT$(24)

will yield

30

See the HEX$ function, Section 7.58, for details on hexadecimal
conversion.

7-113

Ka
yp
roJ
ou
rna
l

7 .101 ON COM Statement

Syntax
ON COM(n) GOSUB < line number>

where < line number> is the number of the first line of a subroutine that
is to be performed when activity occurs on the specified communications
port.

(n) is the number of the communications port.

Purpose
To specify the first line number of a subroutine to be performed when
activity occurs on a communications port.

Remarks
A < line number > of zero disables the communications event trap.

The ON COM statement will only be executed if a COM(n) ON statement
has been executed (see COM Statement, Section 7.21) to enable event
trapping. If event trapping is enabled, and if the < line number> in the
ON COM statement is not zero, GW-BASIC checks between statements
to see if communications activity has occurred on the specified port. If
communications activity has occurred, a GOSUB will be performed to the
specified line.

If a COM OFF statement has been executed for the communications port
(see COM Statement, Section 7.21), the GOSUB is not performed and is
not remembered.

If a COM STOP statement has been executed for the communications
port (see COM Statement, Section 7.21), the GOSUB is not performed,
but will be performed as soon as a COM ON statement is executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
COM STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a COM
ON statement unless an explicit COM OFF was performed inside the
subroutine.

7-114

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

The RETURN < line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine. Use
this type of return with care, however, because any other GOSUBs,
WHI LEs, or FORs that were active at the time of the trap will remain active,
and errors such as "FOR without NEXT" may result.

Event trapping does not take place when GW-BASIC is not executing a
program, and event trapping is automatically disabled when an error trap
occurs.

7-115

Ka
yp
roJ
ou
rna
l

7.102 ON ERROR GOTO Statement

Syntax

ON ERROR GOTO < line number>

Purpose

To enable error handling and specify the first line of the error handling
routine.

Remarks

Once error handling has been enabled, all errors detected, including direct
mode errors (e.g., syntax errors), will cause a jump to the specified error
handling routine. If < line number> does not exist, an "Undefined line"
error results.

To disable error handling, execute an ON ERROR GOTO 0. Subsequent
errors will print an error message and halt execution. An ON ERROR
GOTO O statement that appears in an error handling routine causes Mi­
crosoft GW-BASIC to stop and print the error message for the error that
caused the trap. It is recommended that all error handling routines exe­
cute an ON ERROR GOTO O if an error is encountered for which there is
no recovery action.

Note

If an error occurs during execution of an error handling routine, that error
message is printed and execution terminates. Error trapping does not
occur within the error handling routine.

Example

10 ON ERROR GOTO 1000

7-116

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ

7 .103 ON ... GOSUB And ON ... GOTO Statements

Syntax

ON <expression> GOTO < list of line numbers>

ON < expression > GOSUB < list of line numbers >

Purpose

To branch to one of several specified line numbers, depending on the
value returned when an expression is evaluated.

Remarks

The value of <expression> determines which line number in the list will
be used for branching. For example, if the value is three, the third line
number in the list will be the destination of the branch. (If the value is a
noninteger, the number is rounded.)

In the ON ... GOSUB statement, each line number in the list must be the
first line number of a subroutine.

If the value of < expression > is either zero or greater than the number
of items in the list, control drops to the next BASIC statement.

If the value of < expression > is negative or greater than 255, an "Illegal
function call" error occurs.

Example

100 ON L-1 GOTO 150,300,320,390

7-117

Ka
yp
roJ
ou
rna
l

7.104 ON KEY Statement

Syntax

ON KEY(n) GOSUB < line number>

(n) is the number of a function key, direction key, or user-defined key.

< line number> is the number of the first line of a subroutine that is to
be performed when the specified function or cursor direction key is
pressed.

Purpose
To specify the first line number of a subroutine to be performed when a
specified key is pressed.

Remarks

A < line number > of zero disables the event trap.

The ON KEY statement will only be executed if a KEY(n) ON statement
has been executed (see KEY(n) Statement, Section 7.71) to enable event
trapping. If key trapping is enabled, and if the < line number> in the ON
KEY statement is not zero, GW-BASIC checks between statements to
see if the specified function, user-defined or cursor direction key has been
pressed. If so, the program will branch to a subroutine specified by the
GOSUB statement.

If a KEY(n) OFF statement has been executed for the specified key, (see
KEY(n) Statement, Section 7.71), the GOSUB is not performed and is not
remembered.

If a KEY STOP statement has been executed for the specified key, (see
KEY(n) Statement, Section 7.71), the GOSUB is not performed, but will be
performed as soon as a KEY(n) ON statement is executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
KEY(n) STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a KEY(n}
ON statement unless an explicit KEY(n) OFF was performed inside the
subroutine.

The RETURN < line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine. Use
this type of return with care, however, because any other GOSUBs,
WHILEs, or FORs that were active at the time of the trap will remain active,
and errors such as "FOR without NEXT" may result.

7-118

n
n
n
n
n
r,

n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Event trapping does not take place when GW-BASIC is not executing a
program, and event trapping is automatically disabled when an error trap
occurs.

The following rules apply to keys trapped by BASIC:

1. The line printer echo toggle key is processed first. Defining this key as
a user defined key trap will not prevent characters from being echoed to
the line printer if depressed.

2. Function keys and the cursor direction keys are examined next. Defin­
ing a function key or cursor direction key as a user defined key trap will
have no effect as they are considered pre-defined.

3. Finally, the user defined keys are examined.

4. Any key that is trapped is not passed on. That is, the key is not read by
BASIC.

WARNING:

This may apply to any key, including Break or system reset (warm boot)!
This is a powerful feature when you consider that it is now possible to
prevent BASIC Application users from accidentally Breaking out of a pro­
gram, or worse yet, rebooting the machine.

Note

When a key is trapped, that occurrence of the key is destroyed.
Therefore, you cannot subsequently use the INPUT or INKEY$ state­
ments to find out which key caused the trap. So if you wish to assign
different functions to particular keys, you must set up a different subrou­
tine for each key, rather than assigning the various functions within a
single subroutine.

The ON KEY(n) statement allows 6 additional user defined KEY traps.
This allows any key, control-key, shift-key, or super-shift-key to be trap­
ped by the user as follows:

ON KEY(i) GOSUB < line number>

Where: < i > is an integer expressing a legal user-defined key number.

7-119

Ka
yp
roJ
ou
rna
l

Example

10 KEY 4, "SCREEN 0,0" 'assigns softkey 4
20 KEY(4) ON 'enables event trapping

70 ON KEY(4) GOSUB 200

key 4 pressed

200' Subroutine for screen

In the above, the programmer has overridden the normal function asso­
ciated with function key 4, and replaced it with "SCREEN 0,0", which will
be printed whenever that key is pressed. The value may be reassigned
and it will resume its standard function when the machine is rebooted.

100 KEY 15, CHR$(&H04) + CHR$(83)
105 REM •• Key 15 now is Control-S ••
110 KEY(15) ON

1000 PRINT "If you want to stop processing for a break"
1010 PRINT "press the Control key and the 'S' at the"
1020 PRINT "same time."
1030 ON KEY(15) GOSUB 3000

Operator presses Control-S.
3000 REM u Suspend processing loop.
3010 CLOSE #1
3020 RESET
3030 CLS
3035 PRINT "Enter CONT to continue."
3040STOP
3050 OPEN "A", #1, "ACCOUNTS.DAT"
3060 RETURN

In the above, the programmer has enabled the Control-S key to enter a
subroutine which closes the files and stops program execution until the
operator is ready to continue.

7-120

n
n
n
n
n
n
n
n
n
n
n
r,

n
r,

n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .106 ON PLAY Statement

Syntax

ON PLAY (n) GOSUB < line number>

(n) is an Integer expression in the range 1 through 32. Values outside this
range will result in an "Illegal function call" error.

< line number> is the statement line number of the Play event trap
subroutine.

Purpose
To branch to a specified subroutine when the music queue contains fewer
than (n) notes. This permits continuous music during program execution.

Remarks
ON PLAY causes an event trap when the Background Music queue goes
from (n) notes to (n-1) notes.

(n) must be an integer between 1 and 255.

PLAY ON
PLAY OFF
PLAY STOP

Enables Play event trapping
Disables Play event trapping
Suspends Play event trapping

If a PLAY OFF statement has been executed the GOSUB is not performed
and is not remembered.

If a PLAY STOP statement has been executed, the GOSUB is not per­
formed, but will be performed as soon as a PLAY ON statement is
executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
PLAY STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a PLAY
ON statement unless an explicit PLAY OFF was performed inside the
subroutine.

The RETURN < line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine. Use
this type of return with care, however, because any other GOSUBs,
WHILES, or FORs that were active at the time of the trap will remain active,
and errors such as "FOR without NEXT" may result.

7-121

Ka
yp
roJ
ou
rna
l

Rules:

1. A play event trap is issued only when playing background music (e.g.
PLAY "MB ..). Play event traps are not issued when running in Music Fore­
ground (e.g.,default case, or PLAY "MF ..).

2. A play event trap is not issued if the background music queue has
already gone from having (n) to (n-1) notes when a PLAY ON is executed.

3. If (n) is a large number, event traps will occur frequently enough to
diminish program execution speed.

Also see PLAY ON, PLAY OFF, PLAY STOP Statements, Section 7.120.

Example

In this example control branches to a subroutine when the background
music buffer decreases to 7 notes.

100 PLAY ON

540 PLAY "MB L 1 XZITHER$"
550 ON PLAY(8) GOSUB 6000

6000 REM **BACKGROUND MUSIC**
6010 LET COUNT% = COUNT% + 1

6999 RETURN

7-122

n
r,
r,

n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
LJ
u
u
u
u
u
u

7.107 ON STRIG Statement

Syntax
ON STRIG(n) GOSUB < line number>

where (n) is the number of the joystick trigger.

where < line number> is the number of the first line of a subroutine that
is to be performed when the joystick trigger is pressed.

Purpose

To specify the first line number of a subroutine to be performed when the
joystick trigger is pressed.

Remarks

A < line number> of zero disables the event trap.

The ON STRIG statement will only be executed if a STRIG ON statement
has been executed (see STRIG Function and STRIG Statements Sections
7.157 and 7.158) to enable event trapping. If event trapping is enabled,
and if the < line number> in the ON STRIG statement is not zero, GW­
BASIC checks between statements to see if the joystick trigger has been
pressed. If it has, a GOSUB will be performed to the specified line.

If a STRIG OFF statement has been executed {see STRIG Statement,
Section 7.157), the GOSUB is not performed and is not remembered.

If a STRIG STOP statement has been executed (see STRIG Statement,
Section 7.157), the GOSUB is not performed, but will be performed as
soon as a STRIG ON statement is executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
STRIG STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a STRIG
ON statement unless an explicit STRIG OFF was performed inside the
subroutine.

The RETURN < line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine. Use
this type of return with care, however, because any other GOSUBs,
WHILES, or FORs that were active at the time of the trap will remain active,
and errors such as "FOR without NEXT" may result.

Ka
yp
roJ
ou
rna
l

Event trapping does not take place when GW-BASIC is not executing a
program, and event trapping is automatically disabled when an error trap
occurs.

7-124

r,

n
n
n
n
n
n
n
n
r,

n
n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
LJ
u
u
u
u
u
u
u

7 .108 ON TIMER Statement

Syntax

ON TIMER (n) GOSUB <line-number>

Purpose
To provide an event trap during real time.

Remarks
ON TIMER causes an event trap every (n) seconds. (N) must be a numeric
expression in the range of 1 to 86400 (1 second to 24 hours). Values
outside this range generate an "Illegal function call" error.

The ON TIMER statement will only be executed if a TIMER ON statement
has been executed to enable event trapping. If event trapping is enabled,
and if the < line number> in the ON TIMER statement is not zero, GW­
BASIC checks between statements to see if the time has been reached.
If it has, a GOSUB will be performed to the specified line.

If a TIMER OFF statement has been executed the GOSUB is not per­
formed and is not remembered.

If a TIMER STOP statement has been executed the GOSUB is not per­
formed, but will be performed as soon as a TIMER ON statement is
executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
TIMER STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a TIMER
ON statement unless an explicit TIMER OFF was performed inside the
subroutine.

The RETURN < line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine. Use
this type of return with care, however, because any other GOSUBs,
WHILEs, or FORs that were active at the time of the trap will remain active,
and errors such as "FOR without NEXT" may result.

7-125

Ka
yp
roJ
ou
rna
l

Example

Display the time of day on line 1 every minute.

10 ON TIMER(60) GOSUB 10000
20TIMER ON

10000 LET OLDROW = CSRLIN 'Save current Row
10010 LET OLDCOL = POS(0) 'Save current Column
10020 LOCATE 1,1:PRINTTIME$;
10030 LOCATE OLDROW,OLDCOL 'Restore Row & Col
10040 RETURN

Also see TIMER ON, TIMER OFF and Tl MER STOP Statements, Section
7.166.

7-126

n
n
r,
r,

n
n
n
r,

n
n
n
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
LJ

u
u
u
u
u
u
u
u
u
u
u
u
u

7.109 OPEN Statement

Syntaxes

OPEN < model >,[#]<file number>, < filespec > [,<record
length>]
OPEN < filespec > (FOR < mode2 >) (access) AS[#]< file number>
[LEN= < record length>]

< filespec > is an optional device specification followed by a filename or
pathname, that conforms to MS-DOS rules for filenames.

< device > is a character device.

< model > is a string expression. The first character must be one of the
following:

0
Specifies sequential output mode.

Specifies sequential input mode.

R
Specifies random input/output mode.

A
Specifies sequential output mode and sets the file pointer at the end of
file and the record number as the last record of the file. A PRINT# or
WRITE# statement will then extend (append) the file.

< mode2 > is an expression which is one of the following:

OUTPUT
Specifies sequential output mode.

INPUT
Specifies sequential input mode.

APPEND
Specifies sequential output mode and sets the file pointer at the end of
file and the record number as the last record of the file. A PRINT# or
WRITE# statement will then extend (append) the file.

7-127

Ka
yp
roJ
ou
rna
l

If < mode2 > is omitted, the default random access mode is assumed.
Random, however, cannot be expressed explicitly as the file mode.

A difference between this version of the interpreter and the 2.0 version is
the addition of the <access> parameter to support networking. The
<access> argument is one of the following:

DEFAULT
If < access > is not specified, the file may be opened for reading any
number of times by this process, but other processes are denied access
to the file while it is opened.

SHARED
Any process on any machine may read from or write to this file.

LOCK READ
No other process is granted read access to this file. This access is granted
only if no process has a previous LOCK READ access to the file.

LOCK WRITE
No other process is granted write access to this file. This also is granted
only if no other process has a previous access of this kind to the file.

LOCK READ WRITE
No other process is granted either read or write access to this file. Again,
this access is granted only if LOCK READ WRITE has not already been
granted to another process.

< file number > is an integer expression whose value ls between 1 and
255. The number is then associated with the file for as long as it is OPEN
and is used to refer other disk 1/0 statements to the file.

< record length> is an integer expression that, if included, sets the re­
cord length for random files. GW-BASIC will ignore this option if it is used
in a statement to OPEN a sequential file. The default length for records is
128 bytes, unless the command line options /I and /R have been used
(See Section 2.2, "Command Line Option Switches").

Purpose

To allow 1/0 to a file or device.

7-128

n
n
n
r, ,,
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
LJ
u
u
u
u
u
u
LJ
u
u
u
u
u
u

Remarks

Files

A file must be opened before any 1/0 operation can be performed on that
file. OPEN allocates a buffer for 1/0 to the file or device and determines
the mode of access that will be used with the buffer.

OPEN allows <pathname> in place of < filespec > . If the pathname is
used, and a drive is specified, the drive rriust be specified at the beginning
of the pathname. That is, "B:\SALES\JOHN" is legal, while
"\SALES\B:JOHN" is NOT legal.

The LEN= option is ignored if the file being opened has been specified
as a sequential file.

Since it is possible to reference the same file in a sub-directory via differ­
ent paths, it is nearly impossible for BASIC to know that it is the same file
simply by looking at the path. For this reason, BASIC will not let you open
the file for OUTPUT or APPEND if it is on the same disk even if the path
is different.
For example; if MARY is your current directory, then:

OPEN "REPORT" ...
OPEN ''\SALES\MARY\REPORT" ...
OPEN " .. \MARY\REPORT" .. .
OPEN " .. \ .. \MARY\REPORT" .. .

all refer to the same file.

MS-DOS Devices

BASIC devices are:

KYBD:
LPTn:
SCAN:
CON:
COMn:

The BASIC file 1/0 system allows the user to take advantage of user in­
stalled devices (See the MS-DOS manual for information on character
devices).

Character devices opened are opened and used in the same manner as
disk files. However, characters are not buffered by BASIC as they are for
disk files. The record length is set to one.

7-129

Ka
yp
roJ
ou
rna
l

BASIC only sends a CR (carriage return X'0D') as end of line. If the device
requires a LF (line feed X'0A'), the driver must provide it. When writing
device drivers, keep in mind that BASIC users will want to read and write
control information. Writing and reading of device control data is handled
by the BASIC IOCTL statement and IOCTL$(f) function.

Note

A file can be opened for sequential input or random access on more than
one file number at a time. A file may be OPENed for output, however, on
only one file number at a time.

Examples

10 OPEN "l",2,"INVEN"'

10 OPEN "MAILING.DAT" FOR APPEND AS 1

If a user writes and installs a device called FOO, then the OPEN statement
might appear as:

10 OPEN "\DEV\FOO" FOR OUTPUT AS #1

To open the printer for output, the user could use the line:

100 OPEN "LPT:" FOR OUTPUT AS #1

which uses the GW-BASIC device driver, or as part of a pathname as in:

100 OPEN "\DEV\LPT1" FOR OUTPUT AS #1

which uses the MS-DOS device driver.

7-130

n
n
n
n
r,

n
n
n I ,,
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
LJ
u
u
u
u
u
u
u
u
u
u
Li
LJ
u
u

7.110 OPEN COM Statement

Syntax

OPEN "COMn: [< speed >][,[< parity >]
[,[<data>][.[<stop>][,RS][,CS[n]][,DS[n]] [,CD[n]] [,BIN]
[,ASC][,LF)]]]" {FOR< mode> AS[#]< filenumber > [LEN= < re­
cord length>]

COMn: is the name of the device to be opened.

n is the number of a legal communications device, i.e., COM1: or COM2:.

<speed> is the baud rate, in bits per second, of the device to be opened.

< parity > designates the parity of the device to be opened. Valid entries
are: N (none}, E (even), 0 (odd), S (space), or M (mark).

<data> designates the number of data bits per byte. Valid entries are:
5, 6, 7, or 8.

< stop> designates the stop bit. Valid entries are: 1, 1.5, or 2.

RS suppresses RTS (Request To Send).

CS[n] controls CTS (Clear To Send).

DS[n] controls DSR (Data Set Ready).

CD[n] controls CD (Carrier Detect).

LF specifies that a linefeed is to be sent after a carriage return. See "Re­
marks" for further discussion of LF.

BIN opens the device in binary mode. BIN is selected by default unless
ASC is specified. See "Remarks" for further discussion of BIN.

ASC opens the device in ASCII mode.
See "Remarks" for further discussion of ASC.

< mode > is one of the following string expressions:

OUTPUT Specifies sequential output mode.

INPUT Specifies sequential input mode.

If the < mode > expression is omitted, it is assumed to be random input/
output. Random cannot, however, be explicitly chosen as < mode > .

7-131

Ka
yp
roJ
ou
rna
l

< file number> is the number of the file to be opened.

Purpose
To open and initialize a communications channel for input/output.

Remarks
The OPEN COM statement must be executed before a device can be
used for RS232 communication.

Any syntax errors in the OPEN COM statement will result in a "Bad File
name" error.

The < speed > , < parity > , < data > , and < stop > options must be
listed in the order shown in the above syntax. The remaining options may
be listed in any order, but they must be listed after the < speed > , < par­
ity>, <data>, and <stop> options.

A "Device timeout" error will occur if Data Set Ready (DSR) is not detected.

LF allows communication files to be printed on a serial line printer. When
LF is specified, a linefeed character (0AH) is automatically sent after each
carriage return character (OCH). This includes the carriage return sent as
a result of the width setting. Note that INPUT# and LINE INPUT#, when
used to read from a COM file that was opened with the LF option, stop
when they see a carriage return, ignoring the linefeed.

The LF option is superseded by the BIN option.

In the BIN mode, tabs are not expanded to spaces, a carriage return is
not forced at the end-of-line, and Control-Z is not treated as end-of-file.
When the channel is closed, Control-Z will not be sent over the RS232
line. The BIN option supersedes the LF option.

In ASC mode, tabs are expanded, carriage returns are forced at the end­
of-line, Control-Z is treated as end-of-file, and XON/XOFF protocol (if
supported) is enabled. When the channel is closed, Control-Z will be sent
over the RS232 line.

7-132

n ,,
n
r, ,,
n
r,
r, ,,
r,
r,

n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
LJ

u
u
u
u
u
LJ
u

Example

10 OPEN "COM1:9600,N,8,1,BIN" AS #2

will open communications channel 1 in random mode at a speed of 9600
baud with no parity bit, 8 data bits, and 1 stop bit. Input/Output will be in
the binary mode. Other lines in the program may now access channel 1
as file number 2.

7,133

Ka
yp
roJ
ou
rna
l

7 .111 OPTION BASE Statement

Syntax
OPTION BASE n

where n is 1 or 0

Purpose
To declare the minimum value for array subscripts.

Remarks
The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have is 1.

The OPTION BASE statement must be coded before you define or use
any arrays.

n
n
n
n
n
n
n

Chained programs may have an OPTION BASE statement if no arrays n
are passed between them or the specified base is identical in the chained
programs. The chained program will inherit the OPTION BASE value of n-.
the chaining program.

Example

10 OPTION BASE 1 n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.112 OUT Statement

Syntax

OUTl,J

where I is the port number. It must be an integer expression in the range
Oto 65535.

J is the data to be transmitted. It must be an integer expression in the
range O to 255.

Purpose
To send a byte to a machine output port.

Example
100 OUT 12345,255

In 8086 assembly language, this is equivalent to:

MOV DX, 12345
MOVAL,255
OUT DX,AL

7-135

Ka
yp
roJ
ou
rna
l

7 .113 PAINT Statement

Syntax

PAINT (< x >, < y >)[,<paint attribute> [,<border color>] [,back­
ground attribute]]

{ < xstart > and < ystart >) are the coordinates where painting is to
begin. Painting should always start on a non-border point. If painting starts
within a border, the bordered figure is painted. If painting starts outside a
bordered figure, the background is painted.

If the < paint attribute> is a string expression PAINT will execute "Tiling",
a process similar to "Line-styling." Like LINE, PAINT looks at a "tiling"
mask each time a point is put down on the screen.

If < paint attribute> is a numeric expression, then the number must be
a valid color and is used to paint the area as before. (see COLOR State­
ment, Section 7.20). If the < paint attribute> is not specified, the fore­
ground color will be used.

< border color> identifies the border color of the figure to be filled. When
the border color is encountered, painting of the current line will stop. If the
< border color> is not specified, the < paint attribute> will be used.

< background attribute > is a string formula returning character data.
When it is omitted, the default is CHR$(0).

When specified, < background attribute > gives the "background tile
slice" to skip when checking for termination of the boundary. Painting is
terminated when adjacent points display the paint color; specifying a
background tile slice allows the user to paint over an already painted area
without terminating the process because two consecutive lines with the
same paint attributes are encountered.

Purpose
To fill a graphics area with the color or pattern specified.

Remarks
Painting is complete when a line is painted without changing the color of
any pixel; i.e., the entire line is equal to the paint color.

The PAINT command can be used to fill any figure, but painting complex
figures may result in an "Out of Memory" error. If this happens, the CLEAR
statement may be given to increase the amount of stack space available.

7-136

n
n
n
n
n
n
n
n
n
n
n
n
r,

n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

The PAINT command permits coordinates outside the screen or viewport.

Tiling

Tiling is the design of a PAINT pattern that is 8 bits wide and up to 64
bytes long. Each byte in the Tile String masks 8 bits along the x axis when
putting down points. Construction of this Tile mask works as follows:

Use the syntax PAINT (x,y), CHR$(n) ... CHR$(n) where (n) is a number
between 0 and 255 which will be represented in binary across the x-axis
of the "tile". Each CHR$(n) up to 64 will generate an image not of the
assigned character, but of the bit arrangement of the code for that char­
acter. For example, the decimal number 85 is binary "01010101 "; the
graphic image line on a black and white screen generated by CHR$(85) is
an eight pixel line, with even numbered points turned white, and odd ones
black. That is, each bit containing a "1" will set the associated pixel on
and each bit filled with a "0" will set the associated bit off in a black and
white system. The ASCII character CHR$(85), which is "U", is not dis­
played in this case.

If the current screen mode supports only two colors, then the screen can
be painted with 'X's with the following statement.

PAINT (320, 1 00),CHR$(129) + CHR$(66) + CHR$(36) + CHR$(24) +
CHR$(24) + CHR$(36) + CHR$(66) + CHR$(129)

This appears on the screen as:

x increases -- >
0,0 I x I I I I x I CHR$(129) Tile byte 1
0,1 I I x I I Ix I I CHR$(66) Tile byte 2
0,2 I I Ix I I x I I I CHR$(36) Tile byte 3
0,3 I I I lxlxl I I I CHR$(24) Tile byte 4
0,4 I I I 1 X I X I I I CHR$(24) Tile byte 5
0,5 I I Ix I I Ix I I CHR$(36) Tile byte 6
0,6 I I x I I I I I x I CHR$(66) Tile byte 7
0,7 I x I I I I I I x I CHR$(129) Tile byte 8

7-137

Ka
yp
roJ
ou
rna
l

When supplied, < backgroundattr > specifies the "background tile slice"
to skip when checking for boundary termination.

You cannot specify more than two consElcutive bytes in the tile back­
ground slice that match the tile string. Specifying more than two will result
in an "Illegal function call" error.

Example

10 PAINT (5, 15),2,0

begins painting at coordinates 5, 15 with color 2 and border color 0, and
fills to a border.

7-138

n
n
n
n
n
n
n
n
n
n
n
n
n
r,

n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
LJ
LJ
u
LJ
u

7 .115 PEEK Function

Syntax
PEEK(I)

Purpose
To return the byte read from the indicated memory location (I).

Remarks
The returned value is an integer in the range 0 to 255. I must be in the
range -32768 to 65535. I is the offset from the current segment, which
was defined by the last DEF SEG statement (see Section 7.34). For the
interpretation of a negative value of I, see VARPTR Function, Section 7.170.

PEEK is the complementary function of the POKE statement.

Example
A= PEEK(&H5A00)

In this example, the value at the location with the hex address 5AO0 is
loaded into a variable, A.

7-139

Ka
yp
roJ
ou
rna
l

7.118 PLAY Statement

Syntax
PLAY < string >

<string> is one or more of the subcommands listed under "Remarks."

Purpose
To play music as specified by <string> .

Remarks
PLAY uses a concept similar to that in DRAW (see Section 7.38) by
embedding a Music Macro Language into one statement. A set of sub­
commands, used as part of the PLAY statement, specifies the particular
action to be taken.

Prefixes-Change Octave

>
Increments octave. Octave will not advance beyond 6.

<
Decrements octave. Octave will not drop below 0.

Tone

0 <n>
Sets the current octave. There are seven octaves, numbered 0 through 6.

A-G
Plays a note in the range A-G. # or + after the note specifies sharp;
- specifies flat.

N <n>
Plays note n. n may range from O through 84 (in the 7 possible octaves,
there are 84 notes). n = 0 means a rest.

Duration

L <n>
Sets the length of each note. L 4 is a quarter note, L 1 is a whole note,
etc. n may be in the range 1 through 64.

The length may also follow the note when a change of length only is de­
sired for a particular note. In this case, A 16 is equivalent to L 16 A.

7-140

n
n
n
n
n
n
n
n
n
n
n
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
l J u

u
u

MN
Sets "music normal" so that each note will play 7 /8 of the time determined
by the length (L).

ML
Sets "music legato" so that each note will play the full period set by length
(L).

MS
Sets "music staccato" so that each note will play 3/4 of the time deter­
mined by the length (L).

Tempo

P <n>
Specifies a pause, ranging from 1 through 64. This option corresponds to
the length of each note, set with L < n > .

T <n>
Sets the "tempo," or the number of L 4's in one minute. n may range from
32 through 255. The default is 120.

Operation

MF
Sets music (PLAY statement) and SOUND to run in the foreground. That
is, each subsequent note or sound will not start until the previous note or
sound has finished. This is the default setting.

MB
Music (PLAY statement) and SOUND are set to run in the background.
That is, each note or sound is placed in a buffer allowing the GW-BASIC
program to continue executing while the note or sound plays in the back­
ground. The number of notes that can be played in the background at one
time varies according to the particular machine.

Substring

X < string > Executes a substring. Because of the slow clock interrupt
rate, some notes will not play at higher tempos (L 64 at T 255, for example).

Note (as shown in the "Examples" below) that a substring may be exe­
cuted by appending the character form of the substring address to "X".

7-141

Ka
yp
roJ
ou
rna
l

Suffixes

or + Follows a specified note, and turns it into a sharp.
- Follows a specified note, and turns it into a flat.

A period after a note causes the note to play 3/2 times the length deter­
mined by L multiplied by T (tempo). Multiple periods may appear after a
note. The period is scaled accordingly; for example, A. is 3/2, A .. is 9/4,
A ... is 27 /8, etc. Periods may appear after a pause (P). In this case, the
pause length may be scaled in the same way notes are scaled.

Examples

PLAY"< <" 'Decrement by two octaves

PLAY">" "Increment by an octave

PLAY"> A" "Increment by an octave and play an A note

PLAY "XSONG$"

LET LISTEN$ = "T180 02 P2 PB LB GGG L2 E-"

LET FATE$ = "P24 PB LB FFF L2 D"

PLAY LISTEN$ + FATE$

n
r,

n
n
r,

n
n
n
n

This example will play the beginning of the first movement of Beethoven's n
Fifth Symphony.

7-142

n
n

n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .119 PL AV Function

Syntax

PLAY (n)

(n) is a dummy argument and may be any value.

Purpose
To return the number of notes currently in the background music queue.

Remarks
PLAY(n) will return O when the user is in Music Foreground Mode.

7-143

Ka
yp
roJ
ou
rna
l

7.120 PLAY ON, PLAY OFF, PLAY STOP Statements

Syntax

PLAY ON
PLAY OFF
PLAY STOP

Purpose
PLAY ON enables play event trapping.
PLAY OFF disables play event trapping.
PLAY STOP suspends play event trapping.

Remarks
If a PLAY OFF statement has been executed the GOSUB is not performed
and is not remembered.

If a PLAY STOP statement has been executed the GOSUB is not per­
formed, but will be performed as soon as a PLAY ON statement is
executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
PLAY STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a PLAY
ON statement unless an explicit PLAY OFF was performed inside the
subroutine.

The RETURN < line number> form of the RETURN statement may be
used to return to a specific line number from the trapping subroutine. Use
this type of return with care, however, because any other GOSUBs,
WHILES, or FORs that were active at the time of the trap will remain active,
and errors such as "FOR without NEXT" may result.

7-144

n
n
r,

n
n
n ,,
n
n
n
n
n
n
n ,,
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.121 PMAP Function

Syntax

PMAP < expression > , < function >

Purpose
To map world coordinate expressions to physical locations or to map
physical expressions to a world coordinate location.

<function> =
0 Maps world expression to physical x coordinate.

1 Maps world expression to physical y coordinate.

2 Maps physical expression to world x coordinate.

3 Maps physical expression to world y coordinate.

Remarks
The four PMAP functions allow the user to find equivalent point locations
between the world coordinates created with the WINDOW statement and
the physical coordinate system of the screen or viewport as defined by
the VIEW statement.

Examples

If a user had defined a WINDOW SCREEN (80, 100)-(200,200) then the
upper left coordinate of the window would be (80,100) and the lower right
would be (200,200). The screen coordinates may be (0,0) in the upper left
hand corner and (639,199) in the lower right. Then:

X = PMAP(B0,0)

would return the screen x coordinate of the window x coordinate 80:

0

The PMAP function in the statement:

Y = PMAP(200, 1)

would return the screen y coordinate of the window y coordinate 200:

199

The PMAP function in the statement:

7-145

Ka
yp
roJ
ou
rna
l

X = PMAP(619,2)

would return the "world" x coordinate that corresponds to the screen or
viewport x coordinate 619:

199

The PMAP function in the statement:

Y = PMAP(100,3)

would return the "world" y coordinate that corresponds to the screen or
viewport y coordinate 100:

140

7-146

n ,,
r,
r,
r,

n
r, ,,
r,

n
r,

n
r,

n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.122 POINT Function

Syntax
POINT (< xcoordinate >, < ycoordinate >)

< xcoordinate > and < ycoordinate > are the coordinates of the pixel
that is to be referenced.

or

POINT (<function>)

Purpose

POINT (x,y) allows the user to read the color number of a pixel from the

screen. If the specified point is out of range, the value -1 is returned.

POINT with one argument allows the user to retrieve the current Graphics
cursor coordinates. Therefore:

x = POINT(funct) Returns the value of the current x or y Graphics accu-
mulator as follows:

function =

0 Returns the current physical x coordinate.

1 Returns the current physical y coordinate.

2 Returns the current logical x coordinate. If the WINDOW statement has

not been used, this will return the same value as the POINT(0) function.

3 Returns the current logical y coordinate if WINDOW is active, else re­

turns the current physical y coordinate as in 1 above where the physical

coordinate is the coordinate on the screen or current viewport.

Examples

10 SCREEN 1
20LETC=3
30 PSET (10, 1 0),C
40 IF POINT(10,10) = C THEN PRINT "This point is color ";C

7-147

Ka
yp
roJ
ou
rna
l

r,
5 SCREEN 2
10 IF POINT(i,i) < > 0 THEN PRESET (i,i) ELSE PSET {i,i) 'invert current r,
state of a point
20 PSET (i,i), 1-POINT(i,i) 'another way to invert a point if the system is
black and white. r,

7-148

r, ,,
r,

n
r,

n
n
r, ,,
n
r, ,,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.123 POKE Statement

Syntax

POKE l,J

where I and J are integer expressions.

Purpose
To write a byte into a memory location.

Remarks
I and J are integer expressions. The expression I represents the address
of the memory location and J is the data byte. J must be in the range Oto
255.

I must be in the range -32768 to 65535. I is the offset from the current
segment, which was set by the last DEF SEG statement (see Section
7.34). For interpretation of negative values of I, see VARPTR Function,
Section 7.170.

The complementary function to POKE is PEEK. (See Section 7.115.)

WARNING

Use POKE carefully. If it is used incorrectly, it can cause
GW-BASIC or MS-DOS to crash.

Example
10 POKE &H5A00,&HFF

7-149

Ka
yp
roJ
ou
rna
l

7.124 POS Function

Syntax
POS(I)

Purpose

To return the current horizontal (column) position of the cursor.

Remarks

The leftmost position is 1. I is a dummy argument. To return the current
vertical line position of the cursor, use the CSRLIN function (Section 7.27).

Example

IF POS(X) > 60 THEN BEEP

Also see LPOS Function, Section 7.88.

7-150

n
r,
r,

n
r,
r,

n
r,
r,

n
r,

n
r,

n
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .125 PRESET Statement

Syntax
PRESET [STEP](< xcoordinate > , < ycoordinate >) [, < color>]

< xcoordinate > and < ycoordinate > specify the pixel that is to be set.

<color> is the color number that is to be used for the specified point.

The STEP option, when used, indicates the given x and y coordinates will
be relative, not absolute. That means the x and y are distances from the
most recent cursor location, not distances from the (0,0) screen coordinate.

Purpose
To draw a specified point on the screen. PRESET works exactly like PSET
except that if the < color> is not specified, the background color is
selected.

Remarks
If a coordinate is outside the current viewport, no action is taken, nor is
an error message given.

Coordinates can be shown as absolutes, as in the above syntax, or the
STEP option can be used to reference a point relative to the most recent
point used. For example, if the most recent point referenced were (10, 10),
STEP (10,5) would reference the point at (20, 15).

Example
5 REM DRAW A LINE FROM (0,0) TO (100,100)
10 FOR I = 0 TO 100
20 PRESET (1,1), 1
30 NEXT

35 REM NOW ERASE THAT LINE
40 FOR I =OTO 100
50 PRESET STEP (-1,-1)
60 NEXT

This example draws a line from (0,0) to (100,100) and then erases that
line by overwriting it with the background color.

7-151

Ka
yp
roJ
ou
rna
l

7 .126 PRINT Statement

Syntax
PRINT [<list of expressions>]

Purpose
To output data on the screen.

Remarks
If < list of expressions> is omitted, a blank line is printed. If < list of
expressions > is included, the values of the expressions are printed on
the screen. The expressions in the list may be numeric and/or string
expressions. (String literals must be enclosed in quotation marks.)

A question mark (?) can be used as a form of shorthand by the user. It will
be interpreted as the word "PRINT", and will appear as "PRINT" in sub­
sequent listings.

Print Positions

The position of each printed item is determined by the punctuation used
to separate the items in the list. Microsoft GW-BASIC divides the line into
print zones of 14 spaces each. In the list of expressions, a comma causes
the next value to be printed at the beginning of the next zone. Semicolon
causes the next value to be printed immediately after the last value. Typ­
ing one or more spaces between expressions has the same effect as
typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing according to
instructions. If the list of expressions terminates without a comma or a
semicolon, a carriage return is printed at the end of the line. If the printed
line is wider than the screen width, Microsoft GW-BASIC goes to the next
physical line and continues printing.

Printed numbers are always followed by a space. Positive numbers are
preceded by a space. Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented with 6 or fewer digits
in the unscaled format no less accurately than they can be represented in
the scaled format, are output using the unscaled format. For example,
1 E-7 is output as .0000001 and 1 E-8 is output as 1 E-08. Double precision
numbers that can be represented with 16 or fewer digits in the unscaled
format no less accurately than they can be represented in the scaled for­
mat, are output using the unscaled format. For example, 1 D-15 is output
as . 0000000000000001 and 1 0-16 is output as 1 D-16.

7-152

n
n
r,

n
n
r, ,,
n
n
r,

n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
LJ

u
u
u

With the interpreter, a question mark may be used in place of the word
PRINT in a PRINT statement.

Example 1
10 X= 5
20 PRINT X + 5,X-5,X*(-5),XAS
30END

will yield

10 0 -25 3125

In this example, the commas in the PRINT statement cause each value to
be printed at the beginning of the next print zone.

Example 2
10 INPUT X
20 PRINT X "SQUARED IS" X/\2 "AND";
30 PRINT X "CUBED IS" X/\3
40 PRINT
50 GOTO 10

will yield

?9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of line 20 causes both PRINT
statements to be printed on the same line. Line 40 causes a blank line to
be printed before the next prompt.

7-153

Ka
yp
roJ
ou
rna
l

Example3
10 FOR X = 1 TO 5
20J=J + 5
30 K = K + 10
40 ?J;K;
50 NEXT X

will yield

5 10 10 20 15 30 20 40 25 50

In this example, the semicolons in the PRINT statement cause each value
to be printed immediately after the preceding value. (Remember, a num­
ber is always followed by a space, and positive numbers are preceded by
a space.) In line 40, a question mark is used instead of the word PRINT.

7-154

n
r,

n
n
r,! ,,
n
n
n
n
n
n
r,

n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .127 PRINT USING Statement

Syntax

PRINT USING < string exp>;< list of expressions>

Purpose

To print strings or numbers using a specified format.

Remarks
< list of expressions > is comprised of the string expressions or nu­
meric expressions that are to be printed, separated by semicolons.

< string exp> is a string literal (or variable) composed of special for­
matting characters. These formatting characters (see Examples
below) determine the field and the format of the printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one of three formatting char­
acters may be used to format the string field:

Specifies that only the first character in the given string is to be printed.

"\n spaces\"
Specifies that 2 + n characters from the string are to be printed. If the
backslashes are typed with no spaces, two characters will be printed;
with one space, three characters will be printed, and so on. If the string is
longer than the field, the extra characters are ignored. If the field is longer
than the string, the string will be left-justified in the field and padded with
spaces on the right.

Example:

10 A$= "LOOK":B$ = "OUT"
30 PRINT USING "!";A$;8$
40 PRINT USING "\ \";A$;8$
50 PRINT USING "\ \";A$;8$;"!!"

wlll yield

LO
LOOKOUT
LOOK OUT!!

7-155

Ka
yp
roJ
ou
rna
l

Specifies a variable length string field. When the field is specified with
"&", the string is output without modification.

Example:

10 A$= "LOOK":B$ = "OUT"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$

will yield

LOUT

,,
n
r,

n
n

Numeric Fields r,
When PRINT USING ls used to print numbers, the following Special char-
acters may be used to format the numeric field: n

A number sign is used to represent each digit position. Digit positions are
always filled. If the number to be printed has fewer digits than positions
specified, the number will be right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position in the field. If the format
string specifies that a digit is to precede the decimal point, the digit will
always be printed (as 0, if necessary). Numbers are rounded as necessary.

PRINT USING "##.##";.78
0.78

PRINT USING "###.##";987.654
987.65

PRINT USING"##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the end of the format
string to separate the printed values on the line.

+
A plus sign at the beginning or end of the format string will cause the sign
of the number (plus or minus) to be printed before or after the number.

7-156

n
n
n
n
n
n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

A minus sign at the end of the format field will cause negative numbers to
be printed with a trailing minus sign.

PRINT USING "+ ##.##";-68.95,2.4,55.6,-.9
-68.95 + 2 .40 + 55.60 -0.90

PRINT USING "##.##-";-68.95,22.449,-7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format string causes leading
spaces in the numeric field to be filled with asterisks. The** also specifies
positions for two more digits.

PRINT USING "**#.#";12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$
A double dollar sign causes a dollar sign to be printed to the immediate
left of the formatted number. The $$ specifies two more digit positions,
one of which is the dollar sign. The exponential format cannot be used
with$$. Negative numbers cannot be used unless the minus sign trails to
the right.

PRINT USING "$$###.##";456.78
$456.78

The **$ at the beginning of a format string combines the effects of the
above two symbols. Leading spaces will be asterisk-filled and a dollar
sign will be printed before the number. 0 $ specifies three more digit po­
sitions, one of which is the dollar sign.

The exponential format cannot be used with **$. When negative numbers
are printed, the minus sign will appear immediately to the left of the dollar
sign.

PRINT USING "**$##.##";2.34
***$2.34

A comma that is to the left of the decimal point in a formatting string
causes a comma to be printed to the left of every third digit to the left of
the decimal point. A comma that is at the end of the format string is printed

7-157

Ka
yp
roJ
ou
rna
l

as part of the string. A comma specifies another digit position. The comma
has no effect if used with exponential (AA/\/\) format.

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.51234.50,

/\/\/\/\

Four carets (or up-arrows) may be placed after the digit position charac­
ters to specify exponential format. The four carets allow space for E + xx
to be printed. Any decimal point position may be specified. The significant
digits are left-justified, and the exponent is adjusted. Unless a leading +
or trailing + or - is specified, one digit position will be used to the left
of the decimal point to print a space or a minus sign.

PRINT USING "##.##AA/\/\";234.56
2.35E + 02

PRINT USING ".####AAAA-";-888888
-.8889E + 06

PRINT USING"+ .##/\/\A/\;123
+ .12E+ 03

An underscore in the format string causes the next character to be output
as a literal character.

PRINT USING "_!##.##1";12.34
!12.34!

The literal character itself may be an underscore by placing" __ " in the
format string.

%
If the number to be printed is larger than the specified numeric field, a
percent sign is printed in front of the number. If rounding causes the num­
ber to exceed the field, a percent sign will be printed in front of the rounded
number.

PRINT USING "##.##";111.22
%111.22

PRINT USING ".##";.999
%1.00
If the number of digits specified exceeds 24, an "Illegal function call" error
will result.

7-158

r,

n
n
n
n
n
n
n
n
n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u

7.128 PRINT# And PRINT# USING Statements

Syntax
PRINT#< file number> ,[USING < string exp>;] < list of
expressions >

Purpose

LJ To write data to a sequential file.

u
u
u
LJ
u
u
u
u
u
u
u
u

Remarks/Examples

< file number> is the number used when the file was opened for output.
< string exp> consists of formatting characters as described in "PRINT
USING Statement," Section 7.127. The expressions in < list of expres­
sions > are the numeric and/or string expressions that will be written to
the file.

PRINT# does not compress data. An image of the data is written to the
file, just as it would be displayed on the terminal screen with a PRINT
statement. For this reason, care should be taken to delimit the data, so
that it will be input correctly.

In the list of expressions, numeric expressions should be delimited by
semicolons. For example:

PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks that are inserted be­
tween print fields will also be written to the file.)

String expressions must be separated by semicolons in the list. To format
the string expressions correctly in the file, use explicit delimiters in the list
of expressions.

For example, let A$= "CAMERA" and B$ = "93604-1 ". The statement

PRINT#1,A$;B$

would write CAM ERA93604-1 to the file. Because there are no delimiters,
this could not be input as two separate strings. To correct the problem,
insert explicit delimiters into the PRINT# statement as follows:

PRINT#1,A$;",";B$

The image written to the file is

7-159

Ka
yp
roJ
ou
rna
l

CAMERA,93604-1
which can be read back into two string variables.

If the strings themselves contain commas, semicolons, significant leading
blanks, carriage returns, or linefeeds, write them to the file surrounded
by explicit quotation marks, CHR${34).

For example, let A$= "CAMERA, AUTOMATIC" and B$=" 93604-1".
The statement

PRINT#1,A$;B$

would write the following image to file:

CAMERA, AUTOMATIC 93604-1

And the statement

INPUT#1,A$,8$

would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to 8$. To sep­
arate these strings properly in the file, write double quotation marks to
the file image using CHR$(34). The statement

PRINT #1 ,CH R$(34):A$;CHR$(34);CH R$(34);B$;CHR$(34)

writes the following image to the file:

"CAMERA, AUTOMATIC"" 93604-1"

And the statement

INPUT#1,A$,B$

n
n
n
n
n
n
n
n
n
n
n

would input "CAMERA, AUTOMATIC" to A$ and " 93604-1" to 8$. n
The PRINT# statement may also be used with the USING option to con-
trol the format of the file. For example: n
PRINT#1,USING"$$###.##,";J;K;L

Note

See also WRITE# Statement, Section 7.179.

7-160

n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
• J u
u
u
LJ

u

7.129 PSET Statement

Syntax

PSET [STEP](< xcoordinate > , < ycoordinate >) [, < color>]

(< xcoordinate > and < ycoordinate >) specify the point on the screen
to be colored.

< color > is the number of the color to be used.

The STEP option, when used, indicates the given x and y coordinates will
be relative, not absolute. That means the x and y are distances from the
most recent cursor location, not distances from the (0,0) screen coordinate.

Remarks

When GW-BASIC scans coordinate values, it will allow them to be beyond
the edge of the screen (size of the screen is dependent on the particular
machine being used, and can be adjusted with the WIDTH statement).
However, values outside the integer range -32768 to 32767 will cause an
"Overflow" error.

Coordinates can be shown as offsets by using the STEP option to refer­
ence a point relative to the most recent point used. The syntax of the
STEP option is:

STEP (< xoffset > , < yoffset >)

For example, if the most recent point referenced were (0,0), PSET STEP
(10,0) would reference a point at offset 10 from x and offset O from y.

The coordinate (0,0) is always the upper left corner of the screen.

PSET allows the < color> to be left off the command line. If it is omitted,
the default is the foreground color.

7-161

Ka
yp
roJ
ou
rna
l

Example

5 REM DRAW A LINE FROM (0,0) TO (100,100)
10 FOR I = 0 TO 100
20 PSET (1,1)
30 NEXT I
35 REM NOW ERASE THAT LINE
40 FOR I = 0 TO 100
50 PSET STEP (-1,-1),0
60 NEXT I

This example draws a line from (0,0) to (100,100) and then erases that
line by writing over it with the background color.

7-162

r,
r, ,,
n
n
n
n
n
n
n
n
n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

LJ

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .130 PUT Statement - File 1/0

Syntax

PUT[#]< file number>[,< record number>]

Purpose

To write a record from a random buffer to a random access file.

Remarks

< file number> is the number under which the file was opened. If < re­
cord number> is omitted, the record will assume the next available re­
cord number (after the last PUT or GET). The largest possible record
number is 16,777,215. The smallest record number is 1 .

The GET and PUT statements allow fixed-length input and output for GW­
BASIC COM files. However, because of the low performance associated
with telephone line communications, we recommend that you do not use
GET and PUT for telephone communication. Note: LSET, RSET, PRINT#,
PRINT# USING, and WRITE# may be used to put characters in the random
file buffer before executing a PUT statement.

In the case of WRITE#, Microsoft GW-BASIC pads the buffer with spaces
up to the carriage return. Any attempt to read or write past the end of the
buffer causes a "Field overflow" error.

For details on file 1/0, see Chapter 5, "Working with Files and Devices."

Example

100 PUT 1, A$, 8$, C$

7-163

Ka
yp
roJ
ou
rna
l

7.131 PUT Statement - Graphics

Syntax

PUT (x1 ,y1), < array name> [,action verb]

used with

GET (x1 ,y1)-(x2,y2), < array name>

(x1 ,y1) in the PUT statement specifies the point where a stored image is
to be displayed on the screen. The specified point is the coordinate of the
top left corner of the image. If the image to be transferred is too large to
fit in the current viewport, an "Illegal function call" error will result.

< action verb> is one of: PSET, PRESET, AND, OR, XOR.

PSET transfers the data point by point onto the screen. Each point has
the exact color attribute it had when it was taken from the screen with a
GET.

PRESET is the same as PSET except that a negative image (black on
white) is produced.

AND is used when the image is to be transferred over an existing image
on the screen. The resulting image is the product of the logical AND
expression; points that had the same color in both the existing image and
the PUT image will remain the same color, points that do not have the
same color in both the existing image and the PUT image, will not.

OR is used to superimpose the image onto an existing image.

XOR is a special mode often used for animation. It causes the points on
the screen to be inverted where a point exists in the array image. This
behavior is exactly like that of the cursor. When an image is PUT against
a complex background twice, the background is restored unchanged. This
allows a user to move an object around the screen without erasing the
background.

The default < action verb > is XOR.

Purpose
The GET and PUT statements are used together to transfer graphic im­
ages to and from the screen.

7-164

r,

n
n
n
r,

n
n
n ,,
n
n
n
n
n
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u

lu
u
u
u
u
u
u
u
u
u
u
u
u

The GET statement transfers the screen image bounded by the rectangle
described by the specified points into the array.

The PUT statement transfers the image stored in the array onto the screen.

The < action verb> specifies the interaction between the stored image
and the one already on the screen.

Remarks

One of the most useful things that can be done with GET and PUT is
animation. Animation is performed as follows:

1. PUT the object(s) on the screen.

2. Recalculate the new position of the object(s).

3. PUT the object(s) on the screen a second time at the old location(s)
(using XOR) to remove the old image(s).

4. Go to step 1, but this time PUT the object(s) at the new location.

Movement done this way will leave the background unchanged.
Flicker can be cut down by minimizing the time between steps 4 and 1
and by making sure that there is enough time delay between 1 and 3. If
more than one object is being animated, every object should be pro­
cessed at once, one step at a time.

If it is not important to preserve the background, animation can be per­
formed using the PSET action verb. The idea is to leave a border around
the image when it is first gotten that is as large or larger than the maxi­
mum distance the object will move. Thus, when an object is moved, this
border will effectively erase any points left by the previous PUT. This
method may be somewhat faster than the method using XOR described
above, since only one PUT is required to move an object (although you
must PUT a larger image).

7-165

Ka
yp
roJ
ou
rna
l

n
It is possible to examine the x and y dimensions and even the data itself
if an integer array is used. With the interpreter, the x dimension is in ele- n
ment O of the array, and they dimension is found in element 1. (However,
this will not always be true for the compiler.) Remember that integers are
stored low byte first, then high byte, but the data is transferred high byte n
first (leftmost) and then low byte.

7-166

n
r,
r,

n ,,
r,
n

r,

n
r,

n
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .132 RANDOMIZE Statement

Syntax

RANDOMIZE [<expression>]

Purpose

To reseed the random number generator.

Remarks

If <expression> is omitted, Microsoft GW-BASIC suspends program
execution and asks for a value by printing

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If expression is a variable, the value of that variable is used to seed the
random numbers.

If <expression> is the word "TIMER" then the TIMER function is used
to pass a random number seed.

If the random number generator is not reseeded, the RND function re­
turns the same sequence of random numbers each time the program is
run. To change the sequence of random numbers every time the program
is run, place a RANDOMIZE statement at the beginning of the program
and change the argument with each run.

Example

10 RANDOMIZE
20 FOR I= 1 TO 5
30 PRINT RND;
40 NEXT I

will yield

Random Number Seed (-32768 to 32767)? 3
(user types 3)

will yield

.885982 .4845668 .586328

7-167

.1194246 .7039225

Ka
yp
roJ
ou
rna
l

Random Number Seed (-32768 to 32767)? 4
(user types 4 for new sequence)

will yield

.803506 .1625462 .929364

Random Number Seed (-32768 to 32767)? 3
(same sequence as first run)

will yield

.885982 .4845668 .586328

.2924443 .322921

.1194246 .7039225

Note that the numbers your program produces may not be the same as
the ones shown here.

7-168

r,
r,

n
r,

n
r,
r,

n
r,

n
n
n
r,

n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.133 READ Statement

Syntax

READ < list of variables>

Purpose

To read values from a DATA statement and assign them to variables. (See
"DATA Statement," Section 7.29.)

Remarks

A READ statement must always be used in conjunction with a DATA state­
ment. READ statements assign variables to DATA statement values on a
one-to-one basis. READ statement variables may be numeric or string,
and the values read must agree with the variable types specified. If they
do not agree, a "Syntax error" will result.

A single READ statement may access one or more DATA statements (they
will be accessed in order), or several READ statements may access the
same DATA statement. If the number of variables in < list of variables>
exceeds the number of elements in the DATA statement(s), an "Out of
data" error message is printed. If the number of variables specified is
fewer than the number of elements in the DATA statement(s), subsequent
READ statements will begin reading data at the first unread element. If
there are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement
(see RESTORE Statement, Section 7.137)

Example 1

80 FOR I = 1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values from the DATA statements into
the array A. After execution, the value of A(1) will be 3.08, and so on.

7-169

Ka
yp
roJ
ou
rna
l

Example
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z$
30 DATA "DENVER,", "COLORADO","80211"
40 PRINT C$,S$,Z$

will yield

CITY
DENVER

STATE
COLORADO

ZIP
80211

This program reads string and numeric data from the DATA statement in
line 30.

7-170

r, ,,
r,
r,
r,
r,

n
n
n
r,
r,

n
n
r,
r,

n

Ka
yp
roJ
ou
rna
l

u
7 .134 REM Statement

LJ Syntax
REM <remark>

LJ Purpose

u
u
u
u
u
u
u
u
u
u
u
u
u

To allow explanatory remarks to be inserted in a program.

Remarks
REM statements are not executed but are output exactly as entered when
the program is listed.

REM statements may be branched into from a GOTO or GOSUB state­
ment. Execution will continue with the first executable statement after the
REM statement.

Remarks may be added to the end of a line by preceding the remark with
a single quotation mark instead of :REM.

Important: Do not use the single quotation form of the REM statement in
a data statement, because it would be considered legal data.

Example

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I= 1 TO 20
140 SUM= SUM + V(I)

or

120 FOR I= 1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM= SUM+ V(I)
140 NEXT I ...

7-171

Ka
yp
roJ
ou
rna
l

7 .135 REN UM Command

Syntax

REN UM [[<new number>][,[< old number>][,< increment>]]]

Purpose

To renumber program lines.

Remarks

< new number> is the first line number to be used in the new sequence.
The default is 10. < old number> is the line in the current program where
renumbering is to begin. The default is the first line of the program. < in­
crement> is the increment to be used in the new sequence. The default
is 10.

RENUM also changes all line number references following GOTO, GO­
SUB, THEN, ON ... GOTO, ON .. . GOSUB, and ERL statements to reflect
the new line numbers. If a nonexistent line number appears after one of
these statements, the error message "Undefined line number in xxxxx"
is printed. The incorrect line number reference is not changed by REN UM,
but line number yyyyy may be changed.

Note

REN UM cannot be used to change the order of program lines {for exam­
ple, REN UM 15,30 when the program has three lines numbered 10, 20
and 30) or to create line numbers greater than 65529. An "Illegal function
call" error will result.

Examples

RENUM
Renumbers the entire program. The first new line number will be 10. Lines
will be numbered in increments of 10.

RENUM 300,,50
Renumbers the entire program. The first new line number will be 300.
Lines will be numbered in increments of 50.

REN UM 1000,900, 20
Renumbers the lines from 900 up so they start with line number 1000 and
are numbered in increments of 20.

7-172

n
r,

n ,,
r,
r,

n
r,
r,

n
r,
r,
r,

n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
LI
u
u
u

7.136 RESET Command

Syntax

RESET

Purpose

To close all files.

Remarks

RESET closes all open files and forces all blocks in memory to be written
to disk. Thus, if the machine loses power, all files will be properly updated.

All files must be closed before a disk is removed from its drive.

Example

998 RESET
999 END

7.173

Ka
yp
roJ
ou
rna
l

7 .137 RESTORE Statement

Syntax

RESTORE [< line number>]

Purpose

To allow DATA statements to be reread from a specified line.

Remarks

After a RESTORE statement without a specified line number is executed,
the next READ statement accesses the first item in the first DATA state­
ment in the program.

n
r, ,,
r,
r,

If < line number> is specified, the next READ statement accesses the r,
first item in the specified DATA statement.

Example ,,

10 READ A,B,C
20 RESTORE
30 READ D,E,F n
40 DATA 57, 68, 79

7-174

n ,,
.

n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
LJ
u
u
u

7 .138 RESUME Statement

Syntaxes

RESUME

RESUMED

RESUME NEXT

RESUME < line number>

Purpose

To continue program execution after an error recovery procedure has
been performed.

Remarks
Any one of the four syntaxes shown above may be used, depending upon
where execution is to resume:

RESUME or RESUME 0
Execution resumes at the statement that caused the error.

RESUME NEXT
Execution resumes at the statement immediately following the one that
caused the error.

RESUME < line number>
Execution resumes at < line number> .

A RESUME statement that is not in an error handling routine causes a
"RESUME without error" message to be printed.

Example
10 ON ERROR GOTO 900

900 IF (ERR= 230)AND(ERL = 90) THEN PRINT "TRY AGAIN":RESUME
80

7-175

Ka
yp
roJ
ou
rna
l

7.139 RETURN Statement
See GOSUB ... RETURN Statements, Section 7.56.

7-176

r,
r,
r,
n
r,
r,
r,
n
n
n
n
n
r,
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .140 RIGHT$ Function

Syntax

RIGHT$(X$,I}

Purpose

To return the rightmost I characters of string X$.

Remarks
If I is equal to the number of characters in X$ (LEN(X$)), returns X$. If I =
0, the null string (length zero} is returned.

Example

10 A$= "DISK BASIC"
20 PRINT RIGHT$(A$,5}

will yield

BASIC

Also see the LEFT$ and MID$ functions, Sections 4.71 and 4.89,
respectively.

7-177

Ka
yp
roJ
ou
rna
l

7.141 RMDIR Statement

Syntax

RMDIR <pathname>

Purpose

To remove an existing directory.

Remarks

PATHNAME is the name of the directory which is to be deleted. RMDIR
works exactly like the MS-DOS command RMDIR. The PATHNAME must
be a string of less than 128 characters.

The PATHNAME to be removed must be empty of any files except the
working directory('.') and the parent directory(' . .') or else a "Path not found"
or a "Path/File Access error" is given.

Example

RMDIR "\SALES"

In this statement, the SALES directory on the current drive is to be
removed.

7-178

n
n
M
n
r,

n
n ,,
r,
r,
n
r,

n
n
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ
u

7.142 RND Function

Syntax
RND[(X)]

Purpose

To return a random number between O and 1.

Remarks

The same sequence of random numbers is generated each time the pro­
gram is run unless the random number generator is reseeded (see "RAN­
DOMIZE Statement," Section 7.132). However, X = O always restarts the
same sequence for any given X.

X > 0 or X omitted generates the next random number in the sequence.
X = 0 repeats the last number generated.

Example
10 FOR I = 1 TO 5
20 PRINT INT(RND*100);
30 NEXT I

might yield

24

Note

30 31 51 5

The values produced by the RND function may vary with different imple­
mentations of Microsoft GW-BASIC.

7-179

Ka
yp
roJ
ou
rna
l

7 .143 RUN Statement/Command

Syntaxes
RUN [< line number>]
RUN < filespec > [,R]

Purpose
To execute the program currently in memory, or to load a file into
memory and run it.

Remarks
For a program currently in memory, if < line number> is specified,
execution begins on that line. Otherwise, execution begins at the
lowest line number. Microsoft GW-BASIC always returns to com­
mand level after a RUN statement is executed.

For running a program not in memory, the < filespec > is an op­
tional device specification followed by a filename or pathname that
conforms to MS-DOS rules for filenames. BASIC appends the de­
fault filename extension .BAS if the user specifies no extensions,
and the file has been saved to the disk.

RUN closes all open files and deletes the current contents of mem­
ory before loading the designated program. However, with the "R"
option, all data files remain open.

Example
RUN "NEWFIL",R

7-180

n
n
n
n
r, ,,
n ,,
n
n
n
n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .144 SAVE Command

Syntax

SAVE < filespec > [{,A I ,P}]

Purpose

To save a program file.

Remarks

For saving a program in memory, the < filespec > is an optional device
specification followed by a filename or pathname that conforms to MS­
DOS rules for filenames. BASIC appends the default filename extension
".BAS" if the user specifies no extensions, and the file has been saved to
the disk.

The A option saves the file in ASCH format. If the A option is not specified,
Microsoft GW-BAS1C saves the file in a compressed binary format. ASCII
format takes more space on the disk, but some actions require that files
be in ASCII format. For instance, the MERGE command requires an ASCII
format file, and some operating system commands such as TYPE may
require an ASCII format file.

The P option protects the file by saving it in an encoded binary format.
When a protected file is later RUN (or LOADed), any attempt to list or edit
it will fail.

Examples

SAVE "COM2" ,A

Saves the program COM2 in ASCII format.

SAVE "PROG" ,P

Saves the program PROG.BAS as a protected file which cannot be altered.

7-181

Ka
yp
roJ
ou
rna
l

7 .145 SCREEN Statement

Syntax
SCREEN [<more>][,[< burst>][,[< apge >][, < vpge >]]]

where <mode> is one of the following numbers:

0 Text mode at current width (40 or 80 columns).

1 Medium resolution graphics mode (320 by 200 pixels).

2 High resolution graphics mode (640 by 200 pixels).

where <burst> is a 1 or a 0. If you are using the composite video out­
put, this enables or disables the color. In text mode a O will disable the
color and a 1 will enable the color. In graphics mode, a 1 will disable the
color and a O will enable the color.

where < apge > (active page) is a number in the range of Oto 7 for width
40, or O to 3 for width 80. This selects the page to be used for output to
the screen, and will only work in text mode (mode= 0).

where < vpge > (visual page) is a number in the range O to 7 for width
40, or Oto 3 for width 80. It selects which page will be displayed on the
screen, and will only work in text mode (mode= 0). The visual page may
be different from the active page. If < vpge > is omitted, it defaults to the
same as < apge > .

Purpose
To set the screen attributes.

Remarks
If the screen attributes change when the screen statement is executed,
the screen will clear, and the foreground color is set to white with a black
background and border.

7-182

n
n
n
n
n
r, ,,
n
n
n
n
n
n
n
r,
r,

Ka
yp
roJ
ou
rna
l

LJ

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.146 SCREEN Function

Syntax
SCREEN(< row>,< column> [,z])

< row> is a valid numeric expression returning an unsigned integer in
the range 1 to 25.

<column> is a valid numeric expression returning an unsigned integer
in the range 1 to 80 or 1 to 80, depending on the width.

z is a valid numeric expression, that evaluates to O or non-zero.

Purpose
To read a character or its color from a specified screen location.

Remarks
The ordinate of the character at the specified coordinates is stored in the
numeric variable. In text mode, if the optional parameter z is given and is
non-zero, the color attribute for the character is returned instead.

The color attributes can be interpreted as follows, where v is the value
returned:

(v MOD 16) is the foreground color.

(((v-foreground)/16) MOD 128) is the background color, where foreground
is computed as above.

(v > 127) is true if the character is blinking.

Refer to the COLOR statement for a list of the colors and their numbers.

Example
100 x = SCREEN (10,10)

If the character at (10, 10) is A, then the function would return 65, the ASCII
code for A.

100 x = SCREEN (1,1,1)

Returns the color attribute of the character in the upper left corner of the
screen.

7-183

Ka
yp
roJ
ou
rna
l

7 .147 SGN Function

Syntax
SGN(X)

Purpose
To indicate the value of X, relative to zero:

If X > 0, SGN(X) returns 1.
If X = 0, SGN(X) returns 0.
If X < 0, SGN(X) returns -1.

Example
ON SGN(X) + 2 GOTO 100,200,300

Branches to 100 if X is negative, 200 if X is 0, and 300 if Xis positive.

7-184

n
n
n
n
n
n
n
n
r,

n ,,
n
n
r,
r,

n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
• ' u
u
u
u
u
u
u
u
u
u
u

7 .148 SHELL Statement

Syntax

SHELL [<command-string>]

Purpose

To exit the BASIC program, run a COM or EXE or BAT program, or a built
in DOS function such as DIR or TYPE, and return to the BASIC program
at the line after the SHELL statement.

Remarks

A COM, EXE, or BAT program or DOS function which runs under the
SHELL statement is called a "Child process". Child processes are exe­
cuted by SHELL loading and running a copy of COMMAND with the "/C"
switch. By using COMMAND in this way, command line parameters are
passed to the child. Standard input and output may be redirected, and
built in commands such as DIR, PATH, and SORT may be executed.

The < command-string> must be a valid string expression containing
the name of a program to run and (optionally) command arguments.

The program name in < command-string > may have any extension you
wish. If no extension is supplied, COMMAND will look for a .COM file,
then a .EXE file, and finally, a .BAT file. If COMMAND is not found, SHELL
will issue a "Flle not found" error. No error is generated if COMMAND
cannot find the the file specified in <command-string>.

Any text separated from the program name by at least one blank will be
processed by COMMAND as program parameters.

BASIC remains in memory while the child process is running. When the
child finishes, BASIC continues.

SHELL with no <command-string> will give you a new COMMAND
shell. You may now do anything that COMMAND allows. When ready to
return to BASIC, enter the DOS command: EXIT

7-185

Ka
yp
roJ
ou
rna
l

Examples

SHELL 'get a new COMMAND

A> DIR
{user types DIR to see files}

A> EXIT
{user types EXIT to return to BASIC}

Ok
I now back in BASIC l

Write some data to be sorted, SHELL sort to sort it, then read the sorted
data to write a report.

10 OPEN "SORTIN.DAT" FOR OUTPUT AS 1
20 REM •• write data to be sorted

1000 CLOSE 1
1010 SHELL "SORT < SORTIN.DAT > SORTOUT.DAT"
1020 OPEN "SORTOUT.DAT" FOR INPUT AS 1
1030 REM ** Process the sorted data

10 SHELL "DIR I SORT > FILES"
20 OPEN "FILES" FOR INPUT AS 1

Also see "BASIC and Child Processes," Section 5.7.

7-186

n ,,
n
r,

n
n
r,
r,

n
n
r,
r,
r,

n
r,

n

Ka
yp
roJ
ou
rna
l

u
u 7.149 SIN Function

Syntax

u SIN(X)

Purpose

u To return the sine of X, where Xis in radians.

Remarks

u COS(X) = SIN(X + 3.14159/2).

Example

u PRINT SIN(1.5)

will yield

u .9974951

u See also COS Function, Section 7.24.

u
u
u
u
u
u
u
u

7-187

Ka
yp
roJ
ou
rna
l

7.150 SOUND Statement

Syntax

SOUND <freq>,< duration>

<freq> is the desired frequency in hertz. This must be a numeric
expression returning an unsigned integer.

<duration> is the duration in clock ticks. Clock ticks occur 18.2 times
per second. This must be a numeric expression returning an unsigned
integer in the range Oto 65535.

Purpose

To generate a sound through the speaker.

Remarks

If the duration is zero, any current SOUND statement that is running will
be turned off. If no SOUND statement is currently running, a SOUND
statement with a duration of zero will have no effect.

Example

30 SOUND RND~1000 + 37,2

This statement creates random sounds.

7-188

n ,

n
n
r,
r,

n
r, ,,
n
n
r,

n
n
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
LJ
u
u
u
u

7.151 SPACE$ Function

Syntax
SPACE$(!)

Purpose
To return a string of spaces of length I.

Remarks
The expression I is rounded to an integer and must be in the range Oto
255.

Example
10 FOR I = 1 TO 5
20 X$ = SPACE$(!)
30 PRINT X$;I
40 NEXT I

will yield

1
2
3

4
5

Also see SPC Function, Section 7.152.

7-189

Ka
yp
roJ
ou
rna
l

7.152 SPC Function

Syntax

SPC(n)

Purpose
To skip spaces in a PRINT statement. n is the number is spaces to be
skipped.

Remarks

SPC may only be used with PRINT and LPRINT statements. n must be in
the range Oto 255. A';' is assumed to follow the SPC(n) command.

Example

PRINT "OVER" SPC(15) 'THERE"

will yield

OVER THERE

Also see SPACE$ Function, Section 7.151.

7-190

r,

n
r,

n
n
r,
r,
r,

n
r,
r,
r,

n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7.153 SQR Function

Syntax
SQR(X)

Purpose
To return the square root of X.

Remarks

X must be > = 0.

Example
10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT X

will yield

10
15
20
25

3.162278
3.872984
4.472136
5

7-191

Ka
yp
roJ
ou
rna
l

7.154 STICK Function

Syntax
STICK(n)

x is a numeric variable for storing the result of the function.

(n) is a numeric expression returning an unsigned integer in the range 0
to 3.

Purpose
To return the x and y coordinates of the two joysticks.

Remarks
The values returned for n can be:

0 - returns the x coordinate for joystick A. Also stores the x and y values
for both joysticks for the following function calls:

1 - Returns the y coordinate of joystick A.

2 - Returns the x coordinate of joystick B.

3 - Returns the y coordinate of joystick B.

Example
10CLS
20 LOCATE 1, 1
30 PRINT "X = S";STICK(0)
40 PRINT "Y = S";STICK(1)
50GOTO20

This example creates an endless loop to display the value of the x,y co­
ordinate for joystick A.

7-192

r,

n ,,
r,

n
n
r, ,, ,,
n ,,,
r,
r,

n
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
Li

7 .155 STOP Statement

Syntax

STOP

Purpose

To terminate program execution and return to command level.

Remarks

STOP statements may be used anywhere in a program to terminate exe­
cution. STOP is often used for debugging. When a STOP is encountered,
the following message is printed:

Break in line nnnnn

The STOP Statement doesn't close files.

Microsoft GW-BASIC always returns to command level after a STOP is
executed. Execution is resumed by issuing a CONT command (see Sec­
tion 7.23).

Example

10 INPUT A,B,C
20 K = A/\2•5.3:L = BA3/.26
30 STOP
40 M = C*K + 100:PRINT M

will yield

? 1,2,3
BREAK IN 30

PRINT L
30.76923

CONT
115.9

7-193

Ka
yp
roJ
ou
rna
l

7 .156 STA$ Function

Syntax

STR$(n)

Purpose

To return a string representation of the value of n.

Example

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N)) GOSU B 30,100,200,300,400,500

Also see VAL Function, Section 7.169.

7-194

n
r, ,, ,,
n ,,
n ,, ,, ,,
n
n
r,

n
r,
r,

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u .

u
u
u
u
u

7 .157 STRIG Function

Syntax
STRIG(n)
X=STRIG(n)

where xis a numeric variable for storing the result of the function.

(n) is a numeric expression returning an unsigned integer in the range 0
to 3, designating which trigger is to be checked.

Purpose

To return the status of a specified joystick trigger.

Remarks

In the STRIG(n) function, the values returned for (n) can be:

0 - Returns -1 if trigger A was pressed since the last STRIG(0) statement;
returns O if not.

1 - Returns -1 if trigger A is currently down, 0 if not.

2 - Returns -1 if trigger B was pressed since the last STRIG(2) statement,
0 if not.

3 - Returns -1 if trigger B is currently down, 0 if not.

When a joystick event trap occurs, that occurrence of the event is de­
stroyed. Therefore, the x = STRIG(n) function will always return false in­
side a subroutine, unless the event has been repeated since the trap. So
if you wish to perform different procedures for various joysticks, you must
set up a different subroutine for each joystick, rather than including all the
procedures in a single subroutine.

Example
10 IF STRIG(0) THEN BEEP
20 GOTO 10

In this example an endless loop is created to beep whenever the trigger
button on joystick 0 is pressed.

7-195

Ka
yp
roJ
ou
rna
l

7.158 STRIG ON, STRIG OFF, STRIG STOP Statements

Syntax
STRIG ON
STRIG OFF
STRIG STOP

Purpose

The STRIG ON statement enables event trapping of joystick activity.

The STRIG OFF statement disables event trapping of joystick activity.

The STRIG STOP statement disables event trapping of joystick activity.

Remarks

The STRIG ON statement enables joystick event trapping by an ON STRIG
statement (see STRIG Statement, Section 7.158). While trapping is ena­
bled, and if a non-zero line number is specified in the ON STRIG state­
ment, GW-BASlC checks between every statement to see if the joystick
trigger has been pressed.

The STRIG OFF statement disables event trapping. If a subsequent event
occurs (i.e., if the trigger is pressed), it will not be remembered when the
next STRIG ON is invoked.

The STRIG STOP statement disables event trapping, but if an event oc­
curs it will be remembered, and the event trap will take place as soon as
trapping is reenabled.

n
n
r,
r,
r,

n
n ,,
r,

n
r,

n
r,
r,

n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

7 .159 STRING$ Function

Syntaxes
STRING$(I,J)
STRING$(I,X$)

Purpose
To return a string of length I whose characters all have ASCII code J or
the first character of X$.

Examples
10 DASH$ = STRING${10,45)
20 PRINT DASH$;"MONTHLY REPORT";DASH$

will yield

---------- MONTHLY REPORT----------

10 LET A$ = "HOUSTON"
20 LET X$ = STRING$(8,A$)
30 PRINT X$

will yield

HHHHHHHH

7-197

Ka
yp
roJ
ou
rna
l

7 .160 SWAP Statement

Syntax

SWAP < variable > , < variable >

Purpose

To exchange the values of two variables.

Remarks

Any type variable may be swapped (integer, single precision, double pre­
cision, string), but the two variables must be of the same type or a "Type
mismatch" error results.

If the second variable is not already defined when SWAP is executed, an
"Illegal function call" error will result.

Example

10 A$=" ONE": B$ ="ALL": C$ = "FOR"
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$

will yield

ONE FOR ALL
ALL FOR ONE

7-198

r,

n
r,

n ,,
n
n
n ,,
r,
r,
r,

n
n
n
r,

Ka
yp
roJ
ou
rna
l

u
u
LJ
u
u
u
u
u
u
u
u
u
u
u
u
u

7.161 SYSTEM Command

Syntax
SYSTEM

Purpose
To close all open files and return control to the operating system.

Remarks
When a SYSTEM command is executed, all files are closed, and BASIC
performs an exit to the operating system.

7-199

Ka
yp
roJ
ou
rna
l

7 .162 TAB Function

Syntax

TAB(I)

Purpose

To move the print position to I.

Remarks

If the current print position is already beyond space I, TAB goes to that
position on the next line. Space 1 is the leftmost position, and the right­
most position is the width minus one. I must be in the range 1 to 255. TAB
may only be used in PRINT and LPRlNT statements.

Example

10 PRINT "NAME" TAB(25) "AMOUNT": PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) 8$
40 DATA "G. T. JONES","$25.00"

will yield

NAME

G. T.JONES

AMOUNT

$25.00

n
n
n
r,

n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
LJ
LJ

u
u
u
u
u
u

7 .163 TAN Function

Syntax
TAN(X)

Purpose
To return the tangent of X. X should be given in radians.

Remarks
With the interpreter, if TAN overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate sign is supplied as the
result, and execution continues.

Example

10 Y = Q*TAN(X)/2

7-201

Ka
yp
roJ
ou
rna
l

7 .164 TIME$ Statement

Syntax

TIME$= < string expression>

< string expression> returns a string in one of the following forms:

hh (sets the hour; minutes and seconds default to 00)

hh:mm (sets the hour and minutes; seconds default to 00)

hh:mm:ss (sets the hour, minutes, and seconds)

Purpose
To set the time. This statement complements the TIME$ function, which
retrieves the time.

Remarks
A 24-hour clock is used; 8:00 p.m., therefore, would be entered as
20:00:00.

Example
10 TIME$= "08:00:00"

The current time is set at 8:00 a.m.

7-202

n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
LJ

u
u
u
LJ
u

7.165 TIME$ Function

Syntax
TIME$

Purpose
To retrieve the current time. (To set the time, use the TIME$ statement,
described in Section 7.164.)

Remarks
The TIME$ function returns an eight-character string in the form hh:mm:ss,
where hh is the hour (00 through 23), mm is minutes (00 through 59), and
ss is seconds (00 through 59). A 24-hour clock is used; 8:00 p.m., there­
fore, would be shown as 20:00:00.

Example
10 PRINT TIME$

Prints the time, calculated from the time set with the TIME$ statement.

7-203

Ka
yp
roJ
ou
rna
l

7 .166 TIMER ON, TIMER OFF, TIMER STOP Statements

Syntax
TIMER ON
TIMER OFF
TIMER STOP

Purpose
TIMER ON enables event trapping during real time.
TIMER OFF disables event trapping during real time.
TIMER STOP suspends real time event trapping.

Remarks
The TIMER ON statement enables real time event trapping by an ON
TIMER statement (see "ON TIMER Statement," Section 7.108). While
trapping is enabled with the ON TIMER statement, GW-BASIC checks
between every statement to see if the timer has reached the specified
level. If it has, the ON TIMER statement is executed.

TIMER OFF disables the event trap. If an event takes place, it is not re­
membered if a subsequent TIMER ON is used.

TIMER STOP disables the event trap, but if an event occurs, it is remem­
bered and an ON TIMER statement will be executed as soon as trapping
is enabled.

Also see ON TIMER Statement, Section 7.108.

7-204

n
n
n
n
r,

n
n
n
n
r,

n
n
n
n
r,

n

Ka
yp
roJ
ou
rna
l

LJ

u
u
u
u
u
u
u
u
LJ
u
u
u
u
LJ

u

7.167 TRON/TROFF Statements/Commands

Syntax

TRON
TROFF

Purpose

To trace the execution of program statements.

Remarks
As an aid in debugging, the TRON statement may be executed in either
direct or indirect mode. With TRON in operation, each line number of the
program is printed on the screen as it is executed.

The numbers appear enclosed in square brackets. The trace flag is dis­
abled with the TROFF statement (or when a NEW command is executed).

Example

TRON

10K=10
20 FOR J = 1 TO 2
30 L= K + 10
40 PRINT J;K;L
50 K= K + 10
60 NEXT J
70END

will yield

[10][20][30][40] 1 1 0 20
[50][60][30][40] 2 20 30
[50][60][70]

7-205

Ka
yp
roJ
ou
rna
l

7.168 USR Function

Syntax

USR[<digit>][(<argument>)]

where <digit> specifies which USA routine is being called. See the DEF
USR statement, Section 7.35, for rules governing <digit>. If <digit>
is omitjed, USRO is assumed.

<argument> is the value passed to the subroutine. lt may be any nu­
meric or string expression.

Purpose
To call an assembly language subroutine.

Remarks
If a segment other than the default segment (data segment) is to be used,
a DEF SEG statement must be executed prior to a USR function call. The
address given in the DEF SEG statement determines the segment ad­
dress of the subroutine.

For each USR function, a corresponding DEF USR statement must be
executed to define the USR call offset. This offset and the currently active
DEF SEG segment address determine the starting address of the
subroutine.

Example

100 DEF SEG = &H8000
110 DEF USR0=O
120 X = 5
130 Y = USR0(X)
140 PRINTY

The type (numeric or string) of the variable receiving the value must be
consistent with the argument passed. This setup of the string space dif­
fers from that of the interpreter.

7-206

rn
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
LJ
u

7.169 VAL Function

Syntax

VAL(< string >)

<string> must be a numeric character stored as a string.

Purpose
To return the numeric value of string <string>. The VAL function also
strips leading blanks, tabs, and linefeeds from the argument string. For
example,

VAL(" -3"')

returns -3.

Example

10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$} < 90000 OR VAL(ZIP$) > 96699 THEN PRINT NAME$
TAB(25) "OUT OF STATE""
30 IF VAL(ZIP$) > = 90801 AND VAL{ZIP$) < = 90815 THEN PRINT
NAME$ TAB(25) "LONG BEACH"

See the STA$ function, Section 7.156, for details on numeric-to-string
conversion.

7-207

Ka
yp
roJ
ou
rna
l

7 .170 VARPTR Function

Syntax 1

VARPTR(< variable name>)

m
m

~~2 m
VARPTR(# < file number>)

Purpose m
Syntax 1

Returns the address of the first byte of data identified with < variable m
name > . The variable must have been defined prior to the execution of
the VARPTR function. Otherwise an "Illegal function call" error results.
Variables are defined by executing any reference to the variable. m
Any type variable name may be used (numeric, string, array). For string
variables, the address of the first byte of the string descriptor is returned m
(see "Assembly Language Subroutines," Section 6.1 for discussion of the
string descriptor). The address returned will be an integer in the range
32767 to -32768. If a negative address is returned, add it to 65536 to m
obtain the actual address.

VARPTR is usually used to obtain the address of a variable or array so m
that it may be passed to an assembly language subroutine. A function call
of the form VARPTR(A(0)) is usually specified when passing an array, so
that the lowest-addressed element of the array is returned. m
Note

All simple variables should be assigned before calling VARPTR for an
array, because the addresses of the arrays change whenever a new sim­
ple variable is assigned.

Syntax 2

For sequential files, returns the starting address of the disk 1/0 buffer
assigned to < file number> . For random files, returns the address of the
FIELD buffer assigned to < file number> .

Example
100 X = USR(VARPTR(Y))

7-208

m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
LJ
LJ
u
u
u
u
u
u
u
u
u

7.171 VARPTR$ Function

Syntax

VARPTR$(< variable name>)

where < variable name> is the name of a variable in the program.

Purpose

To return a character form of the memory address of the variable in a
form that is compatible for programs that may later be compiled.

Remarks

VARPTR$ is primarily used to execute substrings with the DRAW and
PLAY statements (Sections 7 .38 and 7 .118, respectively) in programs that
will later be compiled. With programs that will not be later compiled, the
standard syntax of the PLAY and DRAW statements will be sufficient to
produce desired effects.

The variable must have been defined prior to the execution of the VARPTR
function. Otherwise an "Illegal function call" error results. Variables are
defined by executing any reference to the variable.

VARPTR$ returns a three-byte string in the form:

byte O = type
byte 1 = low byte of address
byte 2 = high byte of address.
Note, however, that the individual parts of the string are not considered
characters.

Note

Because array addresses, string addresses and file data block change
whenever a new variable is assigned, it is unsafe to save the result of a
VARPTR function in a variable. It is recommended that VARPTR is exe­
cuted before each use of the result.

Example

10 PLAY "X" + VARPTR$(A$)

Uses the subcommand X (execute), plus the contents of A$, as the string
expression in the PLAY statement.

7-209

Ka
yp
roJ
ou
rna
l

7 .172 VIEW Statement

Syntax

VIEW [[SCREEN] [(Vx1 ,Vy1)-(Vx2,Vy2) [,[<color>][,[<border>]]]]]

Purpose

To define screen limits for graphics activity.

Remarks

VIEW defines a "Physical Viewport" limit from Vx1 ,Vy1 (upper left x,y
coordinates) to Vx2,Vy2 (lower right x,y coordinates). The x and y coor­
dinates must be within the physical bounds of the screen. The physical
viewport defines the rectangle within the screen into which graphics may
be mapped.

RUN, and RUN, SCREEN and VIEW with no arguments, define the entire
screen as the viewport.

The < color > attribute allows the user to fill the view area with a color.
If color is omitted, the view area is not filled.

The < border> attribute allows the user to draw a line surrounding the
viewport if space for a border is available. If border is omitted, no border
is drawn.

The [SCREEN] option dictates that the x and y coordinates are absolute
to the screen, not relative to the border of the physical viewport, and only
graphics within the viewport will be plotted.

Examples

For the form: VIEW (Vx1 ,Vy1)-(Vx2,Vy2)

all points plotted are relative to the viewport. That is, Vx1 and Vy1 are
added to the x and y coordinates before putting the point down on the
screen.

If:
VIEW (10, 10)-(200, 100)

were executed, then the point set down by the statement PSET (0,0),3
would actually be at the physical screen location 10, 10.

For the form: VIEW SCREEN (Vx1 ,Vy1)-(Vx2,Vy2)

all coordinates are screen absolute rather than viewport relative.

7-210

m

rn
m
m
m
m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

If:
VIEW SCREEN {10, 10)-(200, 100)

were executed, then the point set down by the statement PSET (0,0),3
would actually not appear because 0,0 is outside of the Viewport. PSET
{10, 10),3 is within the Viewport, and places the point in the upper-left hand
corner of the viewport.

A number of VIEW statements may be executed. If the newly described
viewport is not wholly within the previous viewport, the screen can be re­
initialized with the VIEW statement. Then the new viewport may be stated.
If the new viewport is entirely within the previous one, as in the following
example, the intermediate VIEW statement isn't necessary. This example
opens three viewports, each smaller than the previous one. In each case,
a line that is defined to go beyond the borders is programmed, but ap­
pears only within the viewport border.

260 CLS
270 SCREEN 1
280 VIEW: REM ** Make the viewport the entire screen.
300 VIEW (10, 10) - (300, 180),, 1
320 CLS
340 LINE (0,0) - (310,190), 1
360 LOCATE 1,11: PRINT "A big viewport"
380 VIEW SCREEN {50,50)-(250, 150},, 1
400 CLS:REM** Note, CLS clears only viewport
420 LINE (300,0)-(0,199),1
440 LOCATE 9,9: PRINT "A medium viewport"
460 VIEW SCREEN (80,80)-(200, 125),, 1
480 CLS
500 CIRCLE(150,100),20,1
520 LOCATE 11,9: PRINT "A small viewport"

7-211

Ka
yp
roJ
ou
rna
l

7 .17 4 WAIT Statement

Syntax
WAIT < port number> ,l[.J]

where I and J are integer expressions.

Purpose
To suspend program execution while monitoring the status of a machine
input port.

Remarks
The WAIT statement causes execution to be suspended until a specified
machine input port develops a specified bit pattern. The data read at the
port is exclusive OR'ed with the integer expression J, and then AND'ed
with I. If the result is zero, Microsoft GW-BASIC loops back and reads the
data at the port again. If the result is nonzero, execution continues with
the next statement. If J is omitted, it is assumed to be zero.

Warning
It is possible to enter an infinite loop with the WAIT statement, in which
case it will be necessary to manually restart the machine. To avoid this,
WAIT must have the specified value at < port number> during some
point in the program execution.

Example
100 WAIT 32,2

7-212

m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
7.175 WHILE ... WEND Statements

LJ Syntax

u
u
u
u
u
u
u
u
u
u
u
u
u
u

WHILE <expression>

[< loop statements >]

WEND

Purpose

To execute a series of statements in a loop as long as a given condition
is true.

Remarks

If <expression> is not zero (i.e., true), < loop statements> are exe­
cuted until the WEND statement is encountered. Microsoft GW-BASIC
then returns to the WHILE statement and checks <expression>. If it is
still true, the process is repeated. If it is not true, execution resumes with
the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match
the most recent WHILE. An unmatched WHILE statement causes a
"WHILE without WEND" error, and an unmatched WEND statement
causes a "WEND without WHILE" error.

Example

90 'BUBBLE SORT ARRAY A$ WHICH HAS J ELEMENTS.
100 FLIPS= 1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS= 0
120 FOR I= 1 TO J-1
130 IF A$(1) > A$(1 + 1) THEN SWAP A$(1),A$(1 + 1):FLIPS = 1
140 NEXT I
150WEND

Note

Do not direct program flow into a WHILE/WEND loop without entering
through the WHILE statement.

7-213

Ka
yp
roJ
ou
rna
l

7.176 WIDTH Statement

Syntax 1

WIDTH [LPRINT] <size>

Syntax2

WIDTH < file number> , <size>

Syntax3

WIDTH < device > , < size >

<size> is a numeric expression in the range O to 255. It specifies the
width of the printed line. The default width is 72 characters.

If < integer expression> is 255, the line width is "infinite"; that is, Micro­
soft GW-BASIC never inserts a carriage return. However, the position of
the cursor or the print head, as given by the POS or LPOS function, re­
turns to zero after position 255.

< file number > is a numeric expression in the range 1 to 15. This is the
number of the file that is open.

<device> is a string expression indicating the device that is to be used.

Purpose

To set the printed line width in number of characters for the screen or line
printer.

Remarks

Syntax 1 :If the LPRINT option is omitted, the line width is set at the screen.
If LPRINT is included, the line width is set at the line printer.

The WIDTH statement may cause the screen to be cleared.

Syntax 2: With Syntax 2, if the file is open, the width is immediately changed
to the specified size. This allows the width to be changed while the file is
open.

Syntax 3: With Syntax 3, the default line width for the specified device is
set to <size>. The line widths of currently open files are not modified.
A subsequent OPEN < filespec > FOR OUTPUT AS #n will use the
specified value for the width initially.

7-214

m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
' J u
u
u
u
u
u
u
u
u
u
u

Example

10 WIDTH "LPT1 :", 5
20 OPEN "LPT1 :" FOR OUTPUT AS 1
30 PRINT 1, "1234567890"
35 PRINT 1
40 WIDTH 1, 6
50 PRINT 1, "1234567890" RUN

will yield on the printer

12345
67890

123456
7890

7-215

Ka
yp
roJ
ou
rna
l

7 .177 WINDOW Statement

Syntax

WINDOW [[SCREEN] (Wx1,Wy1)-{Wx2,Wy2)]

where:

(Wx1 ,Wy1)-(Wx2,Wy2) are the world coordinates specified by the pro­
grammer to define the coordinates of the lower left and upper right screen
border.

SCREEN inverts they axis of the world coordinates so that screen coor­
dinates coincide with the traditional Cartesian arrangement: x increases
left to right, and y decreases top to bottom.

Purpose

To define the logical dimensions of the current viewport.

Remarks

WINDOW allows the user to redefine the screen border coordinates.

WINDOW allows the user to draw lines, graphs, or objects in space not
bounded by the physical dimensions of the screen. This is done by using
programmer-defined coordinates called "World coordinates". When the
programmer has redefined the screen, graphics can be drawn within a
customized mapping system.

BASIC converts world coordinates into physical coordinates for subse­
quent display within the current viewport. To make this transformation
from world space to the physical space of the viewing surface (screen),
one must know what portion of the (floating point) world coordinate space
contains the information to be displayed. This rectangular region in world
coordinate space is called a Window.

RUN, or WINDOW with no arguments, disables "Window" transformation.

7-216

m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u The WINDOW SCREEN variant inverts the normal Cartesian direction of

they coordinate. Consider the following:

In the default, a section of the screen appears as:

u 0,0 50,0 100

u l y increases
50,50

u
0,100 50,100 100,100

u
u now execute:

WINDOW (-1,-1)-(1, 1)

LJ and the screen appears as:

-1,1 t y increases

0,1 1,1

u
u 0,0

l y decreases u -1, -1 0,-1 1,-1

u
u
u
u
u

7-217

Ka
yp
roJ
ou
rna
l

If the variant:

WINDOW SCREEN (-1,-1)-(1,1)

is executed then the screen appears as:

-1, -1 t y decreases

l y increases
-1,1

0, -1

0,0

0,1

1, -1

1, 1

The following example illustrates two lines with the same endpoint coor­
dinates. The first is drawn on the default screen, and the second is on a
redefined window.

200 LINE (100,100)- (150,150), 1
220 LOCATE 2,20:PRINT "The line on the default screen"
240 WINDOW SCREEN (100,100) - (200,200)
260 LINE (100,100)- (150,150), 1
280 LOCATE 8, 18:PRINT"& the same line on a redefined window"

7-218

m

'" m
m
m
m
m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
u
u
u

\U
u
u

.u
I u
u
u
u
u
u
u

7 .178 WRITE Statement

Syntax

WRITE [< list of expressions >]

Purpose

To output data to the screen.

Remarks

If < list of expressions> is omitted, a blank line is output. If < list of
expressions> is included, the values of the expressions are output to
the screen. The expressions in the list may be numeric and/or string
expressions. They must be separated by commas.

When the printed items are output, each item is separated from the last
by a comma. Printed strings are delimited by quotation marks. After the
last item in the list is printed, GW-BASIC inserts a carriage return/linefeed.

WRITE outputs numeric values using the same format as the PRINT
statement. (See Section 7 .126.)

Example

10 A= 80:B = 90:C$ = "THAT'S ALL"
20 WRITE A,B,C$

will yield

80, 90,"THATS ALL"

7-219

Ka
yp
roJ
ou
rna
l

7.179 WRITE# Statement

Syntax

WRITE# < file number> , < list of expressions>

Purpose
To write data to a sequential file.

Remarks
< file number> is the number under which the file was OPENed in "O"
mode (see "OPEN Statement," Section 7.109). The expressions in the list
are string or numeric expressions. They must be separated by commas.

The difference between WRITE# and PRINT# is that WRITE# inserts
commas between the items as they are written to the file and delimits
strings with quotation marks. Therefore, it is not necessary for the user
to put explicit delimiters in the list. A carriage return/linefeed sequence is
inserted after the last item in the list is written to the file.

Example
Let A$ = "CAMERA" and B$ = "93604-1"

The statement:

WRITE#1,A$,B$

writes the following image to disk:

"CAM ERA", "93604-1 "

A subsequent INPUT# statement, such as

INPUT#1,A$,B$

would input "CAMERA" to A$ and "93604-1" to B$.

7-220

rn

rn

"' ri,
,,,
n,

rn ,,,
m
m
n,

m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u

:U

u

Appendix A
ASCII Character Codes

Ka
yp
roJ
ou
rna
l

m
m
m
m
m
m:

m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
APPENDIX A u ASCII CHARACTER CODES

Dec Hex CHR Dec Hex CHR

u 000 OOH NUL 033 21H
001 01H SCH 034 22H
002 02H STX 035 23H #

u 003 03H ETX 036 24H $
004 04H EOT 037 25H %
005 0SH ENQ 038 26H &

u 006 06H ACK 039 27H
007 07H BEL 040 28H
008 08H BS 041 29H

u 009 09H HT 042 2AH .
010 0AH LF 043 2BH +
011 OBH VT 044 2CH

u 012 OCH FF 045 2DH
013 OOH CR 046 2EH
014 OEH so 047 2FH I

u 015 0FH SI 048 30H 0
016 10H OLE 049 31H 1
017 11 H DC1 050 32H 2

u 018 12H DC2 051 33H 3
019 13H DC3 052 34H 4
020 14H DC4 053 35H 5

u 021 15H NAK 054 36H 6
022 16H SYN 055 37H 7
023 17H ETB 056 38H 8

u 024 18H CAN 057 39H 9
025 19H EM 058 3AH
026 1AH SUB 059 38H

u 027 18H ESCAPE 060 3CH
028 1CH FS 061 3OH =
029 1OH GS 062 3EH

u 030 1EH RS 063 3FH ?
031 1FH us 064 40H @
032 20H SPACE

u
Dec= decimal, Hex= hexadecimal (H), CHA= character.

u LF = Line Feed, FF= Form Feed, CR = Carriage Return, DEL= Rubout

u
A-1

Ka
yp
roJ
ou
rna
l

m
ASCII CHARACTER CODES m Dec Hex CHR Dec Hex CHR

065 41H A 097 61H a
066 42H B 098 62H b m 067 43H C 099 63H C

068 44H D 100 64H d
069 45H E 101 65H e m 070 46H F 102 66H f
071 47H G 103 67H g
072 48H H 104 68H h m 073 49H I 105 69H
074 4AH J 106 6AH j
075 48H K 107 68H k m 076 4CH L 108 6CH
077 4DH M 109 6DH m
078 4EH N 110 6EH n m 079 4FH 0 111 6FH 0

080 50H p 112 70H p
081 51H a 113 71H q m 082 52H R 114 72H r
083 53H s 115 73H s
084 54H T 116 74H t m 085 SSH u 117 75H u
086 56H V 118 76H V

087 57H w 119 77H w m 088 58H X 120 78H X

089 59H y 121 79H y
090 5AH z 122 ?AH z m 091 58H [123 78H {
092 SCH \ 124 7CH I
093 5DH] 125 ?DH } m 094 SEH A 126 ?EH
095 5FH 127 7FH trl
096 60H m

Dec= decimal, Hex= hexadecimal (H), CHR = character.
LF = Line Feed, FF= Form Feed, CR= Carriage Return, DEL= Rubout m

m
m

A-2

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
LJ

u
LJ

u

Appendix B
Error Codes and Error Messages

Ka
yp
roJ
ou
rna
l

m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

APPENDIX B
ERROR CODES AND ERROR MESSAGES

Number

1

2

3

4

5

Message

NEXT without FOR

A variable in a NEXT statement does not correspond
to any previously executed, unmatched FOR statement
variable.

Syntax error

A line is encountered that contains some incorrect se­
quence of characters (such as an unmatched paren­
thesis, misspelled command or statement, incorrect
punctuation, etc.).

With GW-BASlC, the incorrect line will be part of a DATA
statement.

Microsoft GW-BASIC Interpreter automatically enters edit
mode at the line that caused the error.

Return without GOSUB

A RETURN statement is encountered for which there is
no previous, unmatched GOSUB statement.

Out of data

A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

Illegal function call

A parameter that is out of range is passed to a math or
string function. An FC error may also occur as the result
of:

1. A negative or unreasonably large subscript.

2. A negative or zero argument with LOG.

3. A negative argument to SOR.

4. A negative mantissa with a noninteger exponent.

5. A call to a USR function for which the starting address
has not yet been given.

8-1

Ka
yp
roJ
ou
rna
l

m
6. An improper argument to MID$, LEFT$, RIGHT$, INP,

m OUT, WAIT, PEEK, POKE, TAB, SPC, STRING$, SPACE$,
INSTR, or ON ... GOTO.

7. A negative record number used with GET or PUT. m
6 Overflow

The result of a calculation is too large to be represented m in Microsoft GW-BASIC number format. lf underflow oc-
curs, the result is zero and execution continues without
an error. m

7 Out of memory

A program is too large, or has too many FOR loops or m GOSUBs, too many variables, or expressions that are too
complicated for a file buffer to be allocated.

8 Undefined line m
A nonexistent line is referenced in a GOTO, GOSUB, m IF .. .THEN ... ELSE, or DELETE statement.

9 Subscript out of range

An array element is referenced either with a subscript m that is outside the dimensions of the array or with the
wrong number of subscripts. m 10 Duplicate definition

Two DIM statements are given for the same array; or, a m DIM statement is given for an array after the default di-
mension of 10 has been established for that array.

11 Division by zero m
A division by zero is encountered in an expression; or,
the operation of involution results in zero being raised to m a negative power. Machine infinity with the sign of the
numerator is supplied as the result of the division, or po-
sitive machine infinity is supplied as the result of the in- m volution, and execution continues.

12 Illegal direct

A statement that is illegal in direct mode is entered as a m
direct mode command.

m
B-2

Ka
yp
roJ
ou
rna
l

u
13 Type mismatch

u A string variable name is assigned a numeric value or
vice versa; a function that expects a numeric argument is

u 14

given a string argument or vice versa.

Out of string space

u
String variables have caused BASIC to exceed the
amount of free memory remaining. Microsoft GW-BASIC
will allocate string space dynamically, until it runs out of

u 15

memory.

String too long

u An attempt is made to create a string more than 255 char-
acters long.

16 String formula too complex

u A string expression is too long or too complex. The
expression should be broken into smaller expressions.

u 17 Can't continue
An attempt is made to continue a program that:

u 1. Has halted due to an error.

2. Has been modified during a break in execution.

u 3. Does not exist.

u 18 Undefined user function
A USR function is called before the function definition
(DEF statement) is given.

u 19 No RESUME
An error handling routine is entered but contains no RE-

u SLIME statement.

20 RESUME without error

u A RESUME statement is encountered before an error-
handling routine is entered.

u 21 Unprintable error
An error message is not available for the error condition
that exists.

u
8-3

Ka
yp
roJ
ou
rna
l

,n
22 Missing operand

An expression contains an operator with no operand fol- ,n
lowing it.

23 Line buffer overflow ,,,
An attempt has been made to input a line that has too
many characters.

'" 24 Device timeout

The device you have specified is not available at this time.

'" 25 Device fault

An incorrect device designation has been entered. m 26 FOR without NEXT

A FOR statement was encountered without a matching m NEXT.

27 Out of paper m The printer device is out of paper.

28 Unprintable error m An error message is not available for the condition which
exists.

29 WHILE without WEND m
A WHILE statement does not have a matching WEND.

30 WEND without WHILE m
A WEND statement was encountered without a matching
WHILE. m

31-49 Unprintable error

An error message is not available for the condition which m exists.

m
m
m

B-4

Ka
yp
roJ
ou
rna
l

u
Disk Errors

u 50 Field overflow

u A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random file.

u 51 Internal error
An internal malfunction has occurred in Microsoft GW-
BASIC. Report to Microsoft the conditions under which

u the message appeared.

52 Bad file number

u A statement or command references a file with a file num-
ber that is not OPEN or is out of the range of file numbers
specified at initialization.

u 53 File not found
A LOAD, KILL, NAME, or OPEN statement/command ref-

u erences a file that does not exist on the current disk.

54 Bad file mode

u An attempt is made to use PUT, GET, or LOF with a se-
quential file, to LOAD a random file, or to execute an
OPEN statement with a file mode other than I, 0, or R.

u 55 File already open
A sequential output mode OPEN statement is issued for

u a file that is already open; or a KILL statement is given
for a file that is open.

u 56 Unprintable error

An error message is not available for the condition that
exists.

u 57 Device 1/0 error
An 1/0 error occurred on a disk 1/0 operation. It is a fatal

u error; i.e., the operating system cannot recover from the
error.

LJ 58 File already exists
The filename specified in a NAME statement is identical
to a filename already in use on the disk.

u
B-5

Ka
yp
roJ
ou
rna
l

m
59-60 Unprintable error

An error message is not available for the condition that m
exists.

61 Disk full m
All disk storage space is in use.

62 Input past end m
An INPUT statement is executed after all the data in the
file has been INPUT, or for a null (empty) file. To avoid this m error, use the EOF function to detect the end-of-file.

63 Bad record number m In a PUT or GET statement, the record number is either
greater than the maximum allowed (32,767) or equal to
zero. m 64 Bad file name
An illegal form is used for the filename with a LOAD, SAVE. m KILL, or OPEN statement {e.g., a filename with too many
characters).

65 Unprintable error m
An error message is not available for the condition that
exists. m

66 Direct statement in file
A direct statement is encountered while LOADing an m ASCII-format file. The LOAD is terminated.

67 Too many files m An attempt is made to create a new file (using SAVE or
OPEN) when all 255 directory entries are full.

68 Device unavailable m
The device that has been specified is not available at this
time. m

69 Communications buffer overflow
Not enough space has been reserved for communica- m tions 1/0.

m
B-6

Ka
yp
roJ
ou
rna
l

u
70 Disk write protected

u The disk has a write protect tab intact, or is a disk that
cannot be written to.

u 71 Disk not ready

Could be caused by a number of problems. The most

u likely is that the disk is not inserted properly.

72 Disk media error

u A hardware or disk problem occurred while the disk was
being written to or read from. For example, the disk may
be damaged or the disk drive may not be working

u properly.

74 Rename across disks

u An attempt was made to rename a file with a new drive
designation. This is not allowed.

75 Path/file access error u During an OPEN, MKDIR, CHOIR, or RMDIR operation,
MS-DOS was unable to make a correct Path to Filename

u connection. The operation is not completed.

76 Path not Found

u During an OPEN, MK0IR, CHOIR, or RMDIR operation,
MS-DOS was unable to find the path specified. The op-
eration is not completed.

u ** You cannot run BASIC as a Child of BASIC

No error number. During initialization, BASIC discovers

u that it is being run as a Child. BASIC is not run and control
returns to the Parent copy of BASIC.

** Can't continue after SHELL u No error number. Upon returning from a Child process,
the SHELL statement discovers that there is not enough

u memory for BASIC to continue. BASIC closes any open
files and exits to MS-DOS.

u
u

8-7

Ka
yp
roJ
ou
rna
l

lfi
m
rn
rn ,,,
m
m
rn
m
m
m
m
m
m
m
m !

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Appendix C
GWBASIC Reserved Words

Ka
yp
roJ
ou
rna
l

m
m
m
m
m
m
m
m
m
·m
m
m
m,
m
m
m

Ka
yp
roJ
ou
rna
l

u
APPENDIXC

u MICROSOFT GW-BASIC RESERVED WORDS

The following is a list of reserved words used in Microsoft GW-BASIC.

u ABS DELETE INT
AND DIM INTER$
ASC DRAW IOCTL

u ATN EDIT KEY
AUTO ELSE KILL
BEEP END LEFT$

u BLOAD ENVIRON LEN
BSAVE EOF LET
CALL EOV LINE

u CDBL ERASE LIST
CHAIN ERDEV LUST
CHOIR ERL LOAD

u CHR$ ERR LOC
CINT ERROR LOCATE
CIRCLE EXP LOF

u CLEAR FIELD LOG
CLOSE FILES LPOS
CLS FIX LPRINT

u COLOR FOR LSET
COM FRE MERGE
COMMON GET MID$

u CONT GOSUB MKDIR
cos GOTO MKD$
CSNG HEX$ MKI$

u CVD JF MKS$
CVI IMP MOD
CVS INKEY$ MOTOR

u DATA INP NAME
DATE$ INPUT NEW
DEFDBL INPUT# NEXT

u DEFINT INPUT$ NOT
DFSNG INSTR OCT$
DEFSTR

u
u
u

C-1

Ka
yp
roJ
ou
rna
l

rn
MICROSOFT GW-BASIC RESERVED WORDS

ON SOUND ~ OPEN SPACE
OPEN COM SPC r, OPTION SQR
OR STEP
PAINT STICK
PEEK STOP ,n
PEN STA$
PLAY STRIG
PMAP STRING$ m POINT SWAP
POKE SYSTEM
POS TAB rn PRESET TAN
PRINT THEN
PRINT# TIME$ m PSET TIMER
PUT TO
RANDOMIZE TROFF m READ TRON
REM USING
RENUM USA m RESET VAL
RESTORE VARPTR
RESUME VARPTR$ m RETURN VIEW
RIGHT$ WAIT
RMDIR WEND m RND WHILE
RSET WIDTH
RUN WINDOW m SAVE WRITE
SGN WRITE#
SHELL XOR m SIN

m
m
m

C-2

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

Appendix D
Mathematical Functions

Ka
yp
roJ
ou
rna
l

,n
,,,
n

'" m
rn
m
m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u APPENDIX D

MATHEMATICAL FUNCTIONS NOT INTRINSIC TO GW-
BASIC

u Derived Functions
Functions that are not intrinsic to Microsoft GW-BASIC may

u be calculated as follows.
Function Microsoft GW-BASIC Equivalent
SECANT SEC(X) = 1 /COS(X)

u COSECANT CSC(X) = 1 /SIN(X)
COTANGENT COT(X) = 1 /TAN(X)
INVERSE SINE ARCSIN(X) = ATN(X/SQR(-X*X + 1))

u INVERSE COSINE ARCCOS(X) = -ATN(X/SQR(-X*X + 1)) + 1.5708
INVERSE SECANT ARCSEC(X) = ATN(X/SQR(X*X-1)) +

SGN(SGN(X)-1)*1.5708

u INVERSE ARCCSC(X) = ATN(X/SQR(X*X-1)) +
COSECANT (SGN(X)-1)*1.5708

INVERSE ARCCOT(X) = ATN(X) + 1 .5708

u COTANGENT
HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2
HYPERBOLIC COSH(X) = (EXP(X) + EXP(-X))/2

COSINE u HYPERBOLIC TANH(X) = (EXP(X)-EXP(-X))/ (EXP(X) + EXP(-X))
TANGENT

HYPERBOLIC SECH(X) = 2/(EXP(X) + EXP(-X)) u SECANT
HYPERBOLIC CSCH(X) = 2/(EXP(X)-EXP(-X))

COSECANT u HYPERBOLIC COTH(X) = (EXP(X) + EXP(-X))/ (EXP(X)-EXP(-X))
COTANGENT

INVERSE HYPER- ARCSINH(X) = LOG(X + SQR(X*X + 1)) u BOLIG SINE
INVERSE HYPER- ARCCOSH(X) = LOG(X + SQR(X*X-1))

BOLIG COSINE u INVERSE HYPER- ARCTANH(X) = LOG((1 + X)/(1-X))/2
BOLIG TANGENT

INVERSE HYPER- ARCSECH(X) = LOG((SQR(-X*X + 1) + 1)/X)

Li BOLIG SECANT

LJ
u

0-1

Ka
yp
roJ
ou
rna
l

,n
n,
r,
,n

rn
,n

m ,,,
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

n
n
n
n
n
n
n
n
n
n
n
n

xepu1 n
n
n
n,

Ka
yp
roJ
ou
rna
l

111
,n
r,
,n
,n
,n

'" m
m
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
u
u
u
u
u
LJ
u
LJ
u
u
u
u
u
u

INDEX
/M switch, 6-1

ABS function, 7-1
Active page, 2-6
Addition, 3-10
AL register, 6-9
ALL, .. 7-25
Animation, 7-164
Arctangent, 7-3
Array variables, 3-8, 7-25, 7-40
Arrays, 3-8, 7-50, 7-134
ASC function, 7-2
ASCII

codes, 7-16
format, 7-2, 7-106, 7-181

Assembly language subroutines,
6-1, 7-9, 7-38, 7-149, 7-206, 7-208
arguments passed to, 6-7
coding rules, 6-5
loading, 6-2
memory allocation, 6-1

ATN function, 7-3
AUTO command, 2-6, 7-4

Background music, 7-121,
7-143 to 7-144

BEEP statement, 7-5
BLOAD command, 7-6
Boolean operators, 3-12
BSAVE command, 7-8

CALL statement, 6-3, 7-9
CALLS statement, 6-8, 7-10
Carriage return, 3-2, 7-73,

7-92 to 7-93, 7-214,
7-219 to 7-220

CDBL function, 7-11
CHAIN statement, 7-12, 7-25
Character set, 3-1
CHDIR statement, 7-15
CHA$ function, 7-16
CINT function, 7-17

CIRCLE statement, 7-18
CLEAR statement, 7-20
CLOSE statement, 7-21
CL$ statement, 7-22

numeric, 3-4
string, 3-4

COLOR statement, 7-23
COM statement, 7-24
COMMON statement, 7-25
CONT command, 7-26, 7-92
Continuation, line, 2-6
Control character editor, 4-3
Control characters, 3-3
COS function, 7-27
CSNG function, 7-28
CSRLIN function, 7-29
CVD function, 7-30
CVI function, 7-30
CVS function, 7-30

DATA statement, 7-31, 7-174
DATE$ function, 7-33
DATE$ statement, 7-32
DEF FN statement, 7-34
DEF SEG statement, .. 6-3, 6-9, 7-37
DEF USA statement, 7-38, 7-206
Default device, 5-1
DEFDBL statement, 3-7, 7-36
DEFINT statement, 3-7, 7-36
DEFSNG statement, 3-7, 7-36
DEFSTR statement, 3-7, 7-36
DELETE command, 2-6, 7-39
Device status information, 7-51
Device-independent 1/0, 5-1
DIM statement, 7-40
Dir, .. 7-186
Direct mode, 2-5, 7-69, 7-106
Directories, hierarchical, 5-2
Display page, 2-6
Division, 3-1 O
Double precision, 3-5, 7-11,

7-36, 7-153

1-1

Ka
yp
roJ
ou
rna
l

DRAW statement, 7-41
EDIT command, 2·6, 7-44
Edit mode, 3-3, 7-44
Editor,4.1
END statement, 7·26, 7-45, 7•66
ENVIRON statement, 7-46
ENVIRON$ function, 7·48
Environment string table, 7•46, 7•48
EOF function, 7-49
ERASE statement, 7-50
ERDEV function, 7-51
ERDEV$ function, 7-51
ERL function, 7-52
ERR function, 7-52
Error codes, 7-52 to 7-53, B·1
Error handling, 7-53, 7-116
Error messages, B-1
ERROR statement/command, ... 7•53
Error trapping, 7-53, 7-175
Escape, 3-2
Evaluation of operators

arithmetic, 3--9
logical, 3· 12

Event trapping, 6-11
Exit, 7-186
EXP function, 7•55
Exponentiation, 3·10 to 3-11
Expressions, 3-8

FIELD statement, 7-56
Filenaming conventions, 5-2
Files, .. 5-7

data, 5·9
protected, 7· 181
protection, 5-8
random, 7·56, 7-65,7-85

7·98, 7·105, 7·110, 7-127, 7·163
random access, 5· 12
sequential, 5·9, 7-49, 7·74,

7·85, 7-93, 7-98, 7.101,
7-127, 7·159, 7-220

FILES statement, 7-58
Files, 7· 186
FIX function, 7•60

1-2

Floating-point accumulator (FAC),
6-9

FOR ... NEXT statement, 7·61
FAE function, 7·63
Functions, 3-17, 7-34

GET statement, 7·56,
7-64 to 7-65

Get statement
file i/o, 7-64
graphics, 7-65

GOSU B statement, 7-66
GOTO statement, 7-66 to 7•67
Graphics, 7-164
Graphics macro language, 7-41

HEX$ function, 7-68
Hexadecimal, 3·5, 7-68

IF. .. GOTO statement, 7-69
IF .. THEN statement,7·52, 7-69
IF..THEN ... ELSE statement, 7·69
Indirect mode, 2-5
INKEY$ function, 7·71
INP function, 7-72
INPUT statement, ... 7-26, 7-56, 7-73
IN PUT# statement, 7-75
INPUT$ function, 7·76
INSTR function, 7-77
INT function, 7-78
Integer, 7·17, 7-60, 7·78
Integer division, 3-10
Internal representation, 6-2
Intrinsic functions, 3-17
IOCTL statement, 7-79
IOCTL$ function, 7-80

KEY as event specifier, 6-11
KEY statement, 7-81
KEY trapping, 6·11
KEY(n) statement, 7-83
KILL statement, 7-85
LEFT$ FUNCTION 7·87
LEN function, 7·88

n

rn
m
m
m
m
m
m
m

Ka
yp
roJ
ou
rna
l

u
u
LJ
u
u
u
u
u
u
u
u
LJ

u
u
u
u

LET statement, 7-56, 7-89
Line continuation, 2-6
Line format, 2-5
LINE INPUT statement, 7-92
LINE INPUT# statement, 7-93
Line length, 2-6
Line number generation, 7-4
Line numbers 2-5, 7-172
Line printer, 7-96

7-103 to 7-104, 7-214
LINE statement, 7-90
Line styling, 7-90
Linefeed, 2-6, 7-73,

7-92 to 7-93, 7-319 to 7-220
LIST command, 2-6, 7-94
LUST command, 7-96
LOAD command, 7-97, 7-181
LOC function, 7-98
LOCATE statement, 7-99
LOF function, 7-101
LOG function, 7-102
Logical operators, 3-12, 3-14
Loops, 7-61 , 7-213
LPOS function, 7-103, 7-214
LPRINT statement, 7-104, 7-214
LPRINT USING statement, 7-104
LSET statement, 7-105

Mathematical functions, D-1
MERGE command, 7-106
MID$ function, 7-108
MID$ statement, 7-107
MKD$ function, 7-11 O
MKDIR statement, 7-109
MK1$ function, 7-110
MKS$ function, 7-110
MOD operator, 3-11
Modes of operation, 2-5
Modulus arithmetic, 3-10 to 3-11
Multiplication, 3-10
Music, background, 7-121
NAME statement, 7-111

1-3

Negation, 3-1 O
NEW command, 7-112
Numeric constants, 3-4
Numeric variables, 3-7

arithmetic operators, 3-9

OCT$ function, 7-113
Octal, 3-5, 7-113
ON COM statement, 7-114
ON ERROR GOTO statement, 7-116
ON GOSUB in event trapping, 6-12
ON GOSUB statement, 7-117
ON GOTO statement, 7-117
ON KEY statement, 7-118
ON PLAY statement, 7-121
ON STRIG statement, 7-123
ON TIMER statement, 7-125
OPEN statement, 7-56, 7-127
OPEN COM statement, 7-131
Operators, 3-8, 3-11 to 3-12, 3-14

Boolean, 3-12
string, 3-15

OPTION BASE statement, 7-134
Order of evaluation

arithmetic operators, 3-9
logical operators, 3-12

OUT statement, 7-135
Overflow, 3-11, 7-55, 7-201

PAINT statement, 7-136
Parent directory

shorthand notation, 5-4
Pathing 5-2
Pathnames

definition, 5-2
syntax of pathnames is:, 5-2

PEEK function, 7-139, 7-149
PLAY function, 7-143
PLAY off statement, 7-144
PLAY on statement, 7-144
PLAY statement, 7-140
PLAY stop statement, 7-144

Ka
yp
roJ
ou
rna
l

PMAP function, 7-145
POINT function, 7-147
POKE statement, 7-139, 7-149
POS function, 7-150, 7-214
Precedence, 3-9

arithmetic operators, 3-9
logical operators, 3-12

PRESET statement, 7-151
PRINT statement, 7-152
PRINT USING statement, 7-155
PRINT# statement, 7-159
PRINT# USING statement, 7-159
Protected files, 7-181
PSET statement, 7-161
PUT statement, 7-56,

7-163 to 7-164

Random files, 7-56, 7-64, 7-85,
7-98, 7-105, 7-110, 7-127,

7-163
Random numbers, 7-167, 7-189
RANDOMIZE statement, 7-167,

7-189
READ statement, 7-169, 7-174
Relational operators, 3-11
REM statement, 7-171
RENUM command, 7-12, 7-52, 7-172
Reserved words, C-1
RESET command, 7-173
RESlORE statement, 7-174
RESUME statement, 7-175
RETURN in event trapping, 6-13
RETURN statement, 7-64, 7-176
RIGHT$ function, 7-177
RMDtR statement, 7-178
RND function, 7-167, 7-179
RSET statement, 7-105
Rubout, 3-2
RUN command, 7-180
RUN statement, 7-180
Runtime error messages, B-1

SAVE command, 7-97, 7-181
SCREEN function, 7-183

1-4

SCREEN statement, 7-182
Sequential files, 7-49, 7-75,

7-85, 7-93, 7-98, 1-rn1,
7-127, 7-159, 7-220

SGN function, 7-184
SH ELL statement, 7-185
Shell statement, 5-18
Shorthand notation, 5-4
SIN function, 7-187
Single precision, 3-5, 7-28,

7-36, 7-153
SOUND statement, 7-188
Space requirements for variables,

3-8
SPACE$ function, 7-189
SPC function, 7-190
Special characters, 3-2
SOR function, 7-191
STICK function, 7-192
SlOP statement, 7-26, 7-45,

7-66, 7-193
STA$ function, 7-194
STRtG as event specifier, 6-12
STRIG function, 7-195
STRIG ON/OFF/SlOP statement

7-196
STRIG trapping, 6-12, 7-196
String

descriptor, 6-6
literal, 6-7, 6-10

String and numeric constants, 3-4
String constants, 3-4
String functions, 7-30, 7-77,

7-87 to 7-88, 7-100, 7-177,
7-194, 7-207

String operators, 3-15
String space, 7-20, 7-63
String variables, 3-7, 7-36,

7-92 to 7-93
STRING$ function, 7-197
Subroutines, 7-9, 7-66, 7-117
Subscripts, 3-8, 7-40, 7-134
Subtraction, 3-1 0
SWAP statement, 7-198

n
r,

n
tn
,n
ff1
,n
m
rn
m

'" m
m
m
m
m

Ka
yp
roJ
ou
rna
l

LJ
u
u
u
u
u
u
u
LJ
u
u
u
u
u
u
u

Switches, 2-1
Syntax notation, 1-3
Syntax of pathnames, 5-2
SYSTEM command, 7-199

Tab, 3-2 to 3-3
TAB function, 7-200
TAN function, 7-201
Tiling, 7-137
TIME$ function, 7-203
TIME$ statement, 202
TIMER off statement, 7-204
TIMER on statement, 7-204
TIMER stop statement, 7-204
Transcendental functions, 3-10
TROFF statement/command, .. 7-205
TRON statement/command, ... 7-205
Type conversion, 3-15

USA function, 6-8, 7-38, 7-206

VAL function, 7-207

Values in AL register, 6-9
Variables, 3-6

array, 7-25, 7-40
passing with COMMON, 7-13
string, 7-36, 7-92 to 7-92

VARPTR function, 7-208
VARPTR$ function, 7-209
VIEW statement, 7-210
Visual page, 2-6

WAIT statement, 7-212
WEND statement, 7-213
WHILE statement, 7-213
WIDTH LPRINT statement, 7-214
WIDTH statement, 7-214
WINDOW statement, 7-216
Working directory

shorthand notation, 5-4
World coordinates, 7-145, 7-216
WRITE statement, 7-219
WRITE# statement, 7-220

1·5

