
--

.::rr:v:1't s::::::,;;r, Dr JT77?

Ka
yp
roJ
ou
rna
l

(IQ) [)~IJ~Tfll REEEflRCH®
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Ka
yp
roJ
ou
rna
l

Copyright (c) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Ka
yp
roJ
ou
rna
l

Table of Contents

Section Paqe

1. INTRODUCTICN ••••••••••••••••••••••••••••••••••••••• 1

2.

3.

4.

5.

6.

7.

8.

FUOCTIOOAL DESCRIPrIOO OF CP/M •••••••••••••••••••••
2.1. General Command Structure ••••••••••••••••••••
2.2. File References
&'WITCHING DISKS
THE FORM OF BUILT-IN CDMMI\NDS
4.1.
4.2.
4.3.
4.4.
4.5.

ERA afn er
DIR afn er

.

.
er
.

REN ufnl=ufn2
SAVE n ufn er
TYPE ufn er

LINE EDITING .AND ourpur CDNTROL ••••••..••••••••••••.

. TRANSIENT CDMMANDS
6.1. STAT er
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

. ASM ufn er
La\D ufn er
PIP er
ED ufn er
SYSGEN er

.
• •••••••••••••••••••••••••••••••••••

SUBMIT ufn parmil . . . parm#n er
. DUMP ufn er

t-OVCPM er • •••••••••••••••••••••••••••••••••••

BDOS ERROR twESSAGES ••••••••••••••••••••••••••••••••

OPERATION OF CP/M ON THE MDS

3
3
3

6

7
7
8
8
9
9

11

12
13
16
17
18
25
27
28
30
30

33

34

Ka
yp
roJ
ou
rna
l

This book actually contains several books:

An Introduction to CP/M Features and Facilities, pages 1-35

CP/M 2 User's Guide, pages 1-33

CP/M 2.2 Alteration Guide, pages 1-72

CP/M 2.2 Interface Guide, pages 1-46

CP/M Assembler (ASM) User's Guide, pages 1-22

ED: A Context Editor for the CP/M Disk System--User's Manual,
pages 1-17

CP/M dynamic Debugging Tool (DDT) User's Guide, pages 1-19

Ka
yp
roJ
ou
rna
l

1. INI'RODUCTION.

CP/M is a rronitor control i;rogram for microcomputer system developnent
which uses IBM-compatible flexible disks for backup storage. Using a computer
mainframe based ui:xm Intel's 8080 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, alorg with
assembly and i;rogram check-out facilities. An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Ziloq Z-80) Central Processing Unit, and has at least
16K bytes of main memory with up to four IBM-compatible diskette drives. A
detailed discussion of the rrodifications required for any particular hardware
environment is given in the Digital Research document entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single-density Intel MC6 800, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M monitor provides rapid access to proqrams through a
comprehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
seouential and random file access. Using this file system, a large nU110er of
distinct i;rograms can be stored in both rource and machine executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger stbsystems. Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M 's O:msole Command Processor, the
resulting facilities equal or excel similar large computer facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)

BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CR!', Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by "patching" this portion of
CP/M. The BDOS µ:-ovides disk management by controllirg one or more disk
drives containing independent file directories. The BDOS implements disk
allocation strategies which orovide fully dynamic file construction while
minimizing head movement across the disk during access. Any particular file
may contain any nunt>er of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files. The

1

Ka
yp
roJ
ou
rna
l

BIX6 has entry points .tiich include the following primitive operations .tiich
can be p:ogrammatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations.

CLOSE Close a file after r:rocessing.

RENAME Change the name of a particular file.

READ Read a record fran a particular file.

WRITE Write a record onto the disk.

SELECT Select a particular disk drive for further
operations.

The CCP provides syrroolic interface between the user· s console and the
remainder of the CP/M system. The CCP reads the console device and processes
canmands .tiich include listino the file directory, i;c intin:i the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuqgers. The standard canmands .tiich are available
in the CCP are listed in a followin:i section.

The last se:iment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs .tiich are loaded fran the disk under canmand of
the CCP. During i:roqram editin:i, for example, the TPA holds the CP/M text
editor nachine code and data areas. Similarly, proqrams created under CP/M
can be dlecked out by loading and executing these programs in the TPA.

It should be rrentioned that any or all of the CP/M canponent subsystems
can be "overlayed" by an executin:i program. That is, once a user· s program is
loaded into the TPA, the CCP, BIX6, and BIOS areas can be used as the
program's data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user {X"ogram need only
branch to the bootstrap loader at the end of execution, and the canplete CP/M
monitor is reloaded fran disk.

It should be reiterated that the CP/M operating system is partitioned
into distinct nodules, including the BIOS portion .tiich defines the hardware
environment in .tiich CP/M is executing. Thus, the standard system can be
easily 110dified to any non-standard environment by dlan:iin:_:i the peripheral
drivers to handle the custan system.

2

Ka
yp
roJ
ou
rna
l

---------- -----------------------~

2. FUN::TIOOAL DESCRI PI' ION CF CP /M.

The user interacts with CP/M i;:rimarily through the CCP, W'lich reads and
interprets canmands entered through the console. In general, the CCP
addresses one of SE!\Teral disks W'lich are online (the standard system addresses
up to four different disk drives). These disk drives are labelled A, B, C,
and D. A disk is "logged in" if the CCP is currently addressing the disk. In
order to clearly irrlicate W'lich disk is the currently logged disk, the CCP
always i;:ranpts the operator wi. th the disk name followed by the symbol ">"
indicatin:J that the CCP is ready for another canmand. Upon initial start up,
the CP/M system is brought in fran disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number. All CP/M systems are initially set to operate
in a 16K .memory space, but can be easily reconfigured to fit any memory size
on the host system (see the M'.>VCPM transient canmand) • Followin:J system
signon, CP/M autanatically logs in disk A, pranpts the user wi. th the symbol
"A>" (indicatin:J that CP/M is currently addressing disk "A"), and waits for a
canmarrl. The canmarrls are implemented at two levels: built-in canmancls and
transient canmands.

2.1. GENERAL OOMMI\ND STRJCTURE.

Built-in canmarrls are a part of the CCP program itself, l>hile transient
canmarrls are loaded into the TPA fran disk and executed. The built-in
canmancls are

ERA Erase specified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

' TYPE Type the contents of a file on the logged disk.

Nearly all of the canmancls reference a particular file or group of files. The
form of a file reference is specified below.

2.2. FILE REFERENCES.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
"unambiguous" (ufn) or "ambiguous" (afn) • An unambiguous file reference
uniquely identifies a single file, W'lile an ambiguous file reference may be

3

Ka
yp
roJ
ou
rna
l

satisfied by a nurrt,er of different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary narne is q:>tional, it usually is generic: that
is, the secondary nane "ASM," for example, is used to denote that the file is
an assembly language rource file, -.bile the pr irnary name distinguishes each
particular rource file. The two n2111es are separated by a "." as shown below:

pppppppp.sss

where p~pppp represents the ir irnary name of eiqht characters or less, and
sss is the secondary nane of no rrore than three dlaracters. As mentioned
above, the nane

pppppppp

is also allowed and is equivalent to a secondary name consisting of three
blanks. The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

<>.,::=?*[]

while all alphanumerics and ranainina special characters are allowed.

An anbiguous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unambiguous reference, except the· symbol "?" may be interspersed throughout
the pr irnary and secondary nanes. In various canrnands throughout CP/M, the "?"
symbol matches any character of a file narne in the "?" position. Thus, the
ambiguous reference

X?Z.C?M

is satisfied by the unambiguous file names

XYZ.Q)M
and

X3Z.CAM

Note that the anbiquous reference

.

is equivalent to the anbiquous file reference

????????.???

while

4

Ka
yp
roJ
ou
rna
l

pi;:pppppp.*
and

*.sss

are abbreviations for

pppppppp.???
and

????????.sss

respectively. As an example,

DIR * .*
is interpreted by the CCP as a canmand to list the names of all disk files in
the directory, llklile

DIR X.Y

searches only for a file by the name X.Y Similarly, the canmand

DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk llklich satisfy
this anbiguous reference.

The followin::i file nanes are valid unarnbiquous file references:

X

X.Y

XYZ

XYZ.OJM

GAMMA

GI\MMA.l

As an added convenience, the µ:ogramrner can generally specify the disk
drive nane alorg with the file name. In this case, the drive name is given as
a letter A through Z followed by a colon (:). The specified drive is then
"logged in" before the file q,eration occurs. Thus, the followin::i are valid
file nanes with disk nane prefixes:

A:X.Y

Z :XYZ .CDM

B:XYZ

B:X.A?M

C:GAMMA

C:*.ASM

It sl'Duld also be noted that all alphabetic lower case letters in file
and drive nanes are always translated to upper case \\hen they are i:::cocessed by
the CCP.

5

Ka
yp
roJ
ou
rna
l

3. SWITCHING DISKS.

The ~erator can switch the currently logged disk by typing the disk
drive nc111e (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console irput. Thus, the se::ruence of pranpts and canmands sh:>wn below might
occur after the CP/M system is loaded fran disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A.

SAMPLE Ag.j

SAMPLE PRN

A>B: Switch to disk B.

B>DIR *.ASM

DUMP

FILES

B>A:

ASM

List all "ASM" files on B.

Switch back to A.

6

Ka
yp
roJ
ou
rna
l

4. THE EOBM CF BUILT-IN COMMANI:6.

The file ard device reference forms described above
fully specify the structure of the built-in canmards.
below, assume the followirg abbreviations:

can now be used to
In the description

ufn

afn

er

unambiqoous file reference

ambigoous file reference

carriage return

Further, recall that the CCP always translates lower case characters to l.lF-IJer
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in canmarx:I ncrnes aoo file references.

4.1 ERA afn er

The ERA (erase) canrnaro renoves files fran the currently logged-in disk
(i.e., the disk mrne currently pranpted by CP/M precedirg the ">"). The files

which are erased are those wiich satisfy the ambigoous file reference afn.
The followil'J3 examples illustrate the use of ERA:

ERA X.Y

ERA X.*

ERA *.ASM

ERA X?Y.C?M

ERA * .*

ERA B:*.PRN

The file ncllled X.Y on the currently logged disk
is renoved fran the disk directory, aoo the space
is returned.

All files with priinary name X are removed fran
the current disk.

All files with secondary name ASM are ranoved
fran the current disk.

All files on the current disk 1-.hich satisfy the
arnbigoous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP pranpts the console with the mess,age

"ALL FILES (Y/N) ?"
1-.hich requires a Y response before files are
actually ranoved).

All files on drive B 1-.hich satisfy the ambiguous
reference ????????.PRN are deleted, independently
of the currently logged disk.

7

Ka
yp
roJ
ou
rna
l

4.2. DIR afn er

The DIR (directory) canrnand causes the ncrnes of all files i.hich satisfy
the anbiqoous file nane afn to be listed at the console device. As a special
case, the canmand

DIR

lists the files on the currently logged disk (the canrnand "DIR" is e:i:uivalent
to the canmand "DIR *.*"). Valid DIR canrnands are shown below.

DIR X.Y

DIR X?Z.C?M

DIR ??.Y

Similar to other CCP canmands, the afn can be µ:eceded by a drive name.
The followim DIR canrnands cause the selected drive to be crldressed before the
directory search takes place.

DIR B:

DIR B:X.Y

DIR B:*.A?M

If no files can be found on the selected diskette wiich satisfy the
directory request, then the nessage "Nor FOUND" is typed at the console.

4.3. REN ufnl=ufn2 er

The REN (rename) canrnand allows the user to chan;ie the names of files on
disk. The file satisfyin;i ufn2 is chan;ied to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl) • The CcP also allows the user
to type a left-directed arrow instead of the equal sign, if the user· s console
supports this graphic character. Examples of the REN canman::l are

RFN X.Y=Q.R The file Q.R is chan;ied to x. Y.

RFN XYZ.<DM=XYZ.XXX The file XYZ.XXX is cha~ed to XYZ.CDM.

The operator can µ:ecede either ufnl or ufn2 (or both) by an optional
drive address. Given that ufnl is µ:eceded by a drive nane, then ufn2 is
assLD11ed to exist on the sane drive as ufnl. Similarly, if ufn2 is µ:eceded by
a drive nane, then ufnl is assumed to reside on that drive as 1'1!!11. If both
ufnl and ufn2 are preceded by drive nanes, then the sane drive must be

8

Ka
yp
roJ
ou
rna
l

specified in both cases. The followirg REN canmands illustrate this format.

REN 11:X.ASM = Y.IISM

REN B:ZAP.BIIS=ZOT.BIIS

REN B:A.IISM = B:A.BIIK

The file Y.ASM is charged to X.ASM on
drive A.

The file zor.BIIS is charged to ZAP.BAS
on drive B.

The file A.BAK is renamed to A.ASM on
drive B.

If the file ufnl is already i:resent, the REN canmand will respond with
the error "FILE EXISTS" and not perform the charge. If ufn2 does not exist on
the specified diskette, then the messaqe "Nor FOUND" is printed at the
console.

4.4. SAVE n ufn er

The SAVE canmand places n pages (256-byte blocks) onto disk fran the TPA
and nanes this file ufn. In the CP/M distribution system, the TPA starts at
100H (hexadecimal), W'lich is the second page of memory. Thus, if the user's
program occupies the area fran 100H through 2FFH, the SAVE canmand must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed. Examples are:

SAVE 3 x.cnM

SAVE 40 Q

SAVE 4 X.Y

Copies 100H throuqh 3FFH to x.<X>M.

Copies 100H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

Copies 100H through 4FFH to X.Y.

The SAVE canmand can also Sp;!cify a disk drive in the afn p'.)rtion of the
canmand, as shown below.

SAVE 10 B:ZOT.O)M

4. 5. TYPE ufn er

Copies 10 pages (100H through 01\FFH) to
the file ZOT.<XlM on drive B.

The TYPE canmand displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE canmands are

TYPE X.Y

9

Ka
yp
roJ
ou
rna
l

TYPE X.PIM

TYPE XXX

The TYPE canman:l expands tabs (clt-I characters), assummio:i tab p:,sitions
are set at e;ery eighth collllll'l. The ufn can also reference a drive name as
shown below.

TYPE B:X.PRN The file X.PRN fran drive Bis displayed.

10

Ka
yp
roJ
ou
rna
l

5. LINE EDITING AND ourpur <DNTROL.

The CCP allows certain line editing functions 11.hile typing canman::1 lines.

rubout

ctl-U

ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Delete an::1 echo the last character typed at the
console.

Delete the entire line typed at the console.

(Same as ctl-U)

Retype current canman::1 line: types a "clean line" fol­
lowing character deletion with rubouts.

Physical en::1 of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input fran the console (used in PIP and ED).

The control functions ctl-P an::1 ctl-S affect console output as shown below.

ctl-P

ctl-S

Copy all subsequent console output to the currently
assigned list device (see the STAT canmand). Output
is sent to both the list device and the console device
until the next ctl-P is typed.

Stop the console output temp:>rarily. Program execution
an::1 output continue 11.hen the next character is typed
at the console (e.g., another ctl-S). This feature is
used to stop output on high speed consoles, such as
CRI''s, in order to view a segment of output before con­
tinuing.

Note that the ctl-key sa:iuences shown above are obtained by depressing the
control an::1 letter keys simultaneously. Further, CCP canmand lines can
generally be up to 255 characters in lenoth; they are not acted up:m until the
carriage return key is typed.

11

Ka
yp
roJ
ou
rna
l

6. TRANSIENT CDMMIINOO.

Transient canrnands are loaded fran the currently logged disk and executed
in the TPA. The transient camnands defined for execution under the CCP are
shown below. Additional functions can easily be defined by the user (see the
LOlill canrnand definition).

STAT

ASM

DDr

PIP

ED

SYSGEN

SUBMIT

DUMP

M)VCPM

List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment.

Load the CP/M assembler and assemble the specified
program fran disk.

Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new canrnand under the CcP) .

Load the CP/M debugger into TPA and start execution.

Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations.

Load and execute the CP/M text editor program.

Create a new CP/M system diskette.

Submit a file of canrnands for batch processing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular memory
size.

Transient canrnands are specified in the same manner as built-in canmands, and
additional canmands can be easily defined by the user. As an added
convenience, the transient camnand can be preceded by a drive name, which
causes the transient to be loaded fran the specified drive into the TPA for
execution. Thus, the canmand

B:STAT

causes cP/M to temp:>rarily "log in" drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing.

12

Ka
yp
roJ
ou
rna
l

rhe basic transient canmands are listed in detail below.

6.1. STAT er

The STAT canmand provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT er
STAT "canmand line" er

Special forms of the "canmand line" allow the current device assignment to be
~xamined and altered as well. The various canmand lines ~ich can be
specified are shown below, with an explanation of each form shown to the
right.

STAT er

STAT x: er

STAT afn er

If the user types an anpty canmand line, the STAT
transient calculates the storage ranaining on all
active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: R/0, SPACE: nnnK

for each active drive x, ~ere R/W indicates the
drive may be read or written, and R/0 indicates
the drive is read only (a drive becomes R/0 by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start) • The space
ranaining on the diskette in drive xis given
in kilobytes by nnn.

If a drive name is given, then the drive is
selected before the storage is canputed. Thus,
the canmand "STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The canmand line can also specify a set of files
to be scanned by STAT. The files ~ich satisfy
afn are listed in alphabetical order, with stor­
age requirements for each file tmder the heading

RECS BYTS EX D:FILENAME.TYP
rrrr bbbK ee d:pJJPppppp.sss

~ere rrrr is the nuroer of 128-byte records

13

Ka
yp
roJ
ou
rna
l

STAT x:afn er

STAT x:=R/O er

allocated to the file, bbb is the nurrber of kilo­
bytes allocated to the file (bbb=rrrr*l28/1024),
ee is the nurrber of 16K extensions (ee=bbb/16),
dis the drive name containing the file (A ... Z),
PIWPPPP is the {up to) eight~character primary
file name, and sss is the (up to) three-character
secondary name. After listing the individual
files, the storage usage is summarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified
drive is first selected, and the form "STAT afn"
is executed.

This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place. When a disk is read-only,
the message

BDOS ERR ON x: RFJ\D ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at \\bich time the disk becomes R/W).

The STAT canmand also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals "CP/M Interface
Guide" am "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices \\bich are, at any particular instant, each assigned
to one of SE!ll'eral physical peripheral devices. The four logical devices are
named:

CON: The system console device (used by CCP
for canmunication with the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list device

The actual devices attached to any particular canputer system are driven
by subroutines in the BIOS '[X)rtion of CP/M. Thus, the logical RDR: device,
for example, coold actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow oome flexibility in device naming and
assignment, SE!ll'eral physical devices are defined, as shown below:

14

Ka
yp
roJ
ou
rna
l

TTY:

CRI':

BAT:

UCl:

URl:

UR2:

Pl'P:

UPl:

UP2:

LP!':

ULl:

Teletype device (slow speed console)

cathode ray tube device (hiqh speed console)

Batch orocessinq (console is current RDR:,
output qoes to current 1ST: device)

user-defined console

Paper tape reader (high speed reader)

user-defined reader #1

user-defined reader #2

Paper tape punch (hiqh speed punch)

user-defined punch #1

user-defined punch #2

Line pr inter

user-defined list device #1

It must be emphasized that the ohysical device names may or may not
actually correspond to devices which the names imply. That is, the Pl'P:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and drivin:i subroutine is defined in the BIOS i:ortion
of CP/M. In the standard distribution version of CP/M, these devices
correspond to their names on the MIS 800 development system.

The possible logical to physical device assignments can be displayed by
typing

STAT VAL: er

The STAT prints the possible values which can be taken on for each logical
device:

CDN. = TTY: CRI': BAT: UCl:
RDR: = TTY: Pl'R: URl: UR2:
PUN: = TTY: Pl'P: UPl: UP2:
1ST: = TTY: CRI': LP!': ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the riqht on each line. The current logical to
physical mappin:i is displayed by typinq the c=nd

STAT rev: er

15

Ka
yp
roJ
ou
rna
l

which produces a listing of each logical device to the left, and the current
corresponding physical device to the riqht. For example, the list miqht
appear as follows:

OJN: = CR!':
RDR: = URl:
PUN:= Pl'P:
1ST: = TTY:

The current logical to physical device assignment can be changed by typing a
STAT canmand of the form

STAT_ldl = pdl, ld2 = od2, •.• , ldn = pdn er

where ldl through ldn are logical device names, and odl throuqh pdn are
canpatible ohysical device names {i.e., ldi and odi appear on the same line in
the "VAL:" canmand shown above) . The following are valid STA'I' ccmmands which
change the current logical to physical device assignments:

STAT <DN:=CRI': er
STAT PUN: = TTY: ,rs·r:=LPI':' IDR:=TTY: er

6.2. ASM ufn er

The ASM canmand loads and executes the CP/M 8080 assembler. The ufn
specifies a source file containing assembly lanquaqe statements where the
secondary nane is assumed to be ASM, and thus is not sJJecified. The following
ASM canmands are valid:

ASM X

ASM G.ll.MMA

The two-pass assembler is autanatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The assembler produces a file

x.PRN

where x is the primary name specified in the ASM canmand. The PRN file
contains a listing of the source program {with imbedded tab characters if
present in the source program), along with the machine code generated for each
statement and diagnostic error messaqes, if any. The PRN file can be listed

16

Ka
yp
roJ
ou
rna
l

at the console using the TYPE ccmmand, or sent to a i:eripheral device using
PIP (see the PIP ccmmand structure below). Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 columns (program addresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently ranoved or destroyed,
the PRN file can be edited (see the ED operator's guide) by rerroving the
leftmost 16 characters of each line (this can be done by issuing a single
editor "macro" canmand). The resulting file is identical to the original
source file and can be renamed (REN) frcm PRN to ASM for subsequent editing
and assembly. The file

x.HEX

is also produced lobich contains 8080 machine language in Intel "hex" format
suitable for subsequent loading and execution (see the ~ ccmmand). For
ccmplete details of CP/M's assembly lanquage program, see the "CP/M Assembler
Language (ASM) User's Guide."

Similar to other transient ccmmands, the source file for assembly can be
taken fran an a~temate disk by prefixing the assembly language file name by a
disk drive name. Thus, the ccmmand

ASM B:ALPHA er

loads the assembler frcm the currently logged drive and operates up:m the
source program ALPHA.ASM on drive B. The HEX and PRN files are also placed on
drive Bin this case.

6.3. LCYID ufn er

The LCYID ccmmand
format machine code,
subsequently executed.

x.HEX

reads the file ufn, lobich is assumed to contain "hex"
and produces a memory imaqe file lobich can be
The file name ufn is assumed to be of the form

and thus only the ncrne x need be specified in the ccmmand. The ~ ccmmand
creates a file named

x.cnM

llhich marks it as containing machine executable code. The file is actually
loaded into memory and executed \\hen the user types the file name x
immediately after the ixcmpting character ">" printed by the CCP.

In general, the CcP reads the name x following the prcmpting character
and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

17

Ka
yp
roJ
ou
rna
l

x.O'.)M

If found, the machine code is loaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file oncei it can be subsequently
executed any nurrber of times by simply typing the primary name. In this way,
the user can "invent" new canmands in the CCP. (Initialized disks contain the
transient canmands as mM files, which can be deleted at the user's option.)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LOAD B:BETA

brings the LOAD program into the TPA fran the currently logged disk and
operates up:>n drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which beqin at 100H, the beginning of the TPA. Further, the addresses in the
hex records must be in ascending orderi qaps in unfilled memory regions are
filled with zeroes by the LOAf) canmand as the hex records are read. Thus,
LOAf) must be used only for creating CP/M standard "CX)M" files which operate in
the TPA. Programs which occupy regions of memory other than the TPA can be
loaded under oor.

6.4. PIP er

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and canbine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP er
(2) PIP "canmand line" er

In both cases, PIP is loaded into the TPA and executed. In case (1), PIP
reads canmand lines directly fran the console, pranpted with the "*"
character, until an empty canmand line is typed (i.e., a single carriage
return is issued by the operator) . Each successive canmand line causes rome
media conversion to take place according to the rules shown below. Form (2)
of the PIP canmand is equivalent to the first, except that the single canmand
line given with the PIP canmand is autanatically executed, and PIP terminates
imnediately with no further i::canptinq of the console for input canmand lines.
The form of each canmand line is

destination= source#!, rource#2, •.• , rourcein er

where "destination" is the file or peripheral device to receive the data, and

18

Ka
yp
roJ
ou
rna
l

"sourcetl, ••• , sourcetn" represents a series of one or rrore files or devices
which are copied fran left to right to the destination.

"When multiple files are given in the canmand line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Zl at the end of each file (see the O parameter to
override this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability. Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions. Finally,
the total canmand line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines \oA'lich exceed the console width).

The destination and source elements can be unambiguous references to CP/M
source files, with or without a i:receding disk drive name. That is, any file
can be referenced with a i:receding drive name (A:, B:, C:, or D:) which
defines the particular drive \oA'lere the file may be obtained or stored. "When
the drive nane is not included, the currently loqqed disk is assumed.
Further, the destination file can also aPpear as one or nore of the oource
files, in \oA'lich case the oource file is not altered until the entire
concatenation is canplete. If the destination file already exists, it is
removed if the canmand line is properly formed (it is not removed if an error
condition arises). The following canmand lines (with explanations to the
right) are valid as input to PIP:

X =Yer

x = Y ,z er

x.ASM=Y.ASM,Z.ASM,FIN.ASM er

NEW.Zar= B:OLD.ZAP er

B:A.U = B:B.V,A:C.w,o.x er

Copy to file X from file Y,
\oA'lere X and Y are unambiguous
file names; Y remains unchanged.

Concatenate files Y and z and
copy to file X, with Y and Z
unchanged.

Create the file X.ASM from the
concatenation of the Y, z, and
FIN files with type ASM.

Move a copy of OLD.ZAP from drive
B to the currently logged disk;
name the file NEW.Zar.

Concatenate file B.V from drive B
with c.w fran drive A and o.x.
from the loqged disk; create
the file A.U on drive B.

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

19

Ka
yp
roJ
ou
rna
l

PIP x:=afn er

PIP x:=y:afn er

PIP ufn = y: er

PIP x:ufn = y: er

The first form copies all files frcm the currently loqged disk \\hich satisfy
the afn to the scrne file nc111es on drive x (x = A ••• Z). The second form is
equivalent to the first, lllhere the source for the copy is drive y (y = A •••
Z). The third form is equivalent to the ccmmand "PIP ufn=y:ufn er" which
copies the file qiven by ufn frcm drive y to the file ufn on drive x. The
fourth form is equivalent to the third, \\here the source disk is explicitly
given by y.

Note that the source and destination disks must be different in all of
these cases. If an afn is si;ecified, PIP lists each ufn \\hich satisfies the
afn as it is being copied. If a file exists by the same name as the
destination file, it is removed uron successful ccmpletion of the cc,py, and
replaced by the copied file.

The following PIP ccmmands give exaroples of valid disk-to-disk copy
operations:

B:=*.CDM er

A:=B:ZAP.* er

ZAP.ASM=B: er

B:ZO'r.ffiM=A: er

B:=GAMMA.BAS er

B:=A:Gl'.MMA.BAS er

Copy all files \\hich have the
secondary name "COM" to drive B
frcm the current drive.

Copy all files \\hich have the
primary name "ZAP" to drive A
frcm drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Eouivalent to B:ZCJr.CDM=A:Zar.COM

Same as B:GAMMA.BIIS=GAMMA.BAS

Same as B:GI\MMA.BAS=A:Gl'.MMA.BAS

PIP also allows reference to Physical and logical devices which are
attached to the CP/M system. The device names are the same as given under the
STAT ccmmand, alon::i with a nunber of si;ecially named devices. The logical
devices qiven in the STAT ccmmand are

CON: (console) , IDR: (reader), PUN: (punch) , and IST: (list)

while the physical devices are

20

Ka
yp
roJ
ou
rna
l

TTY:
CR!':
Pl'R:
Pl'P:
LPI':

(console,
(console,
(rea:ler) ,
{punch),
(list) ,

reader, punch,
or list) ,
URl: (reader) ,
UPl: (punch) ,
ULl: (list)

or list)
UCl: (console)
UR2: (reader)
UP2: (punch)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and 1ST: devices are to be used for
console input/output.)

The IDR, 1ST, PUN, and mN devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system.
{The current physical device rrappinq is defined by IOBYTE; see the "CP/M
Interface Guide" for a discussion of this function) • The destination device
must be capable of receiving data (i.e., data cannot be sent to the ptmch),
and the oource devices must be capable of generatinq data (i.e., the 1ST:
device cannot be read).

The a::lditional device names ..tlich can be used in PIP canmands are

NUL:

EOF:

INP:

our:

PRN:

Send 40 "nulls" (ASCII 0's) to the device
(this can be issued at the end of punched output) •

Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent, automatically at the
end of all ASCII data transfers through PIP).

Special PIP input oource ..tiich can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLinq location
103H, with data returned in location 109H (parity
bit must be zero).

Special PIP output destination ..tiich can be
patched 'into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit. Note that locations 109H through
lFFH of the PIP memory image are not used 9nd
can be replaced by special purpose drivers using
oor (see the oor operator's manual).

Same as LST:, except that tabs are expanded at
every eighth dlaracter i::osition, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP canmands. In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files). Data from each device or
file is concatenated from left to right untH the last data oource has been

21

Ka
yp
roJ
ou
rna
l

read. The destination device or file is written using the data fran the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files. Note if the destination is a disk file, then a temporary
file is created ($$$ secondary name) which is chanqed to the actual file name
only up::m soccessful canpletion of the copy. Files with the extension "OOM"
are always assumed to be non-ASCII.

The cq:,y q:,eration can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the message "AOORI'ED"
to indicate that the q:,eration was not canpleted. Note that if any operation
is aborted, or if an error occurs dur inq processing, PIP removes any pending
canmands which were set up \\hile usinq the SUBMIT canmand.

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted rrechine
code file), and the s::mrce is an external peripheral device, such as a paper
tape reeder. In this case, the PIP program checks to ensure that the s::mrce
file contains a p:operly formed hex file, with legal hexadecimal values and
checksum records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read. If the
tape position cannot be prooerly read, simply continue the read (by tyoinq a
return followinq the error messaqe), and enter the record manually with the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered fran the console if the s::mrce file is a RDR:
device. In this case, the PIP program reads the device and monitors the
keyboard. If ctl-Z is typed at the keyboard, then the read operation is
terminated normally.

Valid PIP canmands are shown below.

PIP IST: = X.PRN er

PIP er

*ffiN:=X.ASM,Y.ASM,Z.ASM er

*X.HEX=OJN:,Y.HEX,PTR: er

*er

22

Copy X.PRN to the IST device and
terminate the PIP program.

Start PIP for a sequence of
canmands (PIP pranpts with "*").

Concatenate three ASM files and
copy to the OJN device.

Create a HEX file by reading the
OJN (until a ctl-Z is typed) , fol­
lowed by data fran Y.HEX, followed
by data fran PTR until a ctl-Z is
encountered.

Single carriage return stops PIP.

Ka
yp
roJ
ou
rna
l

PIP P{N:=NUL:,X.ASM,EOF:,NUL: er Send 40 nulls to the punch device:
then copy the x.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac­
ters.

The user can also specify one or nore PIP parameters, enclosed in left
and right square brackets, separated by zero or nore blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each oarameter can
be followed by an eptional decimal integer value (the S and O parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received fran the source device.
This allows transfer of data to a disk file fran a continuous
reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data. The amount of data which can be buffered is de­
pendent upon the memory size of the host systel!I (PIP will
issue an error message if the buffers overflow) .

Dn Delete characters which extend past column n in the transfer
of data to the destination fran the character source. This
parameter is used nost often to truncate long lines which are
sent to a (narrow) printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Filter form feeds fran the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to
insert new form feeds.

H Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy ooeration. The console will be
pranpted for corrective action in case errors occur.

I Ignore ": 00" records in the transfer of Intel hex format
file (the I parameter autanatically sets the H parameter).

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is specified, then leading zeroes are included, and a tab is
inserted following the nurrt>er. The tab--is expanded if T is

23

Ka
yp
roJ
ou
rna
l

set.

O Cbject file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at £Nery n lines (with an initial page
eject). If n = 1 or is excluded altogether, page ejects
occur £Nery 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

ostz ()lit copyinq from the source device or file 1'tlen the
strings (terminated by ctl-Z) is encountered.

sstz Start copying from the source device 1'tlen the strinq sis
encountered (terminated by ctl-Z). The Sand O parameters
can be used to "abstract" a particular section of a file
(such as a subroutine). The start and auit strings are al­
ways included in the copy operation.

NOI'E - the strings followinq the sand q parameters are
translated to uH)er case by the CCP if form (2) of the
PIP canmand is used. Form (1) of the PIP invocation, how­
£Ner, does not perform the automatic u~r case translation.

(1) PIP er
(2) PIP "command line" er

Tn Exoand tabs (ctl-I characters) to £Nery nth colUIID'l durinq the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to u~r case during the
the copy operation.

V Verify that data has been copied correctly by rereadinq
after the write operation (the destination must be a disk
file).

Z Zero the parity bit on input for each ASCII character.

The followinq are valid PIP cammands ~ich specify parameters in the file
transfer:

PIP x.ASM=B: [v) er

PIP LP1':=X.ASM[nt8u) er

Copy X.ASM from drive B to the current drive
and verify that the data was i:roperly copied.

Copy X.ASM to the LPT: device; number each
line, expand tabs to £Nery eiqhth colUIID'l, and
translate lower case alphabetics to uH)er
case.

24

Ka
yp
roJ
ou
rna
l

PIP PUN:=X.HEX[il ,Y.ZOT[h] er First copy x.HEX to the PUN: device and
ignore the trailing ": 00" record in X. HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any ":00" records which it contains.

PIP x.Lm = Y.ASM [sSUBRl:tz qJMP LJtz l er Copy fran the file Y.ASM
into the file x.LIB. Start the copy when the
string "SUBRl:" has been found, and quit copy­
ing after the string "JMP L3" is encountered.

PIP mN:=X.ASM [p50] Send X.ASM to the LST: device, with line num­
bers, tabs expanded to every eighth column,

6.5. ED ufn er

and page ejects at every 50th line. Note that
nt8p60 is the assumed parameter list for a PRN
filei p50 overrides the default value.

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given the ED user's manual, "ED: a Context Editor for the CP/M
Disk System." In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line dlaracters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the working memory) , which is instead defined by the number of dlaracters
typed between cr's. The ED program has a number of canmands for dlaracter
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files tnder CP/M. Although the CP/M has a
limited memory work space area (awroximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the specified rource file, if it does not
exist, and q:iens the file for access. The programmer then "appends" data fran
the rource file into the work area, if the rource file already exists (see the
A canmand) , for editing. The appended data can then be displayed, altered,
and written fran the work area back to the disk (see the W canmand).
Particular points in the program can be automatically paged and located by
context (see the N canmand), allowing easy access to particular p:,rtions of a
.large file.

Given that the q:ierator has tvi:ied

ED x.ASM er

25

Ka
yp
roJ
ou
rna
l

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data duriIXJ the ED run. Upon canpletion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM. Thus, the X.BAK file contains the oriainal (unedited) file, and the
X.ASM file contains the newly edited file. The operator can always return to
the previous version of a file by ranoviIXJ the nPSt recent version, and
renaming the µ:evious version. SUJJPOSe, for example, that the current X.ASM
file was imµ:operly edited: the sequence of CCP camnand shown below would
reclaim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X.BAK

Check to see that BAK file
is available.

Erase nPSt recent version.

Rename the BAK file to ASM.

Note that the ~erator can abort the edit at any point (reboot, power failure,
ctl-C, or O canmand) without destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "pinq-poIXJ" the oource arrl create
backup files between two disks. The form of the ED camnarrl in this case is

ED ufn d:

where ufn is the nane of a file to edit on the currently logged disk, arrl d is
the nane of an alternate drive. The ED program reads and pcocesses the oource
file, arrl writes the new file to drive d, usiIXJ the name ufn. Upon canpletion
of pcocessinq, the original file becanes the backup file. Thus, if the
operator is addressinq disk A, the followiIXJ camnand is valid:

ED X.ASM B:

ltlich edits the file x.ASM on drive A, creatiIXJ the new file X.$$$ on drive
B. Upon canpletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM. For user convenience,. the currently logged
disk becanes drive B at the errl of the edit. Note that if a file by the name
B:X.ASM exists before the editiIXJ begins, the message

FILE EXISTS

is µ:inted at the console as a pcecaution cqainst accidently destroyiIXJ a
source file. In this case, the operator must first ERAse the existing file
and then restart the edit operation.

26

Ka
yp
roJ
ou
rna
l

I

Similar to other transient canmands, editing can take place on a drive
different fran the airrently logged disk by p:-eceding the rource file name by
a drive nane. Examples of valid edit re:iuests are soown below

ED A:X.ASM

ED B:X.ASM A:

6.6. SYSGEN er

Edit the file X.ASM on drive A, with
new file and backup on drive A.

Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A. en
termination of editing, change X.A.SM
on drive B to X.BA.K, and change X.$$S
on drive A to X.ASM.

The SYSGEN transient canmand allows generation of an initialized diskette
containing the CP/M operating system. The SYSGEN program pranpts the console
for canmands, with interaction as soown below.

SYSGEN er Initiate the SYSGEN program.

SYSGEN VERSION m.m SYSGEN sign-on rressaqe.

SOURCE !FIVE NAME (OR REIURN TO SKIP)

SOURCE ON x THEN TYPE RE:IURN

FUNCTION O)MPLETE

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys­
tem; usually A. If a copy of
CP/M already exists in memory,
due to a MJVCPM command, type a
er only. Typing a drive name
x will cause the response:

Place a diskette containing the
CP/M operating system on drive
x (xis one of A, B, C, or D).
Answer with er when ready.

System is copied to mel11Glry.
SYSGEN will then pranpt with:

DESTINATION !RIVE NAME (OR REruRN TO REBCOI')

27

If a diskette is being ini­
tialized, place the new disk
into a drive and answer with
the drive name. Otherwise, type
a er and the system will reboot
fran drive A. Typing drive name
x will cause SYSGEN to oranpt

Ka
yp
roJ
ou
rna
l

with:

DESTINATIOO ON x THEN TYPE RE'IURN Place new diskette into drive
x: type return when ready.

FUNCTIOO CDMPLETE New diskette is initialized
in drive x.

The "IESTINATION" pranpt will be repeated until a single carriage return is
typed at the console, so that rrore than one disk can be initialized.

Upon canpletion of a successful system generation, the new diskette
contains the cperating system, and only the built-in canmands are available.
A factory-fresh IBM-cmpatible diskette appears to CP/M as a diskette with an
empty directory: therefore, the operator must copy the appropriate COM files
fran an existing CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can cqiy all files fran an existing diskette by typing the PIP
canmand

PIP B: = A: *.*[v] er

which copies all files fran disk drive A to disk drive B, and verifies that
each file has been cq:,ied correctly. The name of each file is displayed at
the console as the cOIJy operation oroceeds.

It should be noted that a SY5GEN does not destroy the filestiich already
exist on a diskette: it results only in construction of a new operating
system. Further, if a diskette is bein::i used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6. 7. SUBMIT ufn parm#l . . • parm#n er

The SUBMIT canmand allows CP/M canmands to be batched together for
autanatic processin::i. The ufn given in the SUBMIT canmand must be the
filename of a filetiich exists on the currently logged disk, with an assumed
file type of "SUB." The SUB file contains CP/M prototype canmands, with
possible parameter sl.bstitution. The actual parameters parmU ••• parm#n are
substituted into the prototype canmands, and, if no errors occur, the file of
substituted canmands are processed sequentially by CP/M.

28

Ka
yp
roJ
ou
rna
l

The prototype canmand file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... $n

corres{X)nding to the number of actual parameters which will be included when
the file is sti:>mitted for execution. When the SUBMIT transient is executed,
the actual parameters parm#l ••• parm#n are oaired with the formal parameters
$1 • • • Sn in the prototype canmands. If the number of formal and actual
parameters does not corres{X)nd, then the sul:xnit function is aborted with an
error message at the console. The SUBMIT function creates a file of
substituted c011mands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT) , this canmand file is read by the CCP as a rource of input, rather
than the console. If the SUBMIT function is 1Jerformed on any disk other than
drive A, the c011mands are not processed until the disk is inserted into drive
A and the system reboots. Further, the user can abort canmand processing at
any time by typina a rubout when the canmand is read and echoed. In this
case, the $$$.SUB file is removed, and the subsequent canmands cane fran the
console. Canmand processing is also aborted if the CcP detects an error in
any of the c011mands. Programs which execute under CP/M can abort processing of
canmand files when error conditions occur by simply erasing any existing
$$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which rerluces to a single "$" within the canmand file. Further, an
up-arrow symbol "'" may precerle an alphabetic character x, which oroduces a
single ctl-x character within the file.

The last cCTTimand in a SUB file can initiate another SUB file, thus
allowing chainerl batch canmands.

Supp::,se the file ASMBL.SUB exists on disk and contains the prototype
canmands

and the c011mand

As-I $1
DIR $1.*
ERA *.BAK
PIP $2:=$1.PRN
ERA $1.PRN

SUBMIT As-lBL X PRN er

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,
stbstituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the canmands

29

Ka
yp
roJ
ou
rna
l

AEM X
om x.*
ERA * .BIIK
PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT flD'lction can access a SUB file which is on an alternate drive
by precedirq the file nane by a drive name. Sutmitted files are only acted
l.JtX)n, however, when they appear on drive A. Thus, it is p:,ssible to create a
sutmitted file on drive B which is executed at a later time when it is
inserted in drive A.

6.8. DUMP ufn er

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time,
with the absolute byte address listed to the left of each line in
hexadecimal. I.org typeouts can be aborted by pushing the rubout key during
printout. (The source listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment.)

6.9. MJVCPM er

The MJVCPM p:ogram allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at p:ogram termination. If the first parameter is anitted or a "*" is given,
the MJVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguous RAM in the host system (starting aat 0000H). If
the second parameter is ani tted, the system is executed, but not permanently
recorded; if "*" is given, the system is left in memory, ready for a SYSGEN
operation. The MJVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation. The
canmand forms are:

M'.NCPM er Relocate and execute CP/M for manage­
ment of the current memory configura­
tion (memory is examined for contigu­
ous RAM, starting at 100H). Upon can­
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette. The system
which is constructed contains a BIOS
for the Intel MJ:6 800.

30

Ka
yp
roJ
ou
rna
l

r.o\TCPM n er

MOVCPM * * er

MOVCPM n * er

The canmand

MOVCPM * *

Create a relocated CP/M system for
manaqernent of an n kilobyte system (n
must be in the range 16 to 64) , and
execute the system, as described above.

Construct a relocated memory image for
the current memory confiauration, but
leave the memory image in memory, in
preparation for a SYSGEN operation.

Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preJ:laration for a
SYSGEN OJ:leration.

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation. The messaqe

READY FOR "SYSGEN" OR
"SAVE 32 CPMxx.mM"

is printed at the console upon canpletion, ;mere xx is the current memory size
in kilobytes. The operator can then type

SYSGEN er Start the system generation.

SOURCE I:RIVE NAME (OR RETURN TO SKIP) Respond with a er to skip
the CP/M read OJ:leration since the system
is already in memory as a result of the
previous MOVCPM operation.

DESTINATION J:RIVE NAME (OR REI'URN T0 REBOOI')
Respond with B to write new system
to the diskette in drive B. SYSGEN
will pr anpt with:

DESTINATION ON B, THEN TYPE RETURN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B. SYSGEN will continue to type the pranpt:

DESTINATION J:RIVE NAME (OR RETURN TO REBOOI')

until the operator responds with a single carr iaqe return, 11Ctich stops the

31

Ka
yp
roJ
ou
rna
l

SYSGEN program with a system reboot.

The user can then go through the reboot ixocess with the old or new
diskette. Instead of performinq the SYSGEN operation, the user could have
typed

SAVE 32 CPMxx.<DM

at the canpletion of the IDVCPM function, \oA'lich would place the CP/M memory _
image on the currently logged disk in a form which can be "patched." This is
necessary when q,erating in a non-standard environment where the BIOS must be
altered for a particular perii:>heral device configuration, as described in
the"CP/M System Alteration Guide."

Valid !DVCPM canmands are given below:

IOVCPM 48 er

!DVCPM 48 * er

IOVCPM * * er

Construct a 48K verskon of CP/M and start
execution.

Construct a 48K version of CP/M in ixepara­
tion for permanent recording; response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48.<DM"

Construct a maximum memory version of CP/M
and start execution.

It is imi::ortant to note that the newly created system is serialized with
the rnmt,er attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensinq Aqreement.

32

Ka
yp
roJ
ou
rna
l

7. BOOS ERROR !IESSAGES.

There are three error situationstiich the Basic Disk Operatinq System
intercepts during file i;:rocesssinq. When one of these conditions is detected,
the BOOS prints the rressage:

BOOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" rressage indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error more
than once a ITDnth, you soould check the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
reading files generated by a controller µ:-oduced by a different manufacturer.
Even though controllers are claimed to be IBM-cCl!lpatible, one often finds
small differences in recordinq formats. The Mr:6-800 controller, for example,
requires two bytes of one· s following the data CRC byte,tiich is not reauired
in the IBM format. As a result, diskettes generated by the Intel MOO can be
read by almost all other IBM-cCl!lpatible systems, while disk files generated on
other manufacturer· s equipment will produce the "BAD SECTOR" message when read
by the Mr:6. In any case, recovery frCl!l this condition is accCl!lplished by
typing a ctl-C to reboot {this is the safest!), or a return, l<lhich simply
ignores the bad sector in the file operation. Note, however, that typing a
return 111:lY destroy your diskette integrity if the operation is a directory
write, so make sure you have adeauate backups in this case.

The "SELECT" error occurs \>hen there is an attempt to address a drive
beyond the A through D range. In this case, the value of x in the error
message gives the selected drive. The system reboots following any input frCl!l
the console.

The "READ ONLY" rressage occurs \>hen there is an attempt to write to a
diskette l>hich has been designated as read-only in a STAT canmand, or has been
set to read-only by the BOOS. In general, the aperator soould reboot CP/M
either by using the W'lrm start irocedure {ctl-C) or by performing a cold start
whenever the diskettes are chanqed. If a changed diskette is to be read but
not written, BOOS allows the diskette to be chanqed without the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is subsequently changed to read/write if a warm or cold start occurs. Upon
issuing this message. CP/M waits for input frCl!l the console. An automatic
warm start takes place followinq any input.

33

Ka
yp
roJ
ou
rna
l

8. OPERATION CF CP/M ON THE MJ:S.

This section gives q:>erating
microcanputer development system.
software systems is assumed.

p:ocedures for usinq CP/M on the Intel Mt6
A basic knowledge of the Mr:6 hardware and

CP/M is initiated in essentially the same manner as Intel's ISIS
operating system. The disk drives are labelled 0 through 3 on the Mffi,
corresp:mding to CP/M drives A through D, respectively. The CP/M system
diskette is inserted into drive 0, and the roar and RESET switches are
depressed in sequence. The interrupt 2 light should go on at this µ,int. The
space bar is then depressed on the device 11.bich is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates). The roar switch is then turned off, and the CP/M siqnon
message stnuld appear at the selected console device, followed by the "A>"
system p:anpt. The user can then issue the various resident and transient
canmands

The CP/M system can be restarted (warm start) at any time by pushing the
IN!' 0 switch on the front panel. The built-in Intel ROM monitor can be
initiated by pushing the IN'l' 7 switch (which generates a RST 7), except II.hen
operating l.l'lder DIJI', in 11.bich case the DIJI' program gets control instead.

Diskettes can be renoved from the drives at any time, and the system can
be shut down during ooeration without affecting data integrity. Note,
however, that the user must not renove a diskette and replace it with another
without rebooting the system (cold or warm start), unless the inserted
diskette is "read only."

rue to hardware hang-ups or 11Blfunctions, CP/M may type the message

BOOS ERR ON x: BAD SECTOR

where x is the drive 11.bich has a permanent error. This error may occur II.hen
drive doors are q:>ened and closed· randanly, followed by disk c:perations, or
may be due to a diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console. The error may produce a bad data record,· requiring re-initialization
of up to 128 bytes of data. The q:,erator can reboot the CP/M system and try
the q:>eration cgain.

Termination of a CP/M session re::iuires no special action, except that it
is necessary to renove the diskettes before turning the p,wer off, to avoid
randan transients 11.bich often make their way to the drive electronics.

It stnuld be noted that factory-fresh IBM-cc:rnpatible diskettes should be
used rather than diskettes 11.bich have previously been used with any ISIS
version. In particular, the ISIS "FORMAT" c:peration produces non-standard
sector numbering throughout the diskette. This non-standard numbering
seriously degrades the performance of CP/M, and will c:perate noticeably slower

34

Ka
yp
roJ
ou
rna
l

than the distribution version. If it becomes necessary to reformat a diskette
(which sl'Duld not be the case for standard diskettes) , a p:ogram can be

written tnder CP/M \\hich causes the MI:6 800 controller to reformat with
sequential sector nunt>erinq (l-26) on each track.

·------------------------------------
Note: "M[S 800" and "ISIS" are ra:iistered trademarks of Intel Corporation.

35

Ka
yp
roJ
ou
rna
l

(j]) ()~(j~Tfll REEEflRCH®
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 USER'S GUIDE

COPYRIGHT (c) 1979

DIGITAL RESEARCH

Ka
yp
roJ
ou
rna
l

Copyright

Copyright (c\ 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by anv
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California !13950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti­
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof· without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

Ka
yp
roJ
ou
rna
l

CP/M 2 USER'S GUIDE

Cooyright (c) lj]J
Digital Researcn, aox S79
Pacific Grove, California

1. ~n uverview or CP/~ 2.0 facilities

user Intertace

3. Console Co'l\manci Processor (CCP) Intertace

4. S~Ar Snhance~ents

~. PIB cnnancements

6. C:J E:nhancemen ts

7. ~he XSU3 Function

JDUS Interface Conventions • •

~- CP/~ 2.u ~emory Organization

10. JIOS Differences

1

3

4

10

11

12

27

Ka
yp
roJ
ou
rna
l

1. A~ OVBRVIE~ OF CP/M 2.0 FACILIEIES.

CP/M 2.0 is a nigh-oerformance single-console ooerating system
whicn uses table driven tecnnigues to allow field recontiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, wnile maintaining upward comoatioility from
previou~ versions of release l. Features of CP/M 2.0 incluae field
specification of one to sixteen logical drives, eacn containing up to
eignt megabytes. Any particular file can reacn the full drive size
witn the capaoility to exoand to thirty-two megabytes in tuture
releases. The directory size can be field configured to contain any
reasonable numoer of entries, and each tile is ootionally tagged with
read/only and system attributes. ilsers of CP/M 2.J are ohysically
separated oy user nurnoers, with facilicies for tile copy ooerations
tram one user area to another. Powerful relative-record random access
functions are oresent in CP/M 2.B wnicn provide direct access to any
of the bSS36 records of an eight megaoyte file.

All disk-deoendent oortions ot CP/M 2.0 are olaced into a
BIOS-resident "disk oarameter block" whicn is either nand coded or
produced automatically using the disk definition macro library
providea with CP/M 2.0. Tne end user need only soecity tne maximum
numoer of active Jisks, the starting and ending sector numoers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. rhe macros use
this intormation to generate the approoriate taoles and table
reterences for use during CP/M 2.0 ooeration. Oeblocking information
is also provided wnicn aids in assembly or disassembly of sector sizes
wnich are multioles of tne tundamental 12d ovte data unit, and tne
system alteration manual includes aeneral-ouroose suoroutines wnich
use tne tnis deolocking information to take aavantage of larger sector
sizes. Use of these subroutines, togetner witn the taole driven aata
access algorithms, make CP/ 11 2.0 truly a' universal data management
system.

file excansion is achieved uy providinJ up to 512 logical tile
extents, where eacn logical extent contains 16K bytes of data. CP/~
2.il is structured, nowever, so that as much as 12,dK oytes ot data 1s
addressed by a single physical extent (corresoonaing to a single
directory entry), tnus maintaining comoatioility with orevious
versions while taking full aavantage ot directory soace.

Random access facilities are cresent in CP/M 2.0 wnicn allow
immediate reference to any record of an eignt megaoyte file. Using
CP/M's uniaue data organization, data clocks are only allocated when
actually required and movement to a record oosition req~ires little
searcn time. Sequential file access is uoward comoatiole from earlier
versions to tne full eight megaoytes, wnile random access
compatibility stops at ~12K byte files. Oue to CP/M 2.0's simcler and
faster random access, aoolication orogrammers are encouraged to alter
tneir programs to take full aavancage of the 2.u facilities.

Several CP/M 2.0 modules and utilities nave imorovements whicn
corresoond to tt1e enhanced file system. STAT ana £'IP both account for
tile attributes and user areas, wnile the CCP orovides a ''login''

(All Information Contained Herein is ~roorietary to Oigital Research.)

l

Ka
yp
roJ
ou
rna
l

function to change from one user area
formats airectory aisplays in a more
for ootn CRT and nara-co9y devices in
functions.

to anocner. ~ne
convenient manner and

its enhanced line

CCP also
accounts

editing

~he sections oel~ point out the inaividual differences between
CP/M 1.4 ana CP/M 2.6, witn tne understanding that the reader is
eitner familiar witn CP/M 1.4, or nas access to the 1.4 manuals.
Additional information dealing witn CP/M 2.0 I/0 system alteration is
oresentea in the Digital Researcn manual "CP/M 2.0 Alteration Guide."

(All Information Contained rlerein is Proprietary to Digital Research.)

2

Ka
yp
roJ
ou
rna
l

2, USER INTERFACE,

Console line processing takes CR'.i'-type devices
tnree new control characters, shown with an asterisk
(the symbol ·ctl" below indicates tnat tne
simultaneously depressed):

into account with
in the list below

control key is

rub/del
ctl-C
ctl-E
c tl-tl
ctl-J
ctl-i4
ctl-R
ctl-t.J
c tl-x

removes and ecnoes last character
reboot when at beginning of line
physical end ot line
oackspace one cnaracter position*
(line feed) terminates current input*
(carriage return) terminates inout
retype current line after new line
remove current line after new line
oackspace to beginning of current line*

In oarticular, note tnat ctl-H produces the proper backspace overwrite
function (ctl-H can be cnanged internally to anotner cnaracter, such
as delete, through a simple single byte change). Further, the line
editor Keeps track ot the current prompt column position so tnat the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-x command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

Ka
yp
roJ
ou
rna
l

3. CONSOLE COMMAl'lD PROCESSOR (CCP) 1,,·rERFACt,

There are four functional ditferences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. ·rhe CCP now
displays directory information across the screen (four elements oer
line), tne USER command is oresent to allow maintenance ot seoarate
tiles in the same directory, and the actions of the "ERA • •· and
"SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

wnere n is an integer value in the range 0 to 15. uoon cold start,
tne operator is automatically "logged" into user area number 0, which
is compatible with standard CP/M 1.4 airectories. Tne operator may
issue the USER command at any time to move to anotner logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a user number is simoly a prefix
which accesses particular directory entries on the active disks.

'l'he active
subsequent USER
is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user Li

Due to the fact that user numbers now tag individual directory
entries, the 2RA •.• commana has a aifrerent ettect. In version 1.4,
this commana can oe used to erase a directory wnicn has "garbage"
information, oerhaos resulting from use of a diskette under another
operating system (heaven foroia!). In 2.0, however, the ERA • •
command affects only the current user numoer. Thus, it is necessary
to write a simple utility to erase a nonsense disk (tne orograrn simoly
writes the hexaoecimal pattern ES throughout the disK).

The SAVE command in version 1.4 allows only a single memory save
ooeration, with the ootential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory ooerations in user data areas
after disk writes, and thus the SAVE operation canoe used any number
of times without altering the memory image.

(All Information Contained Herein is Proorietary to Digital Research.)

4

Ka
yp
roJ
ou
rna
l

4. STAT ENtlA~C8MENTS.

The STAr orogram nas a
allow disk oarameter display,
manipulation. The command:

number of additional functions which
user numoer display, and file indicator

S·TA'l' \!AL:

Produces a summary of the available status commands, resulting in tne
OUt?Ut:

·remo R/0 Disk:
Set Indicator:
DisK Status
user Status
Iobyte Assign:

d:=R/0
d: filename. tyo
OSK: d :DSK:
iJS«:

~R/O $R/,i $StS $DIR

(list of oossiole assignments)

whicn gives an instant summary of the oossiole STAT commands. The
command form:

STAT d:filename.tvo ~S

wnere "d:" is an optional
unamoiguous or amoiguous
format:

Size Recs Jytes
4J 48 6k
S5 55 12K

65536 12d 2k

drive
tile

name, and ''tilename.typ· is an
name, produces the outout disolay

Ext Ace
l R/0 A:ED.C0M
l R/O (A: f' IP. C\JM)
2 R/,i A:X.DAT

where tne $S oarameter causes the ''Size· field to be disolayed
(without the $S, the Size fiela is skipped, out the remaining tields
are disolayed). The Size field lists the virtual file size in
recoras, while tne "Recs" field sums the numoer ot virtual records in
each extent. for files constructed sequentially, the Size and Recs
tields are identical. The ''Bytes" field lists tne actual number of
bytes allocated to tne corresoonding file. The minimum allocation
unit is determinea at contiguration time, and thus tne numoer of bytes
corresponds to the record count plus tne remaining unused space in tl1e
last allocated clock for sequential files. Random access files are
given data areas only wnen written, so the Bytes field contains the
only accurate allocation figure. In tne case of random access, the
Size field gives the logical end-of-tile record oosition and the Recs
field counts the logical records ot each extent (each of these
extents, nowever, may contain unallocatea ''noles· even though they are
added into the record count). rhe "Ext" fielci counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the tile, since there canoe uo to 128K oytes (8
logical extents) directly aoaressed oy a single directory entry,
deoending upon allocation size (in a soecial case, there are actually
2j6K oytes which canoe directly addressed by a ohysical extent).

Tne "Ace" tield gives the R/O or R/~ access mode, which is
cnanged usinq the commands shown below. Similarly, the parentheses

(All Information Contained rlerein is Proprietary to Digital Research.)

5

Ka
yp
roJ
ou
rna
l

shown around the i?If'.C.:>M file name indicate that it has the "system"
indicator set, so that it will not be listed in DIR commands. The
four command forms

S·l'A'l' d: filename. typ ::>R/0
STAT d:filename.typ $R/~
STAT d:filename.typ iSYS
STA'l' d:filename.typ $DIR

set or reset various oermanent file indicators. The R/0 indicator
places the file (or set of files) in a read-only status until chanqed
oy a subsequent S'l'AT command. The R/0 status is recorded in the
directory with tne file so that it remains R/0 through intervening
cold start operations. The R/& indicator places the file in a
oermanent read/write status. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The "filename.typ" may be ambiguous or unamoiguous, but in
either case, the files wnose attributes are changed are listed at the
console when the change occurs. The drive name denoted by "d:" is
optional.

~hen a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

ddos Err on d: File R/0

The BOOS then waits for a console input before pertorming a subsequent
warm start (a ''return" is sufficient to continue). The command form

lists the drive
the range A:,
tne format:

STAT d:DSK:

characteristics of the disk named by "d:" which is in
B:, ... , P:. The drive characteristics are listed in

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilooyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megaoyte drive), followed by the total
capacity listed in Kilooytes. The directorv size is listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of eacn directory entry (1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

Ka
yp
roJ
ou
rna
l

l .2iiK in tne example a oove) . ·rhe number of records oer olock shows the
~asic a)~oc~tion size (in the example, 128 records/olock times 128
oytes per record, or -16K oytes oer olock). The listing is then
followed by tne number of physical sectors oer track and the number ot
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mecnanism is used to skip lower-numoered disk areas allocateJ to otner
logical disks. Tne command form

srA'l' DSK:

oroduces a drive cnaracteristics taole tor all currently active
drives. ·l'ne final STA'1' command form is

s·rAT USR:

which oroduces a list of the user numbers whicn nave files on the
currently addressed disk. rhe disolay format is:

Active User : ~
Active riles: 0 1 3

where tne first line lists the currently addressed user number, as set
by the last CC? USER command, followed by a list of user numbers
scanned from the current directory. In tne above case, tne active
user numoer is ~ (default at colo start), witn three user numbers
whicn have active files on the current disk. The operator can
suosequently examine the directories of the otner user numbers by
logging-in witn OSER 1, OSER 2, or USER 3 commands, followed by a DIR
command at tne CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

Ka
yp
roJ
ou
rna
l

5. PIP ENHAt~CEMENTS.

PIP provides three new functions whicn account for the features
of CP/M 2.0. All three functions take the form of file oarameters
whicn are enclosed in square orackets following the aporopriate file
names. The commands are:

Gn

w

R

Get File from user number n
(n in the range 0 - 15)

Write over R/0 files without
console interrogation

Read system files

·rhe G command allows one user area to receive data files from another.
Assumimi the ooerator has issued the USER 4 command at the CCP level,
tne PIP statement

PIP X.Y = X.Y[G2)

reads file X.Y from user number 2 into user area number 4. ·rhe
command

PIP A:=A:*.*[G2)

conies all of the tiles from the A drive directory for user number 2
into the A drive directory of the currently loggea user number. Note
tnat to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

,~ote also that the PIP J?rogram itself is initially coJ?ied to a
user area (so that subsequent tiles can be copied) using the SAVE
command. The sequence ot operations shown below effectively moves PIP
from one user area to the next.

iJSER <l
DDT PIP.COM
(note PIP size

G.J
USER 3
SAvE s PIP.COi•I

login user <l
load PIP to memory

s)
return to CCP
login user 3

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number scan be determined when PIP.COM is
loaded under DDT, by referring to the value under the ''NEXT'' disolay.
If for example, the next available address is 1D00, then PIP.COM
requires lC hexadecimal oages (or 1 times 16 + 12 = 28 pages), and
thus the value of sis 28 in the subsequent save. Once PIP is cooied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent R/0 status. If attempt is made to overwrite a R/0
file, the orompt

(All Information Contained Herein is Proprietary to Digital Research.)

tl

Ka
yp
roJ
ou
rna
l

nRSTINATION FILE IS R/0, DELETE (~/N)?

is issued. If the operator responds with the character "y" then the
file is overwritten. Otnerwise, the response

** NOT DELETED**

is issued, the file transfer is skiooped, and PIP continues with the
next operation in sequence. In order to avoid the promot and res?onse
in the case of R/0 tile overwrite, the command line can include thew
parameter, as shown below

which copies all non-system files to the A drive from the B drive, and
overwrites any R/J files in the orocess. If the operation involves
several concatenated files, the 'II parameter need only be included witn
the last file in the list, as shown in the following example

PIP A.DAT= B.DAr,F:NEW.DAT,G:OLD.DAT[Wj

Files with the system attribute can be included
if tne R parameter is included, otherwise system
recognized. The command line

PIP ED.COM= B:ED.CJ~[R]

in PIP transfers
files are not

for example, reads tne ED.COM tile from the B drive, even if it has
been marked as a R/0 ana system file. 'l'he system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M is only maintained if the file does not exceed one
megabyte, no tile attributes are set, and the file is created by user
0. If comoatibility is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
comoatibilitv mode when constructing- the internal disk oarameter olock
(se~ the •tP/M 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proorietary to Digital Research.)

9

Ka
yp
roJ
ou
rna
l

6. ED E~HANCEHENTS.

The CP/M standard orograrn editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numoering feature of ED, and thus the editor has the ''v"
(Verity Line) ootion set as an initial value. Tne operator can, of
course, jisaole line numoering by tyeing the "-v" command. If you are
not familiar witn the ED line numoer mode, you may wish to refer to
tne Appendix in tne ED user's guicte, where the "v" command is
described.

ED also takes file attributes into account.
attempts to edit a reaa/only file, the message

xw FILE IS READ/01'1LY **

If the operator

apoears at the console. Tne file can oe loaded and examined, but
cannot oe altered in any way. Normally, the ooerator simply ends the
edit session, and uses STAT to cnange the file attrioute to R/~. If
tne edited tile nas the "system" attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is disolayed at the console, and the edit session is aborted. Again,
tne s·rA·r orogram can be used to change the system attribute, if
desired.

Finally, the insert mode ("i") command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

10

Ka
yp
roJ
ou
rna
l

7. ·rHE XSUB FUNC'rION.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power 6f the SUBMIT facility to
include line input to programs as well as the console command
processor. The XSUB command is included as the first line of your
submit file and, when executed, 3elf-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BOOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$1.ilEX
R
G0
SAVE 1 $2.COM

with a subsequent SUBMIT command:

SUBMI'r SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by oo·r which is sent the command lines
"IX.HEX" "R" and "G0" thus returning to the CCP. The final command
"SAVE l Y .COM'' is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not re~uire the XSUB, unless an intervening
cold start has occurred. Note th3t XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

Ka
yp
roJ
ou
rna
l

d. BDOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take olace in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register oair DE. Single byte
values are returned in register A, with double oyte values returned in
HL (for reasons of compatibility, register A= Land register B = H
uoon return in all cases). A list ot CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numoers.

.J Sys tern Reset
l Console Inout
2 Console Out9ut
3 Reader Input
4 Puncn Out9ut
5 List Outout
6* Direct Console I/0
7 Get I/0 ayte
a Set I/0 Byte
9 Pr int String

10* Read Console Buffer
11 Get Console Status
12* Return version Number
13 Reset Disk System
14 Select Disk
15* Qi:,en File
16 Close File
17* Search for First
18* Search for Next

19*
20
21
22*
23*
24*
25
26
27
28*
29*
30*
31*
32*
33*
34*
35*
36*

Delete File
Read Sequential
write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set OMA Address
Get Addr (Alloc)
write Protect Disk
Get Addr(R/0 vector)
Set File Attrioutes
Get Addr(Disk Parms)
Set/Get user Code
Read Random
i'lr i te Random
Comoute File Size
Set Pandow Pecord

(Functions 2~, 29, and 32 snould be avoided in application programs to
maintain uoward comoatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/0.

Direct Console I/0 is supported under CP/'·1 2.0 for those
aoolications where it is necessary to avoid tne i3DOS console I/0
operations. Programs whicn currently perfor,n direct I/0 tnrougn tne
3IOS should be cnanged to use direct I/0 under 8D0S so that they can
be fully sutJported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the inout value is FF, then function 6 returns A= 30
if no character is ready, otherwise A contains the next console input
character.

If the inout value in Eis not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Ka
yp
roJ
ou
rna
l

Function 10: Read Console Buffer.

The console buffer read ooeration remains uncnanged except that
console line editing is supported, as described in Section 2. Note
also that certain functions which return the carriage to the lettmost
oosition (e.g., ctl-X) do so only to tne column position where the
prompt ended (oreviously, the carriage returned to the extreme left
margin). This new convention makes operator data input and line
correcti~~ more legible.

Function 12: Return Version Number.

Function 12 has been redefined to orovide information wnich
allows version-independent orogramming (this was previously the "lift
head" function whicn returned HL=0000 in version 1.4, but Performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases Previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. using function 12, for examole, you can
write a~Plication orograms whicn orovide both sequential and random
access functions, with random access disabled when operating under
early releases ot CP/M.

In the tile ooerations described below, DE addresses a file
control olock (FCB). Further, all directory operations take olace in
a reserved area which does not affect write butters as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
comoatiPility is required.

The file Control 3locK (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
tne file is accessea randomly. The default file control Plock
normally located at J05Crl can be usea for random access files, since
oytes 007Drl, 007Erl, and 007Frl are available for tnis ourpose. For
notational ourposes, the FCB format is shown with the following
fielas:

(All Information Contained Herein is Proorietary to Digital Research.)

13

Ka
yp
roJ
ou
rna
l

ldrlfllf21/ /lf8ltllt21t3lexlslls2lrcld01/ /ldnlcrlr0lrllr21

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

ar arive coae (0 - 16)
0 => use default drive for file
l => auto disk select drive A,
2 => auto disk select drive a,
. . .
16=> auto disk select drive P.

fl ... i8 contain the file name in ASCII
uoper case, with hign bit= 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit= 0
tl', t2', and t3' denote the
bit ot these oositions,
tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range ~ - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

re record count for extent "ex,"
takes on values from 0 - 128

d0 ... dn filled-in by CP/M, reserved for
system use

er current record to read or write in
a sequential file ooeration, normally
set to zero by user

r0,rl,r2 optional random record number in the
range ~-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high oyte rl

Function 15: Open File.

rne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

Ka
yp
roJ
ou
rna
l

cnecks to assure comPliance. rhus, the byte is cleared to ensure
uPward comPatioility witn the latest version, where it is required.

Function 17: Search for First.

Search First scans the directory for a match with the file given
oy tne FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is Present. In the case
tnat the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is Ax 32 (i.e., rotate the A register left S oits, or ADO A
five times). Altnough not normally required for aPolication programs,
the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
aPPlication oroqrams, out does allow complete flexioility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to the Searcn First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contadn ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot oe ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Ka
yp
roJ
ou
rna
l

Function 22: Make File.

The Make File ooeration is identical to orevious versions of
CP/M, except that oyte s2 is zeroed upon entry to the 3DOS.

Function 23: Rename File.

The Actions of the file rename functions are
previous releases except that the value 255 is returned
function is unsuccessful (the file to rename could not
otherwise a value in the range 0 to 3 is returnee.

Function 24: Return Login Vector.

the same as
if the r enarne

be found) ,

The login vector value returned oy CP/M 2 .. 0 is a 16-bit value in
rlL, where the least significant bit of L corresponds to the first
drive A, and the nigh order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: Write Protect Current Disk.

The
protection
the disk,
rnessage

disk write orotect function provides temoorary write
for the currently selected disk. Any attemot to write to

before the next cold or warm start ooeration oroduces the

Bdos Err on d: R/O

Function 29: Get R/O Vector.

Function 29 returns a bit vector in register oair HL which
indicates drives which have the temoorary read/only cit set. Similar
to function 24, the least significant oit corresponds to drive A,
while the most significant bit corresponds to drive P. ·rhe R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M whicn detect cnanged disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
aopropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

Ka
yp
roJ
ou
rna
l

matcn, and changes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not oresently used, but
may be useful for applications orograms, since they are not involved
in the matching orocess during file open and close ooerations.
Indicators t5' tnrough fd' and t3' are reserved for future system
exoansion.

Function 31: Get IJisK Parameter Slock Address.

·rhe address of the BIOS resident disk J:>arameter block is
returned in HL as a result of this function call. This address can be
used tor either of two purposes. First, the disk Parameter values can
be extracted for display and sJ:>ace computation ourposes, or transient
programs can dynamically change the values of current disk oarameters
when the disk environment changes, if required. Normally, aoolication
Programs will not require this facility.

Function 32: Set or Get User Code.

An apolication orogram can change or interrogate the currently
active user number by calling function 32. If register 8 = FF
nex.:iuecimal, tnen tne value of the .current user number is returned in
register A, where the value is in the range J to 31. If register 8 is
not FF, then the current user number is changed to the value of£
(modulo 32).

Function 33: Read Random.

·rhe Reaa Random function is similar to the sequential tile read
operation of orevious releases, except that the read ooeration takes
olace at a particular record numoer, selected by the 24-bit value
constructed from the three oyte field following the FCB (oyte
oositions r0 at 33, rl at 34, and r2 at 3$). Note that the sequence
ot 24 oits is stored with least significant oyte first (r0), middle
oyte next (rl), and high byte last (r2). CP/M release 2.0 does nut
reference byte r2, except in computing the size of a tile (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treAted as a
double-byte, or ''word" value, which contains the record to read. This
value ranges from 0 to 65535, proviaing access to any particular
record of the cl megabyte file. In order to orocess a file using
random access, the base extent (extent u) must first oe opened.
Altnough the oase extent may or may not contain any allocated data,
this ensures tnat the file is oroperly recorded in the directory, and
is visible in DIR reauests. The selected record number is then stored
into the random recoid field (i0,rl), and the BOOS is called to read
the record. Uoon return from the call. register A either contains an

(All Information Contained Herein is Proprietary to uigital Research.)

17

Ka
yp
roJ
ou
rna
l

error cocie, as listed below, or the value 30 indicating the ooeration
was successful. In the latter case, the current DMA address contains
tne randomly accessed record. tlote that contrary to the sequential
reaa operation, tne record number is not advanced. Tnus, subsequent
random i:ead operations continue to read the same record.

upon each random read operation, the logical extent and current
record values are automatically set. 'l'hus, the file can Pe
sequentially read or written, starting from the current randomly
accessed oosition. t,ote, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, anci the last record will be re-written as you switch
to a sequential write ooeration. You can, of course, simoly advance
the random record oosition following eacn random read or write to
ootain the effect of a sequential I/O operation.

Error codes returned in re9ister A following a random read are
listed below.

01 reading unwritten data
02 (not returneo in random mode)
J3 cannot close current extent
J4 seeK to unwritten extent
0S (not returnea in reac.t mode)
0G seek past onysical end of disK

trror co~e ~1 and ~4 occur wnen a random reao operation accesses a
data olocK whicn has not oeen previously written, or an extent which
nas not been created, whicn are equivalent conditions. Error 3 does
not normally occur under orooer system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as tne disk is
not physically write orotected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can oe treated as missing data, witn zero return codes
indicating ooeration comolete.

~'unction 34: ,1rite Random.

·rhe write Random ooeration is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write nas not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the rando~ record number is not changed as a result of the
write. The logical extent number and current record oositions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is eitner read or rewritten again as the
sequential operation begins. You can also simply advance the random
record oosition following each write to get the effect of a sequential
write operation. Note that in oarticular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is ~roprietary to Digital Research.)

18

Ka
yp
roJ
ou
rna
l

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2 • " •

The error codes returned
random read operation with
indicates that a new extent
overflow.

by a random write are identical to the
the addition ot error code 05, which
cannot be created due to directory

Function 35: Compute File Size.

when computing the size of a file, the DE register pair
addresses an FC3 in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name wnich is used in
the directory scan. upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file. it, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes rJ and rl
constitute a 16-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be aooended to the end of an existing file oy simply
calling function 35 to set the random record position to the end of
file, tnen oertorming a sequence of random writes starting at the
preset record address.

·rne virtual size of a file corresponds to the physical size when
the tile is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data i"s actually allocated.

Function 36·: Set Random. Record.

'l'he Set Random Record function causes the
produce the random record position from a file
written sequentially to a oarticular point.
useful in two ways.

BOOS to automatically
which nas been read or
The function can be

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is callee to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
·rhe scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

Ka
yp
roJ
ou
rna
l

involved since the orogram need only store the buffer-relative
position along witn the key and record number in order to find
exact starting position of the keyed aata at a later time.

byte
the

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a oarticular ooint in tne file, function 36
is called whicn sets the record number, and subsequent random read and
write oPerations continue from the selected point in the file.

This section is concluded with a rather extensive, but comolete
example of random access ooeration. The program listed below oertorms
the simole function ot reading or writing random recoras upon command
from the terminal. Given that the program has been created,
ass<'JTibled, and placed into a file labelled RA,{D0:-1.COM, the CCf> level
Cl'"· ·-'"Id:

RANDOM X. DA'r

starts the test program. The program looks for a file by tne
X.DAT (in this Particular case) and, if found, proceeds to Promot
console for input. If not found, the file is created oefore
prompt is given. Each 9rompt takes the form

next command?

name
the
the

and is followed by operator inr,,ut, terminated by a carriage return.
The inout commands take the form

nw nR Q

where n is an integer value in the range J to 65535, and W, R, and Q
are simple comcnand characters correspondinq to random write, random
read, and quit processing, resoectively. If the W command is issued,
tne RANDOM program issues the prompt

type data:

·rhe operator then resoonds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and disPlays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
la~el "ready" where the individual commands are interoreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. ·rhe utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

Ka
yp
roJ
ou
rna
l

whicn contain the
~his particular
Processing, and
development.

Principal inout line processor,
program shows the elements of
can be used as the basis for

called
random
further

"readc."
access

orogram

0Hl0

0000 =
0005 =

0001 =
0002 =
0009 =
000a =
J J,ic =
;J00f =
rJ.110 =
0016 =
J1121 =
d022 =

005c =
007d =
007f =
0080 =

000d =
0 00a =

0100 3lbc0

0103 0e0c
0105 cd05f0
0HJ8 fe20
010a d2160

0Hld lllb0
0110 cdda~
.3113 c3000

• * •
;* samPle random access proqram for cP/m 2.0

*
* • * * ' ·*** •

reboot
bdos

conin?
conout
ostring
rs tr ing
version
openf
closef
makef
r:2a0r
writer

fco
ranrec
ranovf
buff

er
lf
;

org

eau
eau

egu
equ
equ
equ
eau
equ
egu
eau
equ
eau

eau
equ
eau
equ

equ
equ

100h

00 00h
ll005h

1
2
9
10
12
15
16
22
33
34

00Sch
fcb+3 3
fco+3 5
0080h

0dh
0ah

;base of toa

;system reboot
;odos entry poinc

;console inout function
;console outout function
;print string until '$'
;read console ouffer
;return version number
;file open function
;close function
;make file function
;read random
;write random

;default file control block
;random record oosition
;high order (overflow) byte
; buf.fer address

;carriage return
;line feed

•*** ' • * * ' ;* load SP, set-uo file for random access *
• * * •
·*** •

lxi so,stack

version 2.0?
mvi c,version
call bdos
cpi 20h ;version 2.0 or better?
jnc ve rsok
baa version, message and go back
lxi d ,badver
call or int
jmo reboot

versok:
correct version for random access

(All Information Contained Herein is Proorietary to Digital Research.)

21

Ka
yp
roJ
ou
rna
l

~116 0e0f
011a 115c0
011b cd0 50
0 lle 3c
~ 11 f c2370

0122 ,Jel6
0124 l l 5c0
Jl27 cd050
012a 3c
·Jl:fo c2370

J l2e 113aJ
~ 131 cdda0
iJ l 3 4 c30JJ

0137 c ae:i 0
013a 2Z-idtl
013d 217fG
Jl40 36Jkl
Jl42 fe51
0144 c2560

0147 0el0
0149 115c0
014c cdil ~0
0 l4f 3c
:C,150 cab90
0153 c3000

01S6 fe5 7
0158 c2890

015b 11460
J 15e cdda0

mvi c,ooenf ;ooen default fcb
lxi d, fcb
call bdos
inr a ;err 255 becomes zero
jnz reaay

cannot open file, so create it
mvi c,makef
lxi d,fco
call bdos
inr a ;err 255 becomes zero
j nz ready

cannot create file, directory full
lxi d,nospace
call or int
jmo reboot ;back to ccp

;
•*** • . " • . " • looo back to "ready" after each command

"
* . " " ' ·*** ' ;

ready:
file is ready for orocessing

call
snld
lxi
mvi
coi
j nz

quit
rnvi
lxi
call
inr
jz
imo

readcom ;read next command
ranrec ;store input record#
h,ranovf
m,0 ;clear high byte if set
'Q' ;quit?
notq

processing, close file
c,closef
d, fco
bdos
a ;err 255 becomes 0
error ;error message, retry
reboot ;back to cco

•
·*** ,
. " " ,
;" end of quit command, orocess write *
• " * ' •*** ' notg:

not the quit command, random write?
cpi
jnz

this
lxi
call

'W'
notw

is a random write, fill buffer until er
d ,datmsg
orint ;data prompt

(All Information Contained Herein is Proprietary to Digital Research.)

22

Ka
yp
roJ
ou
rna
l

Jl61 Je7f
0163 21800

0166 c:i
0167 e5
>:.I 168 cdc20
0160 el
016c cl
016d fe~id
016t ca780

0172 77
0173 23
0174 iJ d
0175 c2660

'117d 3600

017a 0e22
017c 115c0
0 l 7f cd050
0 ld 2 b7
>1ld3 c2b90
J lot c3J}cl

0ltl9 fe52
018b c2b90

018e 0e21
0190 11Sc0
0193 cdi'JS0
0196 b7
0197 c2b90

019a cdcf0
019d 0e80
019 f 21800

llla2 7e
0la3 23
0la4 e67f
0la6 ca370
0la9 cs
0laa es

mvi c,127 i UJ? to 127 characters
lxi h,outf ;destination

r loop: ; read next character to buff
ousn b ;save counter
push h ;next destination
call getchr ;cnaracter to a
pop h ;restore counter
000 b ;restore next to fill
coi er ;end of 1 ine?
jz er loop
not end, store character
mov m,a
inx h ;next to fill
lier C ;counter goes down
jnz rloop ; end of ouffer?

er loop:
end of read lOOJ?, store 00
mvi m, cl

write the record to selected record number
mvi c,writer
lxi d, fcb
call bdos
ora a ;error code zero?
jnz error ; message if not
jmp ready ;for another record

•
•*** ' • * ' ;* end of write command, orocess read
·* '

*
*
"

•*** ' notw:
not a write command, read record?
coi 'R'
jnz error ;skip if not

read random record
mvi c,readr
lxi d, fcb
call bdos
ora a ;return code 00?
jnz error

read was successful, write to console
call er lf ; new line
mvi c,128 ;max 12 tl characters
lxi h,buff ; next to get

wloop:
mov a,m ;next character
inx h ;next to get
ani 7fh ;mask parity
jz ready ;for another command if 00
push b ; save counter
push h ; save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

Ka
yp
roJ
ou
rna
l

,Hab fe20
0lad d4ci30
0lb0 el
0 lbl cl
0lb2 0d
0lb3 c2a20
0lb6 c3370

0lb9 11590
0lbc cdda0
0lbf c3370

0lc2 0e01
0lc4 cd0 50
0lc7 c9

0lc8 Iii eiu 2
lllca 5f
0lcb cd050
,Hee c9

0 lcf 3e0d
0ldl cdc80
0 ld4 3e0a
0ld6 cdc80
0ld9 c9

0lda d5
0ldb cdcf0
0lde dl
0ldf 0e09
0lel cd050
0 le4 c9

cpi ;graphic?
enc putcnr ;skip output if not
pop n
pop D
dcr C : coun t=count-1
jnz wloop
jmp ready . ,

•*** ,
• * ,
:* end of read command, all errors end-uo here
• * ,

*
*
*

·*** ,

err or:
lxi
call
jmo

d,errmsg
print
ready

:
·*** ,
• * ,
:* utility subroutines for console i/o

*
*

• * * ,
·*** ,
getchr:

putchr:

:
er lf:

:
print:

.
' readcom:

: read
mvi
call
ret

;write
mvi
mov
call
ret

;send
mvi
call
mvi
call
ret

;print
push
call
pop
mvi
call
ret

next console character to a
c,coninp
bdos

character from a to console
c,conout
e,a ;character to send
bdos ;send character

carriage return line feed
a,cr ;carriage return
putchr
a,lf ;line feed
~rntchr

the buffer addressed by de until$
d
crlf
d ;new line
c,pstring
bdos ;print the string

(All Information Contained Herein is Proprietary to Digital Research.)

24

Ka
yp
roJ
ou
rna
l

0le5 116b0
0le8 cddalJ
0leb 0e0a
k'.lled 117al1
0lt0 cd050

0lf3 21000
0lf6 117c0

; read
lxi
call
mvi
lxi
call

the next command line to tne conbuf
d,orompt

command
lxi
lxi

or int ; command?
c,rstrinq
d,conbuf
bdos ;read command line
line is oresent, scan it
h,0 ;start with 0000
d,conlin;command line

0lf9 la readc: ldax d ;next command cnaracter
,:Jlfa 13
0ltb b7
:illfc c8

fllfd d631J
0ltf fe0a
0201 d2130

0204 29
02ti5 4d
02k'.16 44
0207 29
020d 29
0209 09
0 20a 8 5
J2~o or
020c d2t9.J
J20t 24
021., c3f'i0

0213 c630
0215 febl
J217 dB

02ltl e65f
021a c':l

0 210 536f79

fl 2 3a 4e6f29

0 24d 547970

iJ 25 9 457272

0260 4e6570

endrd:

inx
ora
rz

d ;to next command oosition
a ;cannot oe end of command

not zero, nu~eric?
sui 'fl'
coi 10 ;carry if numeric
jnc
add-in
dad
mov
mov
dad
dad
dad
add
'110V

Jnc
inr
j mD

endrd
next digit

n ; *2
c,l
b,n
h
h
b

1
l,a
readc
h
readc

;be= value* 2
;*4
; * cl
;*2 + *8 = *10
;+digit

;for another char
; over flow
;for another char

end of reaa, restore value in a
adi '0' ;command
coi I a• ; trarislate case?
re
lower case, mask lower case bits
ani 101$11110
ret

;
·*** ' • * * ' ;* string data area for console messages *
• • • ' ·*** ' oadver:

nosoace:

datmsg:

errmsg:

oromot:

db

db

db

db

db

'sorry, you need co/m version 2$'

'no directory space$'

'type data: $'

'error, try again.$'

'next command?$'

(All Information Contained Herein is Proprietary to Digital Research.)

25

Ka
yp
roJ
ou
rna
l

0 27a 21
~ 27b
O 27c
J021 =

J 29c

J 2bc

. " ' ;* fixed and variable data area
*
*

• * * ' ·*** ... ****************************•****************** ' con bu f: db conlen ;length of console buffer
consiz: ds 1 ;resulting size after read
conlin: ds 32 ;length 32 buffer
conlen egu $-consiz

ds 32 ;16 level stack
stack:

end

(All Information Contained Herein is Proprietary to Digital Research.)

26

Ka
yp
roJ
ou
rna
l

~- CP/M 2.0 MEMORY ORGANIZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, deJJendi ng upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Module 20k 24k 32k 48k 64k
CCP 3400H 4400H 6400H A400H E400H
BOOS 3C00H 4C00H 6C00tl AC00H EC00H
BIOS 4A00H 5A00H 7A0~H BA00tl FA0ilH
·rop of Ram 4FFFH SFFFH 7FFFtl BFFFH FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MDS-800 with standard Ii3M d ·• floppy disk drives. The disk
layout is shown below:

Sector Track 00 Module ·rr ack i:Jl Module
1 (Bootstrap Loader) 4080H BOOS + 480H
2 3400H CCP + 000H 4100H BDOS + 500H
3 34i:l0rl CCP + 08~H 4180tl BOOS + 580H
4 35JOrl CCP + 100H 4230H SOOS + 600i:I
5 35d~H CCP + 18JH 42d0H BOOS + 680n
6 360~rl CCP + 200H 4300H BDOS + 700H
7 3680H CCP + 2808 4380H BOOS+ 780H
tl 3/~~d CCP + 3 0 .JH 440.IH BOOS + 800H
~ 3780rl CCP + 3 8 0rl 4480H BOOS + 8tHJH

10 381'Ji1rl CCP + 400H 4500H 8D0S + 900H
11 38J,;H CCP + 480H 4580H BDOS + 980H
12 3900H CCP + 500H 4600H BOOS + A00H
13 3980H CCP + 580H 4680H BDOS + A80H
14 3A00H CCJ? + 600H 4700H BOOS+ B00H
15 3A80H CCP + 680H 4780H BOOS + Bd0H
16 3B00H CCP + 700if 4800H BOOS + C00H
17 3880H CCP + 7 80H 4880H BOOS + C80H
18 3C00H BOOS + 0 00H 4900H BOOS + 000H
19 3C80H BOOS + 080H 4980H BOOS + D80tl
20 3D00H BOOS + 100H 4A00H BIOS + 000H
21 3D80H BOOS + ld0H 4A80H BIOS + 080H
22 3E00H BOOS + 200H 4B00H BIOS + 100H
23 3E80H BOOS + 280H 4B80H BIOS + 180H
24 3F00H BOOS + 300H 4C00H BIOS + 200H
25 3F80H BOOS + 380H 4C80H BIOS + 280H
26 4000H BOOS + 400H 4D00tl BIOS+ 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the BOOS is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

Ka
yp
roJ
ou
rna
l

10. BIOS DIFFERENCES.

·rhe CP/M 2.0 Basic I/0 System differs only slightly in concept
from its oredecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. The skeletal form of these
cnanges are found in the program shown below.

1:
2 :
3 :
4:
5:
6:
7:
tl :
9:

HJ:
11:
12:
13:
14:
15:
16:
17:
ld:
19:
21'.l:
21:
2 2:
2 3:
24:
2 5:
26:
27:
2a:
29:
30:
31:
3 2:
33:
34:
3 5:
3 6:
3 7:
38:
39:
40:
41:
4 2:
4 3:
44:
45:
46:
4 7:

bpb
rpb
maxo

boot:
;
listst:

;
seldsk:

. •
selsec:

org
maclio
jmp ...

40J0h
diskdef
boot

listst ;list status
sectran ;sector translate
4

jmp
jmp
disks
large
eau
equ

capacity drive

egu
dis kdef
diskdef
diskdef
di sKde f

ret

xra
ret

; drive
lxi
mov
coi
rnc
proper
mov
dad
dad
daa
dad
lxi
dad
ret

16"1024 ;bytes per block
bpb/128 ;records per block
65535/roo ;max block number
0,l,58,3,bpo,maxb+l,128,0,2
1,1,58,,bpb,maxb+l,128,0,2
2,0
3,1

;noi;,

a ; nop

number in c
h,0 ;0000 in hl oroduces select error
a,c ;a is disk number 0 ... ndisks-1
ndisks ;less than ndisks?

;return with BL= 0000 if not
disk number, return dob element address

l,c
h ; "2
h ;*4
h ; *8
h ; *16
d,dpbase
d ;HL=.dpb

;sector number inc
lxi h,sector
mov m,c
ret

sectran:
;translate
xchg
dad b

sector BC using table at DE
;HL = .tran
;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

Ka
yp
roJ
ou
rna
l

413: dad b
49: mov
SJ: fill
51: ret
5 2:
53: sector: ds
54: endef
55: end

again
l ,m

botn H

l

it double precision tran
;only low byte necessary here

and L if douole nrecision tran
;HL = ??ss

Referring to the program shown above, lines 3-6 rePresent the
BIOS entry vector of 17 elements (version 1,4 defines only 15 jumo
vector elements). Tne last two elements orovide access to the
"LIS·rs•r" (List Status) entry point for DESPOOL. ·rhe use of this
particular entry point is defined in the OESPOOL documentation, and is
no different tnan tne Previous 1.4 release. It should be noted that
tne 1.4 DESPOOL orogram will not oPerate under version 2,1!, out an
uodate version will be availaole from Digital Research in the near
future.

The "SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a aIOS-resident sector translation
suoroutine, This mechanism allows the user to soecify the sector skew
factor and translation for a Particular disk system, and is described
below.

A macro library is shown in the listing, called DISt<DEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro liorary, it greatly simPlifies the disk
detinition process. You must have access to tne MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library 1s
incluaed with all CP/M 2.0 distribution disks. (See the CP/M 2,0
Alteration Guide for formulas which you can use to hand-code the
taoles produced Dy the DISKDEF liorary).

A BIOS disk definition consists of the following sequence of
macro statements:

MACLif3 DISKDEF
......
DISKS n
DISKDEF 0 , ...
DISK DEF 1, ...
.
DISKDEF n-1
......
ENDEF

where the MACLI3 statement loads the DISKDEF.LIB file (on the same
disk as your dIOS) into MAC's internal tables, ·rhe DISKS macro call
follows, which specifies the number of drives to be configured with
vour system, where n is an integer in the range l to 16. A series of
OISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-1 (corresPonding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

Ka
yp
roJ
ou
rna
l

fixed data taoles, and thus must oe olaced in a non-executable portion
of your BIOS, typically directly following the 8IOS jumP vector.

The remaining portion
DISKOEF macros, with the
t:ND statement. The ENDEF
necessary uninitialized RAM

of your BIOS is defined following the
ENDEF macro call immediately preceding the

(t:nd of Diskdef) macro generates the
areas which are located above your 8IOS.

The form of the OISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, 0 to n-1
fsc is the first ohysical sector number (0 or l)
lsc is the last sector number
SKf is the optional sector sKew factor
ols is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ots is the track offset to logical track 00
(0 l is an ootional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation. 'rhe "fsc" parameter accounts for differing sector
numoerinq systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. When oresent, the ··skf'' parameter defines
the sector skew factor which is used to create a sector translation
taole according to the skew. If the numoer of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf oarameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and tqe BIOS-resident ram space is reduced. ·rhe "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, tnen the total disk capacity is 2,~48,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of ''dir" is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically 0, since the probability
of cnanging disks without a restart is quite low. 'l.'he "ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

Ka
yp
roJ
ou
rna
l

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [0] parameter is included when file
comoatibility is required with versions of 1.4 which have been
modified for higher density disks. ·rhis oarameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions. Normally, this oarameter is not included.

For convenience and economy of taole soace, the special form

DI.:3KDEF i,j

gives disk i tne same characteristics as a previously defined drive j.
A standard four-drive single density system, which is comoatible with
version 1.4, is defined using the following macro invocations:

DISKS
DISKDEF
DISK DEF
OISKDEF
DISKOEF

ENDEF

4
0,l,26,6,1024,243,64,64,2
1,0
2 , il
3,0

with all disKs having the same oarameter values of 26 sectors oer
track (numoered 1 tnrough 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data clocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

rhe definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives 0 and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disK revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address OPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE
DPE0:
DPEl:
DPE2:
DPE3:

EQU
ow
ow
ow
ow

$
XLT0,0000H,0000H,0000H,DIRBUF,DP33,CSV0,ALV0
XLT0,0000H,0000H,0000H,OIRBUF,DPB0,CSV1,ALV1
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk oarameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT0,
which is the translation vector for drive 0 in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

Ka
yp
roJ
ou
rna
l

followed by three 16-bit "scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address. The check and allocation
vector addresses are generated by the ENOEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELOSK subroutine to return the address of
the selected disk parameter header (DPE0, OPE!, OPE2, or OPE3, in the
above example) in register HL. If SELOSK returns the value HL =
0000H, then the BOOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CP/M 2.0 SELOSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
the BOOS, and set to skip six sectors between eacn read. Due
differing rotational SPeeds of various disks, the translation function
has become a 9art of the BIOS in version 2. ~. ·rhus, the BDOS sends
sequential sector numbers to SECTRAN, starting at sector number J.
·rhe SECTRAN subroutine uses the sequential sector number to Produce a
translated sector numoer which is returned to the 8D0S. The BOOS
suoseauently sends thE translated sector number to SELSEC before the
actual read or write is Performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In this case, the "skf" Parameter
is omitted in the macro call, and SECTRAN simPly returns the same
value which it receives. The table shown below, for examPle, is
constructed when the standard skew factor skf = 6 is specified in the
DISKOEF macro call:

XLT0: DB
DB

l,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. Tne sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (8 = 00 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresoonding to the first element of a disk parameter
header (XL•l'fl in the case snown above). The SEC'l'RAN subroutine then
fetches the translated sector number by adding the input sector number
to tne base of the translate taPle, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). 'l'he value at
this location is then returned in register L. Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL.

Following the ENOEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

Ka
yp
roJ
ou
rna
l

which is loaded uoon cold start, but nust be available between the
BIOS and the end bf memory. The size of the uninitialized RAM area is
determined by EQU statements generated by tn2 ElWi::F macro. For a
standard four-drive system, tne ENDEF macro mignt oroduce

4C72 =

4Di30 =
013C =

BEGDl',r EQU $
(data areas)
ENDOA·r EQU $
DA'I'SIZ EQU $-i3EGDA'r

whicn indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occupies 013CH oytes. tou must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Informa.tion is orovided by the BOOS
on sector write operations whicn eliminates the need for pre-read
operations, thus allowing clocking and deblocking to take olace at the
310S level.

See the "CP/M 2.0 Alteration Guide" for additional details
concerning tailoring your CP/M system to vour particular hardware.

(All Information Contained Herein .is Proprietary to Digital Research.)

33

Ka
yp
roJ
ou
rna
l

(j]] Cl~B~Tfll RESEflRCH®
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (cl 1979

DIGITAL RESEARCH

Ka
yp
roJ
ou
rna
l

Copyright

Copyright (cl 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
anv language or computer language. in anv form or bv anv
means, electronic, mechanical. magnetic, optical, chemical,
manual or otherwise, without the prior written oermiss;on of
Digital Research, Post Office Box 579, Pacific Grove,
California 113950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specWcally disclaims anv
implied warranties of merchantability or fitness for anv parti­
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Tmdemarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

Ka
yp
roJ
ou
rna
l

1. Introduction

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove., California

2. First Level System Regeneration

3. Second Level System Generation

4. Sample Getsys and Putsys Programs

5. Diskette Organization

6. The BIOS Entry Points

7 . A Sample BIOS

8. A Sample Cold Start Loader

9. Reserved Locations in Page Zero

10. Disk Parameter Tables

11. The DISKDEF Macro Library

12. Sector Blocking and Deblocking

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E .
Appendix F
Appendix G

1

2

6

10

12

14

21

22

23

25

. ' . 30

34

36
39
50
56
59
61
66

Ka
yp
roJ
ou
rna
l

1. INTRODUC'rION

'rne standard CJ?/M system assumes operation on an Intel 11os-a0e;
microcomouter development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can oroduce a diskette
whicn operates with any IBM-3741 format comoatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disKs, field-alteration features allow adaotation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"nard aisK" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floooy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may wisn to briefly review t11e system generation process, and skip to
1ater sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
tnree distinct modules:

!3IOS - Dasie I/0 system which is environ,oent dependent
BOOS - Dasie disk operating system which is not dependent

upon the hardware configuration
CCJ? - the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
nardware. That is, the user can "patch" the distribution version of
CJ?/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
rhe purpose of this document is to provide a step-by-step procedure
for patcning your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, whicn brings the
operating system into memory. In order to paten the new BIOS into
CJ?/M, the user must write tne reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. J?UTSYS can
be derived from GBTSYS by changing the disk read commands into disk
write commands. Sample skeletal GE·rSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is J?roprietary to Digital Research.)

1

Ka
yp
roJ
ou
rna
l

2. FIRS'l' LEVEL SYSTEM REGENERA'l'I0N

I'he procedure to follow to paten tne Cf'/i1 syste;n is given below in
several steps. Address references in each step are shown with a
following "H" whici1 denotes the hexadecimal radix, and are given for a
20K Cf'/M system. For larger CP/M systems, add a "bias" to each
adaress whicn is snown witn a "+b" tallowing it, where b is equal to
tne memory size - 20K. Values for bin various standard memory sizes
are

24K: b = 24K - 20K = 4K = 10 ,HlH
3 2K: 0 = 32K 20K = 12K = 3000H
40K: 0 = 40K - 20K = 20K = 50~0H
4 dK: b = 48K - 20K = 28K = 7000B
S 6K: b = 56K - 20K = 36K = ':100JH
6 2K: b = 62K 20K = 42K = A800H
64K: b = 64K - 20K = 44K = t3000H

Note: The standard distribution version of CP/M is set for
ooeration within a 20K memory system. Therefore, you must first bring
U? the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write
first two tracks of a diskette into
must begin at location 33dijH.
location 1008 (oase of the TPA),
Appendix d.

a GETSYS orogram
memory. The data

Code GE·rSYS so
as shown in the

which reads the
from the diskette
that it starts at

first 9art of

(2) ·l'est tne GE·.i'SYS orogram by reaaing a blanK diskette into
memory, and checK to see that the data has been read properly, and
that tne diskette has not been altered in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see if GETSYS loads CP/M starting at 3380H (tne operating system
actually starts 12d bytes later at 3400H).

(4) Review Sect ion 4 and write the
memory starting at 33808 back onto
diskette. 'l'he f'U'l'SYS program should be
the second part of Appendix D.

PU"l'SYS program
the first two

located at 200H,

which writes
tracks of the
as shown in

(5) Test the f'UTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GE·rSYS. ·rest PUTSYS comoletely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Aopendix B, and write a simole version
which performs a similar function for the customized environment. Use
the program given in Appendix Casa model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is f'roprietary to Digital Researcn.)

2

Ka
yp
roJ
ou
rna
l

(7) Test CBIOS comoletely to ensure that it oroPerly performs
console character I/0 and disK reads and writes. ae especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patcned.

(d) Referring to Figure l in Section 5, note tnat the 3IOS is
placed between locations 4Au0H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). ·rhis replacement is done in the memory of
the machine, and will be Placed on the diskette in the next step.

(!1) Use PU·rSYS to 9lace the patcned memory image of CP/M onto the
first two tracks of a blanK diskette for testing.

(lH) Use GETSYS to bring tne copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if oossible, before the load).
Upon successful load, brancn to the cold start code at location 4A00H.
The cold start routine will initialize 9age zero, then jumo to the CCP
at location 3400H which will call the BDOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>", the system oromot.

When you make it tnis far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breaKpoint your CBIOS.

(11) UJ:Jon completion of step (10), CP/:1 has oromoted the console
for a command input. Test the disk write qoeration by typing

SAVE l X.COM

(recall that all commands must be followed by a carriage return).

CP/M should resl)Ond with another prompt (after several disk accesses):

A>

It it does not, deoug your disK write functions and retry.

(12) Then test the directory command by typing

DIR

CP/M should respond witi1

A: X COM

(13) Test tne erase command by typing

ERA X. C0i1

(All Information Contained Herein is Proprietary to Digital Research.)

3

Ka
yp
roJ
ou
rna
l

CP/M should resoond with the A oromot.
snoulct have an operational system wnich
loader to function comoletely.

~hen vou make it this far,-you
will only require a bootstrao

(i4) 11rite a oootstrap loader which is similar to GE'l'SYS, ana
place it on track 0, sector 1 using PUTSYS (again using the test
diskette, not the distrioution diskette). See Sections 5 and d for
more information on the oootstrap operation.

(lS) Retest tne new test diskette witn tne bootstrap loader
installed oy executing steps (11), (12), anct (13). uoon comoletion ot
these tests, tyoe a control-C (control and c keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A promot.

(16) At this ooint, you orobably have a good version of your
customized CP/M system on your test diskette. use GETSYS to load CP/M
trom your test diskette. Remove the test diskette, place tne
distribution diskette (or a legal copy) into the drive, and use PU'rSYS
to reolace the distribution version by your customized version. Do
not make this replacement if you are unsure ot your patch since this
step destroys the system which was sent to you from Digital Research.

(1 7) Load your modified CP /M system and test it by typing

DIR

CP/,1 snould resoond with a list of tiles wnicn are provided on the
initialized disKette. One such file should be the memory image tor
the debugger, called DDT.CO:!.

NO·rE: from now on, it is imoortant tnat you always reooot tne CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
ov anotner diskette, unless the new diskette is to oe read only.

(lb) Load and test the debugger oy tvping

DD'l'

(see the document "CP/M Dynamic Debugging Tool (DDT)" for ooerating
oroceaures. You should take tne time to become familiar with DDT, it
will oe your oest iriend in later steps.

(1~) 3efore making furtner CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
orograms using ED, ASii, and oo·r. Code and test a COPY orogram which
does a sector-to-sector cooy from one diskette to another to obtain
oack-up cooies of the original aiskette (~OTE: reaa your CP/M
Licensing Agreement: it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), l':17~
Digital Research

(All Information Contained Herein is Proorietary to Digital Researcn.)

4

Ka
yp
roJ
ou
rna
l

on eacn copy whicn is made witn your COPY program.

(20) Modify your CBIOS to include the extra functions for
9uncnes, readers, signon messages, and so-forth, and add the
facilities tor a aaditional disk drives, if desired. You can make
these cnanges with the GETSYS and PUTSYS programs which you have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now nave a good copy of tne customized CP/M system. Note that
although the CBIOS portion of CP/M which you have develooed belongs to
you, tne modified version of CP/M which you have created canoe copied
for your use only (again, reaa your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
otner CP/M systems, (assuming media compatiolity, of course) which
allows transfer of non-Proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

Ka
yp
roJ
ou
rna
l

3. SECOND LEVEL SYSTEM GENERATION

l'<DW that you have tne CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/i1 witn the "t-lOVCPM" proqram (system relocator) and
olace this memory image into a named aisk tile. Tne disk file can then
be loaaed, examined, patcned, and replaced using the deougger, and
system generation program. For further details on the operation of
these programs, see the ''Guide to CP/M Features and Facilities"
:nanual.

Your CBIOS and BOOT canoe modified using ED, and assembled using
ASM, proaucing files called CBIOS.HEX and aOOT.HEX, whicn contain the
macnine code tor CBIOS and oOOT in Intel hex format.

To get the memory image of CP/M into the rPA configured for the
desired memory size, give the command:

MOVCPM xx*

wnere ''xx" is the memory size in decimal K oytes (e.g., 32 for 32K).
·rhe resoonse will oe:

CONS'rRLJC'i'ING xxK CP /M VERS 2. 0
RE/'IDY FOR "SYSGEN" OR
''SAVE 34 CPMxx.COM"

At this ooint, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 0900H through
227FH. (i.e., The BOOT is at 0Y00H, the CCP is at 980H, the BOOS
starts at lld0H, and the BIOS is at 1F80H.) Note that the memory
image nas the standard MDS-80~ BIOS ana BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your csros and csoo·r into it:

SAVE 34 CPMxx.COM

·rhe memory image created by the "MOVCPM" orogram is offset oy a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image canoe subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM

DDT should respond with

NEXT
2300

PC
0100

Load DDT, then read the CPM
image

('rhe DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

Ka
yp
roJ
ou
rna
l

portions of the memory image oetween 900H and 227FH. Note, however,
that to tind any oarticular address within the memory image, you must
apply the negative bias to the C?/M address to find the actual
address. Track 0~, sector 01 is loaded to location ':i0~H (you should
tind tne cold start loaaer at ':Hl0H to ':i7FH), track 00, sector li2 is
loaded into 980H (this is the base ot the CCP), and so-forth through
tne entire CP/M system loaa. In a 20K system, for examole, the CC?
resides at the CP/~ address 3400H, but is olaced into memory at 980H
oy the SYSGEN program. rhus, the negative bias, aenoted by n,
satisfies

3400H + n = 980H, or n = ~8JH - 3400H

Assuming two"s comolement aritnmetic, n = 0:,80H, which can be cnecked
by

3400H + D580H = 10980H = 0980H (ignoring nigh-order
overflow).

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = D580H - b.

The value of n for common CP/'1 systems is given below

'llemory size bias b negative offset n

20K
24K
32K
40K
4 8K
56K
62K
64K

Assume, for examole, that
memory image loaded under

0~00H
1000H
3000H
5000H
7000H
9000H
Ad fHlH
BJ00H

you want to
DDT in a 20K

D580H - k'J00'1H = D5d0H
D580H - l00JH = C580H
D580H - 3000H = A580H
0580H - 5000H = 85801:i
D580H - 7.J00H = 6580H
0530H - 9008H = 4580il
D580H - AB 0 k'Jrl = 2D80H
D580H - 3000H = 258Jl:i

locate the address X within
system. First type

Hx,n Hexadecimal sum and difference

the

and DOT will respond with the value of x+n (sum) and x-n (difference).
The first number orinted by DDT will be the actual memory address in
tne image where the data or code will be found. The inout

H3400,D580

for example, will oroduce 380H as the sum, which is wnere the CCP is
located in tne memory image under DDT.

Use tne L command to disassemole portions tne 3IOS located at
(4A00H+o)-n which, when you use the H command, oroduces an actual
address of 1F80H. The disassembly command would.thus be

(All Information Contained ilerein is Proorietary to Digital Research.)

7

Ka
yp
roJ
ou
rna
l

LlF80

It is now necessary to oatch
BOOT resides at location
load address is "n", then to

H900,n

in your CBOOT and CBIOS
0900H in the memory image.
calculate the oias {m) use

routines. ·rhe
If the actual

the command:

Subtract load address from
target address.

The second number tyoed in response to the command is the desired bias
{m). for example, if your BOOT executes at "080H, tne command:

H90tl,80

will re[)ly

0980 0880 Sum and difference in hex.

Therefore, the bias "m" would be 0880H. To read-in the BOOT, give the
command:

ICBOOT.HEX

Then:

Rm

You may now examine your CBOOT with:

L900

Input file CBOOT.HEX

Read CBOOT with a bias of
m {=90r:lH-n)

we are now ready to replace tne CBIOS. Examine
where the original version of the CBIOS resides.

the area
Then type

at lf80H

ICBibS.HEX Ready the "hex" file for loading

assume that your CBIOS is Deing integrated into a 20K CP/M system, and
thus is origineJ at location 4A00H. In order to properly locate the
CBIOS in tne memory image under DDT, we must apply the negative Dias n
for a 20K system when loading the hex file. This is accomplished oy
typing

RD58~ Read the file with bias D580H

Upon completion of the read, re-examine the area where the CBIOS has
Deen loaded {use an "Llf80" command), to ensure that is was loaded
properly. When you are satisfied that the change has Deen made,
return from DD'r using a control-C or "G0" command.

Now use SYSGEN to replace the patched memory image Dack onto a
diskette {use a test diskette until you are sure of your patch), as
shown in the following interaction

{All Information Contained Herein is Proprietary to Digital Research.)

a

Ka
yp
roJ
ou
rna
l

SYSGEN
SYSGEN VERSION 2.0
SOURCE DRIVE NAME (OR

DESTINATION DRIVE NAME

DESTINATION ON B, THEN

FUNCTION COMPLETE

Start the SYSGEN program
Sign-on message from SYSGEN

RE'rURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
(OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.
TYPE RETURN
Place a scratch diskette in
drive B, then type return.

DESTINATION DRIVE NAME (OR RETURl~ ·ro REBOOT)

~lace the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

9

Ka
yp
roJ
ou
rna
l

4. SAMPLE GE·rSYS IUD PLJTSY3 PROGRAMS

Tne following orogram provides a framework for the GE'1'SYS and
PUTSYS programs referenced in Section 2. The READSEC and 1,RITESEC
subroutines must be inserted by the user to read and write the
soecific sectors.

GETSi'S PROGRAM -
REGISTER

READ rRACKS 0 AND 1 ·ro (1EMORY AT 3380H

A
B
C
DE
HL
SP

USE
(SCRA·i'CH REGISTER)
TRACK COUNT (0, 1)
SEC1'0R COLJN'f (1,2, .•• ,26)
(SCRA·rCrl REGISTER ?AIR)
LOAD ADDRESS
SET TO STACK ADDRESS

S1'AR1': LXI SP,3380H ;SET s·rACK POIN•fER ·ro SCRATCH AREA

LXI H • 338<JH ;SE"r BASE LOAD ADDRESS

Ml/I 8, 0 ;START 1HTH TRACK 0

RD·rRK: ;REAU t, EX'l' TRACK (I!H'i'IALLi'

£-IV I C,l ;READ STARTING wI·rH SEC'l'OR

RDSEC: ;READ NEX'f SECTOR
CALL READS EC ;USER-SUPPLIED SUBROUTINE

LXI D,128 ;MOVE LOAD ADDRESS ·ro NEXT

JAD D ;HL HL + 128
I ,,R C ; SEC'fOR = SEC'l'OR + 1
;,J,JV A,C ;CHECK fOR END OF ·rRACK

CPI 2. 7
JC RDSEC ; CARRY GENERA'I'ED IF SECTOR

ARRIVE HERE AT END OF ·rRACK, MOVE ·ro NEXT ·rRACK

INR 8
MOV A,B ; ·rES'r fOR LAS'r TRACK

CPI 2
JC RD'rRK ;CARRY GENEt<Al'ED If

ARRIVE HERE A'f END OF LOAD, HAL'f FOR l~OW
HLT

USE:R-SLJPPLIED SUBROUTINE TO READ THE DISK
READS EC:

ENTER WITH TRACK NUMBER IN REGISTER 8,
SECTOR NUMBER IN REGISTER C, Alm
ADDRESS TO FILL IN HL

·rRACK

PUSrl
PUSH

B
rl

;SAVE a AND C REGISTERS
;SAVE HL REGISTERS ..

perform disk read at this ooint, branch to

laoel S'fAR'r if an error occurs ..
; RECOVER HL

<

POP
POP
RE"r

H
B ;RECOVER BAND C REGISTERS

;BACK TO MAIN PROGRAM

END START

,l)

1

1/2 PAGE

< 27

2

(All Information Contained Herein is Proprietary to Digital Research.)

llJ

Ka
yp
roJ
ou
rna
l

l,ote that this program is assembled and listed in
reference ourooses, with an assumed origin of lJBH.
operation codes wnicn are listed on the left may be
program has to be entered through your macnine's front

Ai;ioendix C for
'rhe hexadecimal
useful if the
i;ianel switcnes.

·rhe PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. '£he register pair !lL oecome the dump address (next
address to write), and operations uoon these registers do not change
witnin the program. The READSEC subroutine is reolaced by a WRI'rESEC
subroutine which oerforms the oooosite function: data from address HL
is written to the track given oy register B and sector given oy
register C. It is often usetul to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proorietary to Digital Research.)

11

Ka
yp
roJ
ou
rna
l

5. DISKE'£TE ORGANIZATIOliJ

The sector allocation for the standard distribution version of
CF/~ is given here for reference ourooses. The first sector (see
table on the following page} contains an optional software boot
section. Disk controllers are often set uo to bring track 0, sector 1
into memory at a specific location (often location 0000H}. The
program in this sector, called BOO·r, has the resoonsibility ot
bringing the remaining sectors into memory starting at location
3400tl+b. If your controller does not have a built-in sector loau, you
can ignore the program in track 0, sector l, and begin the load trom
track J sector 2 to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track w, sector 1 into aosolute address 300~H. uoon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks 0, and all of
track l into memory, starting at 340WH+o. Tne user should note that
this bootstrap loader is of little use in a non-~DS environment,
althougn it is useful to examine it since some of the boot actions
will have to oe duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Ka
yp
roJ
ou
rna
l

Tr ack1t Sector# J?ageil Memory Address Ct'/l'I Module name
--

'1 0 01 (boot address) Cold Start Loader

--
~0 02 0" 3400H+o CCP

03 3480H+b
vl 4 01 35i!l0H+rJ
05 358.JH+o
iJ 6 02 3600H+b
07 3680H+b
08 03 3701/JH+o
0~ 3 780H+b

,, 10 04 38Ui1H+b
11 381:HlH+b
12 ;;5 3900H+b
13 39il0il+b
14 06 3A00H+b
15 3A80H+b
16 07 3B00il+o

00 17 3B80H+b CCP
--

~0 l tl 01:l 3C00H+b BDOS
19 ,, 3C80H+b
20 09 3D00H+b
21 3D80il+o
22 10 3E00H+o
23 3E80H+b
24 11 3F00H+b "
25 3F80fl+b
26 12 4iHHJH+o

01 (11 " 4080H+b
~2 13 4100H+b "
03 4180H+b
04 14 4200H+b
05 4280H+b
06 15 4300H+b
07 4380H+o "
08 16 440ijH+b
09 4480H+b
10 17 4500H+b "
11 4580H+b
12 l tl 4600H+b
13 4680H+b
14 19 4700H+b
15 4780H+b

,, 16 20 4800H+b
17 4880H+b
18 21 4900H+b "

01 19 4980H+b BDOS

01 20 22 4A00H+b BIOS
21 4A80H+b "
23 23 4B00H+b "
24 4B80H+b "
25 24 4C00H+b

01 26 4C80H+b BIOS

0 2-76 01-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

Ka
yp
roJ
ou
rna
l

6. rHE BIOS ENTRY POINTS

The entry po1·nts • t th BIO f in o e S rom the cold start loader and BOOS
ace """""·led below Entry to the BIOS is through a "jump vector"
locat~d at 4A00H+o, as shown below (see Aooendices a ana"c, "as well).
The jump vector is a sequence of 17 jumo instructions which send
orogram control to the individual BIOS subroutines. The BIOS
subroutines may be emQty for certain functions (i.e., they mav contain
d single RET operation) during regeneration of CP/M, but the entries
must be oresent in tne jumo vector.

The jumo vector at 4All0H+b takes the form shown below, where the
individual jumo addresses are given to tne left:

4AiHIH+o J ,'IP BOO'!' ARRIVE HERE FROM COLD START LOAD
4A~3cl+o Ji··IP wBOO'i' ARRIVE HERE FOR WAR~! s·rART
4A<J6tl+b JMP COt>JST CHi,CK FOR CONSOLE CHAR REAOY
4A09H+b JMP COiUtl READ CONSOLE CHARACTER IN
4A0CH+b Ji'\P CONOUT ,.RITE COi~SOLE CHARAC'rER OU'i'
4AJFtl+O JMP LIST WRI·rE LISTING CHARAC'rER OUT
4Al 2ti+b ,J:-IP PUNCH ; wRI'i'E CHARACTER TO PUl'lCH DEVICE
4Al5H+O JMP READER READ READER DEVICE
4Aldt!+o JMP HOME MOVE ·ro TRACK 00 ON SELECTED DISK
4 .'U Sd + :i J t!P SELDSK SELECT DISK uRIVE
4A1Etl+o J:-!P SET"rRK SE·r 'i'RACK NUMSER
4A21H+o J1'1P SE:TSBC S E·r SECrOR l~UMBER
4A24H+o JMP SETOMA SE'r Dl1A ADDRESS
4A27iHb JMP READ READ S ELEC'rED SECrOR
4A2Atl+O JMP wRI"rE ,~RI"rE SELEC-rEo SECTOR
4A2DH+b JMP LIS'i'S·l' RE'l'URN LIS·r STA·rus
4A30H+b JMP S8CTRAN SECTOR TRANSLATE SUBROUTINE

Each jumo address corresponds to a particular subroutine which
performs tne specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
whicn results from calls on BOOT and WBOOT, simple character I/0
performed by calls on CONS·r, CONIN, CONOU'l', LIST, PUNCH, READER, and
LISTS'r, and diskette I/0 oerformed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/0 operations are assumed to be performed in
ASCII, upper and lower case, with high order (oarity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (lAH). Peripneral devices are seen bi CP/M as "logical"
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOU•r subroutines (LIST, PUt~CH, and READER may be used oy PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14

Ka
yp
roJ
ou
rna
l

Tne characteristics of each device are

CONSOLE

LIS'I'

f'UNCH

READER

The princioal interactive console wnich communicates
with the operator, accessed through CONST, CONIN, ana
CONOUT. Tyoically, tne CONSOLE is a device such as a
CRT or Teletype.

The princioal listing device, if it exists on your
system, whicn is usually a hard-copy device, such as a
printer or Teletype.

Tne princioal taoe punching device, if it exists, which
is normally a high-speed caper tape punch or Teletype.

The principal tape reading device, such as a simple
optical reader or Teletype.

Note that a single periPheral can be assigned as
tne LIST, PU,-JCH, ano READER device simultaneously. If
no periPheral device is assigned as the LIST, f'UNCH, or
READER device, the CBIOS created oy the user :nay qive
an appropriate error message so that the system does
not ''hang" if the device is accessed by PIP or some
other user orogram. Alternately, the PUNCH and LIST
routines can just simoly return, and the READER routine
can return with a lAH (ctl-Z) in reg A to indicate
immediate end-of-file.

For addea flexibility, the user can ootionally
implement the ''I03YTE'' tunction wnicn allows
reassignment of ohysical and logical devices. The
IOBY·TE function creates a mapping of logical to
physical devices wnicn can be altered auring CP/M
processing (see the STAT cor.imanc). ·rhe definition of
tl1e IOBY·rE function corresoonds to the Intel standard
as follows: a single location in memory (currently
location b0il3H) is maintainea, called IOBYTE, wnich
defines the logical to ohysical device mapping which is
in effect at a particular time. Tne mapping is
oerformed Dy splitting the IOBYTE into four distinct
tielas ot two bits eacn, callee the CONSOLE, READER,
PUl<CH, and LIST fields, as shown below:

most significant

IOBYTE AT 0003il I LIS·:r I f'Ut~CH

least significant

I READER I CONSOLE I

oits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can De in the range 0-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

Ka
yp
roJ
ou
rna
l

CONSOLE field (bits 0,1)
0 - console is assigned to tne console orinter device (TTY:)
1 console is assigned to the CRT device (CRT:)
2 batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 user defined console device (UCl:)

READER
0
1
2
3

PUNCH
0
1
2
3

field (bits 2,3)
- READER is the 'reletype device (TTY:)

READER is the high-soeed reader device (RDR:)
user defined reader# 1 (URl:)
user defined reader# 2 (UR2:)

field (bits 4,5)
- ?UNCH is the Teletype device (TTY:)
- ?UNCH is the niqh speed ounch device (?UN:)
- user defined punch# 1 (UPl:)
- user defined ounch # 2 (UP2:)

LIST field (bits 6,7)
0 - LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - u3er defined list device (ULl:)

Note again that the imolementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. tlo CP/M systems use the IOBY'fE (although they
tolerate the existence of the IOBYTE at location
i/JI003H), except for PIP which allows access to the
physical devices, and S'rA·l' whicil allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guide"). In any case, the IOBYTE
imolementation should be omitted until your basic CBIOS
is fully implemented and tested; tnen add the IOBYTE to
increase your facilities.

Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/0 operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected OMA address oefore the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRI'fE operations are oerformed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

Ka
yp
roJ
ou
rna
l

wsoo·r

CONST

CONIN

l-lote that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually pertorm the track 00 seek, depending upon
your controller characteristics; the important ooint is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SET;rRK with a parameter ot 00.

rhe exact responsibilites of eacn entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsiole tor basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point. 'fhe various system parameters whicn are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
orogram branches to location 0000H, or when the CPU is
reset from the front panel. 'fhe CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini­
tialized as shown below:

location 0,1,2 set to JMP WBOO-r for warm starts
(0000H: JMP 4A03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BOOS, which is the
primary entry point to CP/M for
transient programs. (0005H: JMP
3C0 6H+b)

(see Section 9 tor complete details of page zero use)
Upon completion of the initializatio~. the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Uoon entry to the CCP, register C is set
to the drive to select after system initialization.

Sample the status of the currently assigned console
device and return 0FFH in register A if a character is
ready to read, and 00H in register A if no console
characters are reaay.

Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

Ka
yp
roJ
ou
rna
l

CONOUT

LIST

READER

rlOME

SELDSK

set the Parity oit (nigh order bit) to zero. If no
console character is.ready, wait until a character is
typea oetore returning.

Sena the character from register C to the console
output device. The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (sucn as a TI Silent 700 terminal). You
can, if you wisn, filter out control characters which
cause your console device to react in a strange way (a
control-z causes tne Lear Seigler terminal to clear
the screen, for examole).

Send the character
assigned listing
with zero parity.

from register C to the currently
device. The character is in ASCII

Send the cnaracter from register C to the currently
assigned ouncn device. The character is in ASCII with
zero J'.larity.

Read the next character from the currently assigned
reader device into register A with zero oarity (high
order oit must oe zero), an end of file condition is
reJ'.lorted by returning an ASCII control-z (!AH).

Return the disk head of the currently selected disk
(initially disk A) to the track J0 oosition. If your
controller allows access to the track 0 flag from the
arive, step the heaa until the track ~ flag is
detectea. If your controller does not suoport this
feature, you can translate the HOME call into a call
on SE'l'TRK wi tn a oarameter of 0.

Select the disk drive given by register C for further
ooerations, wnere register C contains 0 for drive A, l
f~r drive B, and ;o-forth uJ'.l to 15 for drive P (the
standard CP/M distribution version suoports four
drives). On each disk sele8t, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 10. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If tnere is an
attempt to select a non-existent drive, SELDSK returns
rlL=0000H as an error indicator. Although SELDSK must
return the header address on eacn call, it is
advisaole to oostpone the actual ohysical disk select
operation until an I/0 function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

Ka
yp
roJ
ou
rna
l

SE'l'TRK

S E'l'SEC

SE'l'DMA

READ

wRITE

Defore selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for suoseauent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register 8C can take on values in the range
0-76 corresoonding to valid track numoers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems.

Register BC contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this ooint, or instead delay sector
selection until a read or write operation occurs.

Register 3C contains the OMA (disk memory access)
address for subsequent react or write operations. For
examole, if B = 00H and C = 80H when SETDMA is called,
then all suoseguent read operations read their data
into B0H through 0fFH, and all subsequent write
ooerations aet their data from 60H through 0FFH, until
the next call to SE'l'DMA occurs. '£he initial DMA
aaaress is assumed to be cl0H. Note that the
controller need not actually suoport direct memory
access. If, for example, all data is received and
sent through I/0 oorts, the CBIOS which you construct
will use the 12d byte area starting at the selected
DMA address for the memory buffer during the following
read or write ooerations.

Assuming the drive has been selectea, the track has
Deen set, the sector nas been set, and the DMA aadress
has oeen specified, the KEAD subroutine attemots to
read one sector based upon these parameters, and
returns the following error codes in register A:

0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as tne return coae. That is, if the value in
register A is 0 then CP/M assumes that the ctisK
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see if the error is recoverable. When an error is
reported the BDOS will print the message "BOOS ERR ON
x: BAD SECTOR". ·rhe operator then has the option of
typing <er> to ignore the error, or ctl-C to abort.

Write the data from the currently selected OMA address
to the currently selected drive, track, and sector.
The data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

Ka
yp
roJ
ou
rna
l

SEC1"RAN

maintain compatibility with other CP/M systems. ·rhe
error codes given in the REAO command are returned in
register A, with error recovery attemPts as descrioed
above.

Return the ready status of the list device. Used by
tne OESPOOL program to imProve console resPonse during
its operation. The value 00 is returned in A if the
list aevice is not reaav to accent a character, and
0FFH if a character ca~ be sent to the Printer. Note
that a 00 value always suffices.

~ertorms sector logical to physical sector translation
in orde.r to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "skew factor"
of 6, where six physical sectors are skipped between
each logical rea6 operation. This skew factor allows
enough time oetween sectors for most programs to load
their buffers witnout missing the next sector. In
particular comouter systems which use fast processors,
memory, and disk subsvstems, the skew factor may be
cnanged to imorove overall response. Note, however,
that you should maintain a single density IBM
comoatible version of Cf>/M tor information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAis receives a logical
sector number in BC, and a translate table address in
OE. ~he sector number is used as an index into the
translate taole, with the resulting physical sector
number in rlL. For standara systems, the tables and
indexing code is orovided in the CBIOS and need not be
cnanged.

(All Information Contained Herein is Proprietary to Digital Research.)

20

Ka
yp
roJ
ou
rna
l

l. A SAMPLE BIOS

'£he program shown in Aopendix C can serve as a basis for your
first BIOS. The simolest functions are assumed in this BIOS, so that
you can enter it through the front oanel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
COt•S'l', CONil•, CONOUT, READ, ,~RITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in i:>age zero {see Section 9) for the BIOS is used in thiE,
orogram, so that it could be ir.mlemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to orint
the initial sign-on message and perform better error recovery. The
suoroutines for LIST, f>UNCH, and READER can be filled-out, and the
IOBYTE tunction can be imolemented.

{All Information Contained Herein is Proprietary to Digital Research.)

21

Ka
yp
roJ
ou
rna
l

d. A SAMPLE COLD s·rART LOADER

·rhe program shown in Appendix ,:; can serve as a basis for your cold
start loader. The disk read tunction must De supplied by the user,
ana the program must De loaded somehow starting at location 1:1000.
Note tnat soace is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will 9r0Dably want to get this loaaer onto the first disk sector
(tracK ~. sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place tne cold start loaaer into ROM, anu place it above the CP/M
system. In this case, it will oe necessary to originate the program
at a nigner address, and key-in a jump instruction at system start-up
whicn orancnes to the loader. Subsequent warm starts will not require
this key-in ooeration, since the entry point 'viBOO'l" gets control,
thus orinqing the system in from disk automatically. Note also that
the skeletal cola start loader has minimal error recovery, which may
oe enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.)

22

Ka
yp
roJ
ou
rna
l

9. RESERVED LOCATIO,rn HI PAGE ZERO

Main memory page zero, between locations 00H ana UFFH, contains
several segments of code ana data which are used during CP/il
processing. The code and data areas are given below for reference
puri:,oses.

Locations
from to
0000tl - 0002H

0003H - 0003H

0004tl - Ll004tl

0005H - 0007H

0.J08H - 0027H

0030H 0037H

0038H - 003AH

0 03BH

0 0 4 0tl

li03FH

004FH

0050H - 0058H

f.105CH - 007CH

007DH- 007FH

Contents

Contains a jumo instruction to the warm start
entry ooint at location 4A03H+o. This allows a
simole programmed restart (JMP 000JH) or manual
restart from the front oanel.

Contains the Intel standaro IOBYTE,
optionally included in the user's
described in Section 6.

whicn is
CBIOS, as

Current default drive number (0=A ,1S=P).

Contains a jumo instruction to the BDOS,and
serves two purposes: J~P 0005H orovi6es the
primary entry point to the BOOS, as described in
the manual "CP/M Interface Guiae,· and LHLD
0006H brings the address field of tne
instruction to the HL register pair. This value
is the lowest aadress in memory used by CP/:1
(assuming the CCP is being overlayed). t~ote
that the DDT orogram will cnanqe the address
field to reflect the reduced memory size in
debug mode.

(interruot locations 1 through 5 not used)

(interrupt location 6, not currently used
reserved)

Restart 7 - Contains a jumo instruction into the
DDT or SID orogram when running in deoug mode
for orogrammed breakooints, but is not otherwise
used by CP/M.

(not currently used - reserved)

16 byte area reserved for scratcn by CBIOS, but
is not used for any puroose in the distribution
version of CP/M

(not currently used - reserved)

default
transient
Processor.

file control
orogram oy

block produced tor a
the Console Command

Optional default random record oosition

(All Information Contained Herein is Proorietary to Digital Research.)

23

Ka
yp
roJ
ou
rna
l

0080H - 00FFH default 12d ovte disk buffer
tne command line wnen a
under the CCP).

(also tilled with
transient is loaaea

Note that tnis intormation is set-uD tor normal ooeration under
the CP/M system, but can be overwritten by a transient orogram if the
BDOS facilities are not required by the transient.

If, for example, a particular program oertorms only simole I/0 and
must oegin execution at location~. it can be first loaaea into the
i'J?A, using normal CJ?/M facilities, witn a small 11emory move program
which gets control wnen loadea (the memory move program must get
control tram location 010HH, which is the assumed beginning of all
transient programs). 'l'he move program can then proceed to mov.e the
entire memory image down to location 0, ana pass control to the
starting address ot the memory loaa. ~ote that if the BIOS is
overwritten, or if location~ (containing the warm start entry ooint)
is overwritten, then the programmer must orinq the CJ?/M system Dack
into memory witn a cola start sequence.

(All Information Contained Herein is Proorietary to Digital Research.)

24

Ka
yp
roJ
ou
rna
l

10. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte)
parameter header which both contains information about the disk
and provides a scratchpad area for certain BDOS operations.
format of the disk parameter header for each drive is shown below

disk
drive

The

Disk Parameter Header

XL·r I 0000 I 0000 I 0000 IDIRBUFI DPB csv ALV

16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XL'l'

0000

DIRBUF

DPB

csv

ALV

Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

Scratchpad values for use within the BDOS (initial
value is unimportant).

Address of
operations
scratchpad

a 128 byte scratchpad area for directory
within BDOS. All DPH's address the same

area.

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPH.

Address of a scratchpad area used by the BDOS to keep
disk storage allocation information. This address is
different for each DPH.

Given
of 16
drive

n disk drives, the DPH's are arranged in a table whose first row
bytes corresponds to drive 0, with the last row corresponding to
n-1. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

Ka
yp
roJ
ou
rna
l

DPBASE:

00 IXL·r 001 0000 I 0000 I 0000 IDIRBUFIDBP 00ICSV 00IALV 001

01 IXLT 011 0000 I 0000 I 0000 IDIRBUFIDBP 01ICSV 01IALV 011

(and so-forth through)

n-llXLTn-11 0000 I 0000 I 0000 IDIR8UFIDBPn-llCSVn-llALVn-ll

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a 0000H returned if the
selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
......
SELDSK:

;SELECT DISK GIVEN BY BC
LXI H,0000H ; ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW(DISK)
MOV H,B ;HIGH(DISK)
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1. The Disk
Parameter Block (DPB) for each drive is more comi:,lex. A i:iarticular
DPB, which is addressed by one or more DPH's, takes the general form

SPT IBSHIBLMIEXMI DSM DRM IAL01AL11 CKS OFF

16b Sb Bb Bb 16b 16b Sb Bb 16b 16b

where each is a byte or word value, as shown by the "Sb" or "16b"
indicator below the field.

SPT

BSH

is the total number of sectors per track

is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

26

Ka
yp
roJ
ou
rna
l

EXM

DSM

ORM

CKS

OFF

is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

detP.rmines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive AL0,AL1 determine reserved
directory blocks.

is the size of the directory check vector

is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM> 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+l) is the total number of bytes held by the drive and, of course,
must be within the capacity of the Physical disk, not counting the
reserved operating system tracks. •

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value. The values of AL0 and ALl,
however, are determined by DRM. The two values AL0 and ALl can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

Ka
yp
roJ
ou
rna
l

AL0 ALl

---------------------------·---------------------

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low order bit of the byte
labelled ALl. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times# bits
64 times# bits
128 times# bits
256 times# bits
512 times# bits

Thus, if ORM= 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries oer block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALl = 00H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where ORM is the last directory
entry number. If the media is fixed, then set CKS = 0 (no directory
records are checked in this case).

Finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks
beginning of the physical disk. This

added whenever SETTRK is called, and can be
skipping reserved operating system tracks,
large disk into smaller segmented sections.

which are
value is
used as a

or for

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
F~rther, the DPB can be dynamically changed when a new drive is
addressed by simoly changing the pointer in the DPH since the BOOS
copies the DPB values to a local area whenever the SELDSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unioue for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+l)/4, then you must reserve (DRM+l)/4 bytes for
directory check use. If CKS = 0, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

Ka
yp
roJ
ou
rna
l

The size of the area addressed
maximum number of data blocks allowed
computed as (DSM/8)+1.

by ALV is determined by the
for this particular disk, and is

The CBIOS shown in Appendix C demonstrates an instance
tables for standard 8" single density drives. It may be
examine this program, and compare the tabular values
definitions given above.

of these
useful to
with the

(All Information Contained Herein is Proprietary to Digital Research.)

29

Ka
yp
roJ
ou
rna
l

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0 , •••
DISKDEF 1 , ...
......
DISKDEF n-1
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-1 (corresponding to logical drives A
through P). N~te that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, 0 to n-1
fsc is the first physical sector number (0 or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0 l is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

30

Ka
yp
roJ
ou
rna
l

macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The ''dks"
specifies the total disk size in "bls" unit~. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of ''dir" is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is auite
low. The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

Ka
yp
roJ
ou
rna
l

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
0,l,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors per
track • (numbered 1 through 26) , with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table aadress DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE
DPE0:
DPEl:
DPE2:
DPE3:

EQU
DW
DW
DW
DW

$
XLT0,000~H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
XL'r0, 0 000H, 0 0 00H, 0000H ,DIRBUF ,DPB0, CSV2, ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH laoels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
0000H, and simply returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPH's. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

l,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

Ka
yp
roJ
ou
rna
l

4C72 =

4DB0 =
013C =

BEGDAT EQU $
(data areas)
ENDDAT EQU $
DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, ... ,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved Tracks

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values (the last
a-megabyte system).

DISKDEF 0,l,58,,2046,256,128,128,2

shown below
produces a

r=4096, k=512, d=l28, c=l28, e=256, b=l6, s=58, t=2

DISKDEF 0,l,58,,2048,1024,300,0,2
r=l6384, k=2048, d=300, c=0, e=l28, b=l6, s=58, t=2

DISKDEF 0,l,58,,16384,512,128,128,2
r=65536, k=8192, d=l28, c=l28, e=l024, b=l28, s=58, t=2

with
full

(All Information Contained Herein is Proprietary to Digital Research.)

33

Ka
yp
roJ
ou
rna
l

12. SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BOOS
includes information which allows effective sector blocking and
deblocking where the host disk subsys':.em has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BOOS information to perform the operations automatically.

Upon each call to WRITE, the BOOS provides the following
information in register C:

0
1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write ooeration is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since ore-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

'I'he entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk·at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of your
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

Ka
yp
roJ
ou
rna
l

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector
number). You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% imorovement in overall resoonse.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors. This is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

Ka
yp
roJ
ou
rna
l

APPENDIX A: THE MDS COLD START LOADER

MDS-800 Cold Start Loader for CP/M 2.0

Version 2.0 August, 1979

0000 =
ff ff =
0000 =

0000 =

0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
0031 =
0019 =
0018 =

f800 =
f f0f =
0078 =
0079 =
007b =
007f =

0078 =
0079 =
007a =
00ff =
0003 =
0004 =
0100 =

. •
false
true
testing

bias

bias

cpmb
bdos
bdose
boot
rboot

•
bdosl
ntrks
bdoss
bdos0
bdosl
,

equ
equ
equ

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

org

equ
equ
egu
equ
ecru

mon80 equ
rmon80 equ
base equ
rtype equ
rbyte equ
reset equ
;
dstat equ
ilow equ
ih igh egu
bsw equ
recal equ
readt equ
stack equ

rstart:
3000 310001 lxi

clear
3003 db79 in
3005 db7b in

3007 dbf f

1~~g e~~130

; check
colds tart:

in
ani
)OZ

0
not false
false

testing
03400h

not testing
0000h

bias
806h+bias
1880h+bias
1600h+bias
boot+3

;base of dos load
;entry to dos for calls
;end of dos load
;cold start entry point
;warm start entry point

3000h ;loaded here by hardware

bdose-cpmb
2 ; tracks to read
bdosl/128 ;# sectors in bdos

;# on track 0 25
bdoss-bdos0 ;# on track 1

0f800h
0ff0fh
078h
base+l
base+3
base+?

base
base+l
base+2
0ffh
3h
4h
100h

;intel monitor base
;restart location for mon80
;'base' used by controller
; result type
;result byte
;reset controller

;disk status port
;low iopb address
;high iopb address
; boot switch
;recalibrate selected drive
;disk read function
;use end of boot for stack

sp,stack;in case of call to mon80
disk status

rtype
rbyte

if boot switc 11 is off

bsw
02hd t t•switch on? coI s ar

36

Ka
yp
roJ
ou
rna
l

300e d37f

3010 0602
3012 214230

3015 7d
3016 d379
3018 7c
3019 d37a

.
' ;

start:

301b db78 wait0:

j~l~ E~rg30

3022 db79
3024 e603
3026 fe02

3028 d20030

302b db7b

3 0 2d 1 7
302e dc0fff
3031 lf
3032 e6le

3034 c20030

3037 110700
30 3a 19
303b 05
303c c21530

303f c30016

;

;

;

clear the controller
out reset ;logic cleared

mvi
lxi

b,ntrks ;number of tracks to read
h, iopb0

read first/next track into cpmb
mov a,l
out ilow
mov a,h
out ihigh
in dstat
an i 4 .

0 J z wa 1 t

check disk status
in rtype
ani llb
cpi 2

if
enc
endif
if
jnc
endif

in
if not
ral
cc
rar
ani

if
cnz
endif
if
jnz
endif

lxi
dad
dcr
jnz

testing
rmon80 ;go to monitor if 11 or 10

not testing
rstart ;retry the load

rbyte ;i/o complete, check status
ready, then go to mon80

rmon80 ;not ready bit set
;restore

11110b ;overrun/addr err/seek/ere

testing
rmon80 ;go to monitor

not testing
rstart ;retry the load

d, iopbl
d
b
start

; length of iopb
;addressing next iopb
;count down tracks

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

Ka
yp
roJ
ou
rna
l

3042 80 iopb0: db 80h ~ iocw, no update
3043 04 db readf ;read function
3044 19 db bdos0 ;# sectors to read trk 0
3045 00 db 0 ;track 0
3046 02 db 2 ;start with sector 2, trk 0
3047 0000 dw cpmb ;start at base of bdos
0007 = iopbl egu $-iopb0 .

' 3049 80 iopbl: db 80h
304a 04 db readf
304b 18 db bdosl ;sectors to read on track 1
304c 01 db 1 ;track 1
304d 01 db 1 ;sector 1
304e 800c clw cpmb+bdos0*128 ; base of second rd
3050 end

38

Ka
yp
roJ
ou
rna
l

0014 =

4a00
3400 =
3c06 =
1600 =
002c =
0002 =
0004 =
0080 =
000a =

4a00 c3b34a
4a03 c3c34a
4a06 c3614b
4a09 c3644b
4a0c c36a4b

APPENDIX B: THE MOS BASIC I/0 SYSTEM (BIOS)

mds-800 i/o drivers for cp/m 2.0
(four drive single density version)

vers

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

. •

wboote:

version 2.0 august, 1979

equ 20 ;version 2.0

copyright (c) 1979
digital research
box 579, pacific grove
california, 93950

org 4a00h ;base
equ 3400h ;base
eou 3c06h ;base

of bios
of com
of bdos

in 20k system
CCD

in 20k system
equ $-comb ;length (in bytes) of cpm system

cpml/128;number equ
equ
equ
equ
equ

of sectors to load
2 ;number of disk tracks used by
0004h ;address of last logged disk
0080h ;default buffer address
10 ;max retries on disk i/o before

following functions
cold start
warm start (save i/o byte)

perform
boot
wboot
(boot
const

and wboot are the same for mds)
console status

conin
conout
list
punch
reader
home

reg-a= 00 if no character ready
reg-a= ff if ch~racter ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper cape reader in (result to reg-a)
move to track 00

cp

e

(the following calls set-up the io parameter bloc
mds, which is used to perform subsequent reads an
seldsk select disk given by reg-c (0,1,2 ...)
settrk set track address (0 76) for sub r/w
setsec set sector address (1, ... ,26)
setdma set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines
jmp boot
jmp wboot
jmp co·nst
jmp conin
jmp conout

39

Ka
yp
roJ
ou
rna
l

4a0f c36d4b
4al2 c3724b
4al5 c3754b
4al8 c3784b
4alb c37d4b
4ale c3a74b
4a21 c3ac4b
4a24 c3bb4b
4a27 c3cl4b
4a2a c3ca4b
4a2d c3704b
4a30 c3bl4b

4a33+=
4a33+824a00
4a37+000000
4a3b+6e4c73
4a3f+0d4dee
4a43+824a00
4a47+000000
4a4b+6e4c73
4a4f+3c4dld
4a53+824a00
4a57+000000
4a5b+6e4c73
4a5f+6b4d4c
4a63+824a00
4a67+000000
4a6b+6e4c73
4a6f+9a4d7b

4a73+=
4a73+la00
4a75+03
4a 7 6+0 7
4a 7 7+0 0
4a78+f200
4a7a+3fl10
4a7c+c0
4a7d+00
4a7e+l000
4a80HJ200
4a82+=
4a82+01
4a8 3+0 7
4a84+10d
4a85+13
4a86+19
4a87+05
4a88+0b
4a89+11
4a8a+l7
4a8b+03

dpbase
dpe0:

dpel:

dpe2:

dpe3:

dpb0

xlt0

jmp
jmp
jmp
jmp
jmp
jmp
j mi:>
jmp
j mi:>
jmp
j mi:>
jmp

maclib
disks
egu
dw
dw
dw
dw
aw
dw
dw
aw
dw
dw
dw
dw
dw
dw
dw
dw
diskdef
egu
dw
db
db
db
dw
dw
db
db
dw
dw
egu
db
db
db
db
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst ;list status
sectran

diskdef ;load the disk definition library
4 ;four disks
$;base of disk parameter blocks
xlt0,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb0 ;dir buff,parm block
csv0,alv0 ;check, alloc vectors
xltl,0000h ;translate table
0000h,000~h ;scratch area
dirbuf,di:>bl ;dir buff,parm block
csvl,alvl ;check, alloc vectors
xlt2,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb2 ;dir buff,parm block
csv2,alv2 ;check, alloc vectors
xlt3,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb3 ;dir buff,parm block
csv3,alv3 ;check, alloc vectors
0,l,26,6,1024,243,64,64,offset
$;disk i:>arm block
26 ;sec per track
3 ;block shift
7 ;block mask
0 ;extnt mask
242 ;disk size-1
63 ;directory max
192 ;alloc0
0 ;allocl
16 ;check size
2 ;offset
$;translate table
1
7
13
19
25
5
11
17
23
3

40

Ka
yp
roJ
ou
rna
l

4a8c+09
4a8d+0f
4a8e+l5
4a8f+02
4a90+0B
4a91+0e
4a92+14
4a93+la
4a94+06
4a95+0c
4a96+12
4a97+18
4a98+~4
4a99+0a
4a9a+l0
4a9b+l6

4a73+=
00lf+=
0010+=
4a82+=

4a73+=
00lf+=
0010+=
4a82+=

4a73+=
00lf+=
0010+=
4a82+=

00fd =
00fc =
00f3 =
007e =

f800 =
f f0f =
f803 =
f806 =
f809 =
f80c =
f80f =
f812 =

dpbl
alsl
cssl
xltl

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3

db 9
db 15
db 21
db 2
db 8
db 14
db 20
db 26
db 6
db 12
db 18
db 24
db 4
db 10
db 16
db 22
diskdef 1,0
equ dpb0
equ als0
equ css0
equ xlt0
diskdef 2,0
equ dpb0
equ als0
equ css0
equ xlt0
diskdef 3,0
equ dpb0
equ als0
equ css0
equ xlt0
endef occurs at

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table

;equivalent parameters
;same allocation vector size
;same checksum vector size
;same translate table
end of assembly

end of controller - independent code, the rema1n1
are tailored to the particular operating environm
be altered for any system which differs from the

; the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

revrt
intc
icon
inte

;
mon80
rmon80
ci
ri
co
po
lo
csts

we also
equ
equ
equ
equ

assume the mds system has four disk drive
0fdh ;interrupt revert port
0fch ;interrupt mask port
0f3h ;interrupt control port
0111$1110b;enable rst 0(warm boot) ,rst 7

mds
equ
equ
equ
equ
equ
equ
equ
equ

monitor equates
0f800h ;mds monitor
0ff0fh ;restart mon80 (boot error)
0f803h ;console character to reg-a
0f806h ;reader in to reg-a
0f809h ;console char from c to console o
0f80ch ;punch char from c to punch devic
0f80fh ;list from c·to list device
0f812h ;console status 00/ff to register

41

Ka
yp
roJ
ou
rna
l

0078 =
0078 =
0079 =
007b =

0079 =
007a =

0004 =
0006 =
0003 =
0004 =
000d =
000a =

4a9c
4a9f
4aal
4aad
4ab0

4ab3
4ab6
4ab9
4abc
4abd
4ac0

0d0a0a
3 230
6b2043f
3 2 2e30
0d0a00

310001
219c4a
cdd34b
af
320400
c30f4b

4ac3 318000

4ac6 0e0a
4ac8 cs

4ac9 010034
4acc cdbb4b
4acf 0e00
4adl cd7d4b
4ad4 0e00
4ad6 cda74b
4ad9 0e02
4adb cdac4b

4ade cl
4adf 062c

. ,
base
dstat
rtype
rbyte . ,
ilow
ih igh

readf
writf
recal
iordy
er
lf

signon:

boot:

disk ports and commands
egu 78h ;base of disk command

;disk status (input)
;result type (input)
;result byte (input)

io ports
egu base
egu base+!
egu base+3

egu
eau

egu
egu
egu
egu
equ
egu

; s ignon
db
db
db
db
db

;print
(note:
lxi
lxi
call
xra
sta
jmp

base+!
base+2

4h
6h
3h
4h
0dh
0ah

;iopb low address (output)
;iopb high address (output)

;read function
;write function
;recalibrate drive
;i/o finished mask
;carriage return
;line feed

message: xxk cp/m vers y.y
cr,lf,lf
'20' ;sample memory size
'k cp/m vers '
vers/10+'0','.',vers mod 10+'0'
cr,lf,0

signon message and go to ccp
mds boot initialized iobyte at 0003h)

sp,buff+80h
h,signon
prmsg ;print message
a ;clear accumulator
cdisk ;set initially to disk a
gocpm ;go to cp/m

wboot:; loader on track 0, sector 1, which will be skippe
; read cp/m from disk - assuming there is a 128 byt

start.

wboot0:

; .
'

lxi

mvi
push
;enter
lxi
call
mvi
call
mvi
call
mvi
call

sp,buff ;using dma - thus 80 thru ff ok f

c,retry ;max retries
b

here on
b,cpmb
setdma
c,0
seldsk
c,0
settrk
c,2
setsec

error retries
;set dma address to start of disk

;boot from drive 0

;start with track 0
;start reading sector 2

read
pop
mvi

sectors, count nsects to zero
b ;10-error count
b,nsects

42

Ka
yp
roJ
ou
rna
l

4ael
4ae2
4ae5
4ae8
4aeb
4aee
4aef
4af0
4afl
4af4
4af7
4af9

4afc
4aff
4b00
4b01
4b04
4b0 5
4b06
4b07
4b0a
4bilb
4b0c

c5
cdcl4b
c2494b
2a6c4c
118000
19
44
4d
cdbb4b
3a6b4c
fela
da054b

3a6a4c
3c
4f
cda74b
af
3c
4f
cdac4b
cl
05
c2el4a

4b0f f3
4bl0 3el2
4bl2 d3fd
4bl4 af
4bl5 d3fc
4bl 7 3e7e
4bl9 d3fc
4blb af
4blc d3f3

4ble 018000
4b21 cdbb4b

4b24
4b26
4b29
4b2c
4b2f
4b32
4b35
4b38
4b3b
4b3e

3ec3
320000
21034a
220100
320500
21063c
220600
323800
2100f8
223900

rdsec:

rdl:

gocpm:

;read
oush
call
jnz
lhld
lxi
dad
mov
mov
call
lda
cpi

next sector
b ;save sector count
read
booterr
iod
d,128
d
b,h
c,l
setdma
ios
26
rdl

;retry if errors occur
;increment dma address
;sector size
;incremented dma address in hl

;ready for call to set dma

;sector number just read
;read last sector?

jc
must
lda
inr
mov
call
xra
inr
mov
call
pop
dcr
jnz

be sector 26, zero and go to next track
iot ;get track to register a
a
c,a
settrk
a
a
c,a
setsec
b
b
rdsec

;ready for call

;clear sector number
;to next sector
;ready for call

;recall sector count
; done?

done with the load, reset default buffer
; (enter here from cold start boot)
enable rst0 and rsl7
di
mvi
out
xra
out
mvi
out
xra
out

set
lxi
call

a, l 2h
revrt
a
intc
a,inte
intc
a
icon

;initialize command

;cleared
;rst0 and rst7 bits on

;interrupt control

default buffer
b,buff
setdma

address to 80h

reset monitor entry points
a, jmp
0
h,wboote
1 ;jmp wboot at location 00
5
h,bdos
6 ;jmp bdos at location 5

address

mvi
sta
lxi
shld
sta
lxi
shld
sta
lxi
shld
leave

7*8
h,mon80
7*8+1

;jmo to mon80 (may have been chan

iobyte set

43

Ka
yp
roJ
ou
rna
l

Previously selected disk was b, send Parameter to
4b41 3a0400 lda cdisk ;last logged disk number
4b44 4f mov c,a ;send to ccp to log it in
4b45 fb ei
4b46 c30034 jmp cpmb

; error condition occurred, print message and retry

4b49
4b4a
4b4b

4b4e
4b4f

4b52
4b55
4b58

cl
0d
ca524b

c5
c3c94a

215b4b
cdd34b
c30fff

booterr:

booter0:

;
bootmsg:

pop b ;recall counts
dcr C

jz booter0
try again
push b
jmp wboot0

otherwise too many retries
lxi h,bootmsg
cal 1 prmsg
jmp rmon80 ;mds hardware monitor

4b5b 3£626£4 db '?boot',0

const: ; console status to reg-a
(exactly the same as mds call)

4b61 c312f8 jmp csts

4b64 cd03f8
4b67 e67t
4b69 c9

con in: ;console character to reg-a
call ci
ani 7fh ;remove parity bit
ret

;
conout: ;console character from c to console out

4b6a c309f8 jmp co

4b6d c30ff8

4b70 af
4b71 c9

1 i st:

;
listst:

; list device out
(exactly the same as mds call)
jmp lo

;return list status
xra
ret

a
;always not ready

punch: ;punch device out
(exactly the same as mds call)

4b72 c30cf8 jmp po
;
reader: ;reader character in to reg-a
; (exactly the same as mds call)

4b75 c306f8 jmp ri
;
home: ;move to home position

44

Ka
yp
roJ
ou
rna
l

treat as track 00 seek
4b78 0e00 mvi c,0
4b7a c3a74b jmp settrk

;
seldsk: ;select disk given by register C

4b7d 210000 lxi h,0000h ; return 0000 if error
4b80 79 mov a,c
4b81 fe04 cpi ndisks ;too large?
4b83 d0 rnc ; leave hl = 0000

4b84 e602 ani 10b ;00 00 for drive 0,1 and 10 10 fo
4b86 32664c sta dbank ;to select drive bank
4b89 79 mov a,c ; 0 0, 01, 10, 11
4b8a e601 ani lb ;mds has 0,1 at 78, 2,3 at 88
4b8c b7 ora a ;result 00?
4b8d ca924b jz setdr ive
4b90 3e30 mvi a,00110000b ;selects drive 1 in bank

setdrive:
4b92 47 mov b,a ; save the function
4b93 21684c lxi h, iof ;io function
4b96 7e mov a,m
4b97 e6cf ani 11001111b ;mask out disk number
4b99 b0 ora b ;mask in new disk number
4b9a 77 mov m,a ;save it in iopb

18~8 2i00 mov mvi ~:~ ;hl=disk number
4b9e 29 dad h ;*2
4b9f 29 dad h ;*4
4ba0 29 dad h ;*8
4bal 29 dad h ;*16
4ba2 11334a lxi d,dpbase
4ba5 19 dad d ;hl=disk header table address
4ba6 c9 ret

;
settrk: ;set track address given by c

4ba7 216a4c lxi h,iot
4baa 71 mov m,c
4bab c9 ret

;
setsec: ;set sector number given by c

4bac 216b4c lxi h,ios
4baf 71 mov m,c
4bbf0 c9 ret

sectran:
;translate sector be using table at de

4bbl 0600 mvi b,0 ;double precision sector number i
4bb3 eb xchg ;translate table address to hl
4bb4 09 dad b ;translate(sector) address
4bb5 7e mov a,m ;translated sector number to a
4bb6 326b4c sta ios
jggi g~ mo¥ l,a ;return sector number in 1 re . •

setdma: ;set dma address given by regs b,c

45

Ka
yp
roJ
ou
rna
l

4bbb 69
4bbc 60
4bbd 226c4c
4bc0 c9

4bcl
4bc3
4bc6
4bc9

0e04
cde04b
cdf04b
c9

4bca 0e06
4bcc cde04b
4bcf cdf04b
4bd2 c9

4bd3 7e
4bd4 b7
4bd5 cB

4bd6 e5
4bd7 4f
4bd8 cd6a4b
4bdb el
4bdc 23
4bdd c3d34b

4be0 21684c
4be3 7e
4be4 e6f8
4be6 bl
4be7 77

4be8 e620
4bea 216b4c
4bed b6
4bee 77
4bef c9

4bf0 0e0a

4bf2 cd3f4c
4bf5 cd4c4c

4bf8 3a664c

read:

;
write:

mov
mov
shld
ret

;read
mvi
call
call
ret

;disk
mvi
call
call
ret

l,c
h,b
iod

next disk
c,readf
setfunc
waitio

record (assuming disk/trk/sec/dma
;set to read function

;perform read function
;may have error set in reg-a

write function
c,writf
setfunc ;set to write function
waitio

;may have error set

utility subroutines
prmsg: ;print message at h,l to 0

' setfunc:

;

;
waitio:

rewait:
;

mov
ora
rz

a,m
a ; zero?

more to print
push h
mov
call
pop
inx
jmp

c,a
conout
h
h
prmsg

set function for next i/o (command in reg-c)
lxi h,iof ;io function address
mov a,m ;get it to accumulator for maskin
ani 11111000b ;remove previous command
ora c ;set to new command
mov m,a ;replaced in iopb
the mds-800 controller req's disk bank bit in sec
mask the bit from the current i/o function
ani 00100000b ;mask the disk select bit
lxi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/o
ret

mvi

start
call
call

lda

c,retry ;max retries before perm error

the i/o function and wait for completion
intype ;in rtype
inbyte ;clears the controller

dbank ; set bank flags

46

Ka
yp
roJ
ou
rna
l

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c05 78
4c06 d37a
4c08 c3104c

4c0b d389
4c0d 78
4c0e d38a

;
iodrl:

a
and 0ffh
shr 8

;drive

;zero if drive 0,1 and nz
;low address for iopb
;high address for iopb

bank l?
;low address to controlle

ora
mvi
mvi
jnz
out
mov
out
jmp

a, iopb
b, iopb
iodrl
ilow
a,b
ihigh
wai t0

;high address
;to wait for complete

;drive bank l
out ilow+l0h ;88 for drive bank 10
mov a,b
out ihigh+l0h

4cl0 cd594c wait0:
4cl3 e604

call
ani
jz

instat
iordy
wait0

;wait for completion
; ready?

4cl5 cal04c

4cl8 cd3f4c

4clb fe02
4cld ca324c

4c20 b7
4c21 c2384c

4c24 cd4c4c
4c2 7 l 7
4c28 da324c
4c2b lf
4c2c e6fe
4c2e c2384c

4c31 c9

4c32 cd4c4c
4c35 c3384c

;

wready:

check io completion ok
call intype ;must be io complete (00)
00 unlinked i/o complete, 01 linked i/o comple
10 disk status changed 11 (not used)
cpi ~l0b ;ready status change?
j z wready

must be 00 in the accumulator
ora
jnz

check
call
ral
jc
rar
ani
jnz

a
werror

i/o error bits
inbyte

wready

11111110b
werror

;some other condition, re

;unit not readv

;any other errors?

read or write is ok, accumulator contains zero
ret

;not
call
jmp

ready, treat
inbyte
trycount

as error for now
;clear result byte

werror: ;return hardware malfunction (ere, track, seek, e
the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
0 - deleted data (accepted as ok above)
l - ere error
2 - seek error
3 - address error (hardware malfunction)
4 - data over/under flow (hardware malfunct
5 - write protect (treated as not ready)
6 - write error (hardware malfunction)
7 - not ready

47

Ka
yp
roJ
ou
rna
l

4c38 0d
4c39 c2f24b

4c3c 3e01
4c3e c9

4c3f 3a664c
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89
4c4b c9

4c4c 3a664c
4c4f b7
4c50 c2564c
4c53 db7b
4c55 c9
4c56 db8b
4c58 c9

(accumulator bits are numbered 7 6 5 4 3 2 1 0) .
' .
'

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio
treated as a separate condition for later improve

trycount:
register c contains retry count, decrement 'til z
dcr c
jnz rewait ;for another try .

' cannot recover from error
mvi a,l ;error code
ret

; intype, inbyte, instat read drive bank 00 or 10
intype: lda dbank

ora a
jnz intypl ;skip to bank 10
in rtype
ret

intypl: in
ret

;
i nbyte: lda

ora
jnz
in
ret

inbytl: in
ret

rtype+l0h

dbank
a
inbytl
rbyte

rbyte+l0h

;78 for 0,1 88 for 2,3

4c59 3a664c instat: lda dbank
4c~c b7 ora
4c5d c2634c jnz
4c60 db78 in
4c62 c9 ret
4c63 db88 instal: in
4c65 c9 ret

; data
4c66 00 dbank: db

iopb: ;io
4c67 80 db
4c68 04 iof: db
4c69 01 ion: db
4c6a 02 iot: db
4c6b 01 ios: db
4c6c 8000 iod: dw

a
instal
dstat

dstat+l0h

areas (must be in ram)
0 ;disk bank 00 if drive

; 10 if drive
parameter block

80h ;normal i/o operation
readf ;io function, initial
1 ;number of sectors to
offset ;track number
1 ;sector number
buff ;io address

define ram areas for bdos operation

48

0,1
2,3

read
read

Ka
yp
roJ
ou
rna
l

endef
4c6e+= begdat equ $
4c6e+ dirbuf: ds 128 :directory access buffer
4cee+ alv0: ds 31
4d0d+ csv0: ds 16
4dld+ al vl: ds 31
4d3c+ csvl: ds lf?
4d4c+ alv2: ds 31
4d6b+ csv2: ds 16
4d7b+ alv3: ds 31
4d9a+ csv3: ds 16
4daa+= enddat equ $
013c+= da tsiz equ $-begdat
4daa end

49

Ka
yp
roJ
ou
rna
l

0014 =

0000 =
3400 =
3c06 =
4a00 =
0004 =
0003 =

4a00
002c =

4a00 c39c4a

APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.0 altera

msize equ 20 icp/m version memory size in kilo

"bias" is address offset from 3400h for memory sy
than 16k (referred to as "b" throughout the text) . ,

bias egu
ccp egu
bdos egu
bios equ
cdisk egu
iobyte egu

org
nsects egu

. •

(msize-20)*1024
3400h+bias ;base of ccp
ccp+806h ;base of bdos
ccp+l600h ;base of bios
0004h :current disk number 0=a, ... ,15=p
0003h iintel i/o byte

bios ;origin of this program
($-ccp)/128 iwarm start sector count

individual subroutines
icold start

4a03 c3a64a wboote:
4a06 c3114b

jump
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

iwarm start
;console status

4a09 c3244b
4a0c c3374b
4a0f c3494b
4al2 c34d4b
4al5 c34f4b
4al8 c3544b
4alb c35a4b
4ale c37d4b
4a21 c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b . •

i
4a33 734a00 dpbase:
4a37 000000
4a3b f04c8d
4a3f ec4d70

4a43 734a00
4a47 000000
4a4b f04c8d
4a4f fc4d8f

4a53 734a00
4a57 000000
4a5b f04c8d
4a5f 0c4eae

. •

;console character in
;console character out
:list character out
;punch character out
;reader character out
imove head to home positi
;select disk
iset track number
iset sector number
iset dma address
;read disk
iwrite disk
;return list status
;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk00,all00
disk parameter header for disk 01
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk01,all01
disk parameter header for disk 02
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,all02

50

Ka
yp
roJ
ou
rna
l

4a63 734a00
4a67 000000
4a6b f04c8d
4a6f lc4ecd

;

f~11 !~ff~ffg trans:
4a7b 170309
4a7f 150208
4a83 14la06
4a87 121804
4a8b 1016

4a8d
4a8f
4a90
4a91
4a92
4a94
4a96
4a97
4a98
4a9a

la00
03
07
00
f200
3f00
c0
00
1000
0200

. •
dpblk:

disk
dw
dw
dw
dw

parameter header
trans,0000h
0000h,0000h
dirbf ,dpblk
chk03,all03

for disk 03

sector translate vector
gg
db
db
db
db
db

;disk
dw
db
db
db
dw
dw
db
db
dw
dw

2s;s:r1:~7
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

ii~gfgf~ ~:~:7:3
;sectors 9,10,11,12
;sectors 13,14,15,16
;sectors 17,18,19,20
;sectors 21,22,23,24
;sectors 25,26

parameter
26
3
7

block, common to all disks
;sectors per track
;block shift factor
;block mask

0
242
63
192
0-
16
2

;null mask
;disk size-1
;directory max
;alloc 0
;alloc 1
;check size
;track offset

; end of fixed tables

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a

4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

4abl 062c
4ab3 0e00
4ab5 1602

4ab7 210034

4aba c5
4abb d5
4abc e5
4abd 4a
4abe cd924b
4acl cl

; . •
boot:

. • wboot:

. •

loadl:

individual subroutines to perform each function
;simplest case is to just Perform parameter initi
xra a ;zero in the accum
sta iobyte ;clear the iobyte
sta cdisk ;select disk zero
jmp gocpm ;initialize and go to cp/

;simplest case is to read the disk until all sect
lxi sp,80h ;use space below buffer f
mvi c,0 ;select disk 0
call seldsk
call home ;go to track 00

mvi b,nsects ;b counts# of sectors to
mvi c,0 ;c has the current tra~k
mvi d,2 ;d has the next sector to
note that we begin by reading track 0, sector 2 s
contains the cold start loader, which is skipped
lxi h,ccp ;base of cp/m (initial lo
; load
push
push
push
mov
call
pop

one
b
d

more sector

h
c,d
setsec
b

51

;save sector count, current track
;save next sector to read
;save dma address
;get sector address
;set sector address
;recall dma address

to register c
from register
to b,c

Ka
yp
roJ
ou
rna
l

4ac2 cs
4ac3 cdad4b

4ac6
4ac9
4acb

cdc34b
fe00
c2a64a

4ace el
4acf 118000
4ad2 19
4ad3 dl
4ad4 cl
4ad5 05
4ad6 caef4a

4ad9 14
4ada 7a
4adb felb
4add daba4a

4ae0 1601
4ae2 0c

4ae3 cs
4ae4 dS
4ae5 es
4ae6 cd7d4b
4ae9 el
4aea dl
4aeb cl
4aec c3ba4a

4aef 3ec3
4afl 320000
4af4 21034a
4af7 220100

4afa 320500
4afd 21063c
4b00 220600

4b03 018000
4b06 cdad4b

4b09 fb
4b0a 3a0400
4b0d 4£
4b0e c30034

;

;

;

;
gocpm:

push
call

drive
call
cpi
jnz

b ;replace on stack for later recal
setdma ;set dma address from b,c

set to
read
00h
wboot

0, track set, sector set, dma addres

;any errors?
;retry the entire boot if an erro

no error, move to next sector
;recall dma address
;dma=dma+l28

pop h
lxi d,128
dad d ;new dma address is in h,l

;recall sector address pop d
pop b ;recall number of sectors remaini

;sectors=sectors-1 dcr b
j z gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr
mov
cpi
jc

d
a,d
27
load!

;sector=27?, if so, change tracks

;carry generated if sector<27

end of current track, qo to next track
;begin with first sector
; track=track+l

mvi d,l of next
inr c

save
push
push
push
call
pop
pop
pop
jmp

register state, and change tracks
b
d
h
settrk ;track address set from register
h
d
b
load! ;for another sector

end of load operation, set parameters and go to c

mvi
sta
lxi
shld

sta
lxi
shld

lxi
call

ei
lda
mov
jmp

a,0c3h ;c3 is a jmp instruction
0 ;for jmp to wboot
h,wboote ;wboot entry point
1 ;set address field for jmp at 0

5
h,bdos
6

; for jmp to bdos
;bdos entry point
;address field of jump at 5 to bd

b,80h ;default dma address is 80h
setdma

cdisk
c,a
ccp

52

;enable the interrupt system
;get current disk number
;send to the ccp
;go to cp/m for further processin

Ka
yp
roJ
ou
rna
l

4bll
4b21 3e00
4b23 c9

4b24
4b34 e67f
4b36 c9

4b3 7 7 9
4b38
4b48 c9

4b49 79
4b4a c9

4b4b af
4b4c c9

4b4d 79
4b4e c9

4b4f
4b51
4b53

3ela
e67f
c9

4b54 0e00
4b56 cd7d4b
4b59 c9

4b5a 210000
4b5d 79
4b5e 32ef4c
4b61 fe04

const:

conin:

simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, withs
to insert your own code

;console status, return 0ffh if character ready,
ds 10h ;space for status subroutine
mvi a,00h
ret

;console character into register a
ds 10h ;space for input routine
ani 7fh ;strip parity bit
ret

conout: ;console character output from register c

;
1 ist:

;

mov a,c ;get to accumulator
ds 10h ;space for output routine
ret

;list character
mov a,c
ret

from register c
;character to register a
;null subroutine

listst: ;return list status (0 if not ready, 1 if ready)

;
punch:

;

xra a ;0 is always ok to return
ret

;punch character from register c
mov a,c ;character to register a
ret ;null subroutine

reader: ; read
mvi
ani
ret

character
a,lah
7fh

into register a from reader devic
;enter end of file for now (repla
;remember to strip parity bit

;

;
home:

;

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 ;select track 0
call settrk
re.t ;we will move to 00 on first read

seldsk: ;select disk given by register c
lxi h,0000h ;error return code
mov a,c
sta diskno
cpi 4 ;must be between 0 and 3

53

Ka
yp
roJ
ou
rna
l

4b63 d0

4b64

4b6e 3aef4c
4b71 6f
4b72 2600
4b74 29
4b75 29
4b76 29
4b77 29
4b78 11334a
4b7b 19
4b7c c9

4b7d 79
4b7e 32e94c
4b81
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

4ba7 eb
4ba8 0 9
4ba9 6e
4baa 2600
4bac c9

4bad 69
4bae 60
4baf 22ed4c
4bb2
4bc2 c9

4bc3
4bd3 c3e64b

•
4bd6

;

;

;no carry if 4,5, ... rnc
disk
ds

number is
10

in the proper range
;space for disk select

compute
lda
mov
mvi
dad
dad
dad
dad
lxi
dad
ret

proper
diskno

disk parameter header address

l,a ;l=disk number 0,1,2,3
h,0 ;high order zero
h ; *2
h ; *4
h ;*8
h ;*16 (size of each header)
d,dpbase
d ;hl=.dpbase(diskno*l6)

settrk: ;set track given by register c

;

mov
sta
ds
ret

a,c
track
10h ;space for track select

setsec: ;set sector given by register c

sectran:

.
' setdma:

.
' read:

.
'

a,c
sector

mov
Sta
ds
ret

10h ;space for sector select

;translate
;translate
xchg
dad b
mov l,m
mvi h,0
ret

the sector given by be
table given by de

;hl=.trans
;hl=.trans(sector)
;l = trans(sector)
;hl= trans(sector)
;with value in hl

using the

;set dma address given by registers band c
mov l,c ;low order address
mov h,b ;high order address
shld dmaad ;save the address
ds 10h ;space for setting the dma addres
ret

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)
ds 10h ; set up read command
jmp waitio ;to perform the actual i/o

write: ;perform a write operation
ds 10h ;set up write comman'-'

;
waitio: ;enter here from read and write to perform the ac

operation. return a 00h in register a if the ope
properly, and 01h if an error occurs during the r

54

Ka
yp
roJ
ou
rna
l

4be6
4ce6 3el/Jl
4ce8 c9

4ce9
4ceb
4ced
4cef

4cf0 =
4cf0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4e0c
4elc

4e2c =
013c =
4e2c

;
;

;

in this case,

ds 256
mvi a,l
ret

we have saved the disk number in 'd
the track number in 'track' (0-76
the sector number in 'sector' (1-
the dma address in 'dmaad' (0-655
;space reserved for i/o drivers
;error condition
;replaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

track: ds
sector: ds
dmaad: ds
diskno: ds

2
2
2
1

;two bytes for expansion
;two bytes for expansion
;direct memory address
;disk number 0-15 .

' .
' begdat
di rbf:
al 100:
a 1101:
all0 2:
a 110 3:
chk00:
chk0 l:
chk0 2:
chk03:
;

scratch
egu
ds
ds
ds
ds
ds
ds
ds
ds
ds

enddat egu
datsiz equ

end

ram
$
128
31
31
31
31
16
16
16
16

area for bdos use
;beginning of data
;scratch directory
;allocation vector
;allocation vector
;allocation vector
;allocation vector
;check vector 0
; check vector 1
;check vector 2
; check vector 3

$;end of data area
$-begdat;size of data area

55

area
area
0
1
2
3

Ka
yp
roJ
ou
rna
l

0100

0014 =

0000 =
3400 =
3c00 =
4a00 =

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

combined getsys and outsys programs from Sec 4.
; Start the ?rograms at the base of the TPA

msize

org

egu

0100h

20 ; size of cp/m in Kbytes

; "bias" is the amount to add to addresses for> 20k
(referred to as "b" throughout the text)

bias
ccp
bdos
bios

. ,

. ,
; . ,

gs tart:

egu
equ
equ
equ

(msize-20) *1024
3400h+bias
ccp+0800h
ccp+l600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register
a
b
C

d,e
h,l
Sp

usage
(scratch register)
track count (0 ... 76)
sector count (1 ... 26)
(scratch register pair)
load address
set to stack address

0100 318033 lxi S?,CCp-0080h
h,ccp-0080h
b,0

; start of getsys
; convenient plac

set initial loa
start with trac

0103 218033 lxi
0106 0600 mvi

rd$trk:
0108 0e01 mvi

010a cd0003
010d 118000
0110 19
0111 0c
0112 79
0113 felb
0115 da0a01

rd$sec:
call
lxi
dad
inr
mov
C?i
jc

c,l

read$sec
d,128
d
C

a,c
27
rdsec

; read next track
each track star

get the next se
offset by ones

; (hl=hl+l28)
next sector

; fetch sector nu
and see if la

<, do one more

; arrive here at end of track, move to next track

0118 04
0119 78
011a fe02
011c da0801

0llf fb
0120 76

inr
mov
cpi
jc

b
a,b
2
rd$trk

; track= track+l
check for last

; track= 2?
; <, do another

arrive here at end of load, halt for lack of anything b

ei
hlt

56

,.

Ka
yp
roJ
ou
rna
l

0200

0200
0203
0206

318033
218033
0600

0208 0e01

020a cd0004
020d 118000
0210 19
0211 0c
0212 79
0213 felb
0215 da0a02

0218 04
0 219 78
021a fe02
021c da0802

02lf fb
0220 76

0300

0300 cs
0301 es

0302

0342 el
0343 cl

putsys program, places memory image starting at
3880h + bias back to tracks 0 and 1
start this program at the next page boundary

put$sys:

wr$trk:

wr$sec:

org

lxi
lxi
mvi

mvi

call
lxi
dad
inr
mov
cpi
jc

. arrive here •
inr
mov
cpi
jc

($+0100h) and 0ff00h

sp,ccp-0080h
h,ccp-0080h
b,0

c,l

write$sec
d,128
d
C
a,c
27
wr$sec

at end of

b
a,b
2
wr$trk

track, move to

; done with putsys, halt for lack

ei
hlt

; convenient plac
start of dump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
<c> = <c> + 1
see if

past end oft
no, do another

next track

track = track+l
see if

last track
no, do another

of anything bette

; user supplied subroutines for sector read and write

; move to next page boundary

org

read$sec:

($+0100h) and 0ff00h

read the next sector
; track in ,
; sector in <c>
; dmaaddr in <hl>

push
push

b
h

; user defined read operation goes here
ds 64

pop
pop

h
b

57

Ka
yp
roJ
ou
rna
l

0344 c9 ret

0400 org ($+0100h) and 0ff00h another page bo

write$sec:

; same parameters as read$sec

0400 cs push b
0401 es push h

. user defined write operation goes here ,
0402 ds 64

0442 el pop h
0443 cl pop b
0444 c9 ret

end of getsys/putsys program

0445 end

58

Ka
yp
roJ
ou
rna
l

0000

0014 =

0000 =
3400 =
4a00 =
0300 =
4a00 =
1900 =
0032 =

0000 010200
0003 1632
0005 210034

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 00, sector 01 (the first sector on the

; diskette). we assume that the controller has loaded
; this sector into memory upon system start-up (this pro­
; gram can be keyed-in, or can exist in read/only memory
; beyond the address space of the cp/m version you are

running). the cold start loader brings the cp/m system
; into memory at "loadp" (3400h + "bias"). in a 20k

memory system, the value of "bias" is 0000h, with large
values for increased memory sizes (see section 2). afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un­
til the system is oowered up again, as long as the bios

; is not overwritten. the origin is assumed at 0000h, an
; must be changed if the controller brings the cold start

loader into another area, or if a read/only memory area
; is used.

msize

bias
ccp
bios
biosl
boot
size
sects

;

cold:

lsect:

.
'

org 0 base of ram in cp/m

equ 20 min mem size in kbytes

egu (msize-20) *1024 offset from 20k system
equ 3400h+bias ; base of the ccp
equ ccp+1600h base of the bios
equ 0300h . length of the bios ' egu bios
egu bios+biosl-ccp ; • size of cp/m system
equ size/128 j/ of sectors to load

begin the load operation

lxi b,2 b=0, c=sector 2
mvi d,sects . d=# sectors to load

' lxi h,ccp base transfer

. load the next sector
'
insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hl>

address

; branch to location "cold" if a read error occurs

59

Ka
yp
roJ
ou
rna
l

0008 c36b00
000b

006b 15
006c ca004a

006f 318000
0072 39

0073 0c
0074 79
0075 felb
'r:J077 da0800

007a 0e01
007c 04
007d c30800
0080

*
*
*

user supplied read operation goes here ...

jmp
ds

past$patch
60h

; remove this when patche

past$patch:
; go to next

dcr
jz

sector if load is
d
boot

more sectors to load . ,

incomplete
; sects=sects-1
; head for the bios

; we aren't using a stack, so use <sp> as scratch registe
to hold the load address increment

lxi
dad

inr
mov
cpi
jc

sp,128
sp

C

a,c
27
lsect

; 128 bytes per sector
<hl> = <hl> + 128

; sector= sector+ 1

; last sector of track?
no, go read another

end of track, increment to next track

mvi
inr
jmp
end

c,l
b
lsect

60

; sector= 1
; track= track+ 1
; for another group

of boot loader

Ka
yp
roJ
ou
rna
l

l:
2:
3: ;
4:
5:
6:
7 : ;
8:
9:

111 :
11:
12:
13:
14:
15:
16:
17:
18:
19: . ,
20:
21:
22: . ,
23:
24:
25:
26: ;
27:
28:
2':I:
30:
31:
3 2:
33:
34:
35: ;
36: . ,
3 7:
38:
39: ;
41il:
41:
4 2:
43:
44:
45:
46:
47:
48:
4 9:
50: ;
51:
5 2:
53:

APPENDIX F:. ~P/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-detinition library

Copyright (c) 1979
Digital R.a::earch
Box 579
Pacific Grove, CA
93950

CP/M logic~l disk drives are defined using the
macros given below, where the seguence of calls
is:

disks a
ciiskdef 05rameter-list-0
diskdef oarameter-list-1

diskdef parw~eter-list-n
endef

where n is the number of logical disk drives attacned
to the CP/M system, and oarameter-list-i defines the
cnaracteristics of the ith drive (i=0,l, ... ,n-l)

eacn oarameter-list-i takes the form

wnere
dn
fsc
lsc
skf
bls
dks
dir
cks
ofs
[0 J

dn,fcc,lsc, [skf] ,bls,aks,dir,cks,ofs, [ill

is the disk number 0,1, ... ,n-l
is t,,e tirst sector number (usually 0 or 1)
is t~e last sector numoer on a track
is o~tional "skew factor" for sector translate
is tne data block size (1024,2048, ... ,16384)
is tn~ ctisK size in ols increments (word)
is tnt number of directory elements (word)
is the number of dir elements to checksum
is the numoer of tracks to skip (word)
is an optional 0 which forces 16K/directory en

for convenience, the form
dn,dm

defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four
disks
diskdef

dsk set
rept

dsk set
diskdef
endm
endei

drive CP/M system is defined by
4
0,l,26,6,1024,243,64,64,2
0
3
dsk+l
%dsk,0

the value of ··begdat" at tne end of assembly defines t

61

Ka
yp
roJ
ou
rna
l

54:
55:
56:
5 7:
5 8:
59:
6 ill :
61:
6 2:

. ,
dskhdr

6 3: , ,

beginning of the uninitialize ram area above the bios,
wnile the valPe of ·enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end oft
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

macro
define

dn

64: dpe&dn: dw
a single disk

xlt&dn,0000n
0001'ih,li000h
dirbuf,dpb&dn
csv&::in,alv&dn

neader list
;translate table
;scratch area 65:

66:
6 7:
68:
69:
70:
71:
7 2:
73:
74:
, 5:
7 6:
77:
78:
79:
80:
81:
tl 2:
tl 3:
84:
85:
86:

;
disks
. . , ,
ndisks
apbase .. , ,
dsknxt

cisknxt

;
dpbhdr
dpb&dn

;
ddb

8 7: ; ;
tl 8:
8 9:
90:
91:

;
ddw

9 2: ; ;
93:
94:
95:
96:

. ,
gcd

9 7: ; ;
9 8: ; ;
99: . . , '

100:
101:
10 2:
103:
104:
105:
106:
10 7:
10 fs:

gcdm
gcdn
gcdr

gcdx
gcdr

aw
dw
dw
endm

;dir buff,parm olock
;check, alloc vectors

macro nd
define nd disks
set nd
equ $
generate the r.d

;;tor later reference
;base of disk parameter
elements

set 0
rept nd
dskhdr %dsknxl
set
endm
endm

macro
equ
endm

macro
define
db
endm

macro
define
dw
endm

dsknxc+l

dn
$

data,comment
a db statement

data

data,comment
a dw st;;;,tement

data

macro m,n

;disk parm block

comment

comment

blocks

greatest common divisor of m,n
produces value 9cdn as result
(used in sector translate table
set m ;;variable for

generation)
m

set n ;;variable for n
set 0 ;;variable for r
rept 65535
set qcdm/gcdn
set gcdm - gcdx*gcdn
if gcdr = 0
exitm
endif

62

Ka
yp
roJ
ou
rna
l

109:
110:
111:
112:

gcdm
gcdn

113:
114:
115: ; ;
116:

.
' diskdef

117: ;;
118: dpb&dn
119: als&dn
120: css&dn
121: xlt&dn
122:
123:
124:
125:
126:
127:
l 2tl:
129:
130:
131:
132:
133:
134:
135:
136:
13 7:

secmax
sectors
als&dn

als&dn

css&dn ..
' ' blkval
blkshf
blkmsk

138: ; ;
139: blkshf
140: olkmsk
141: blkval
14 2:
14 3:
144:
145:
146:
147:
148:
14':I:

; i
blkval
extmsk

150: ;;
151: extmsk
152: Olkval
153:
154:
155:
156:
157:
158:
159:
160:
161:
162: ; ;

' .
extmsk

; ;

extmsk

163: dirrem

set gcdn
set gcdr
endm
endm

macro dn,fsc,lsc,skf,bls,dks~dir,cks,bfs,kl6
generate the set statements for later tables
if nul lsc
current disk dn s~me as orevious fsc
equ dpb&fsc ;20uivalent oarameters
equ als&fsc ;same allocation vector size
equ css&fsc ;same checksum vector size
equ xlt&fsc ;same translate taole
else
set lsc-(fsc} ;;sectors 0,,.secmax
set secmax+l;;number ot sectors
set
if

(dks)/8 ;;size of allocation vector
((dks} mod b} ne 0

set als&dn+l
endif
set (cks)/4 ;;number of checksum elements
generate the block shift value
set bls/128 ;;number of sectors/block
set 0 ;;counts right 0's in blkval
set 0 ;;£ills with l's from right
rept 16 ;;Jnce for eacn bit oosition
if blkval=l
exitm
endif
otherwise, high order 1 not found yet
set olkshf+l
set (blkmsk shl 1) or 1
set blkval/2
endm
generate the extent mask byte
set bls/1024 ;;number of kilobytes/block
set 0 ;;fiLl from right with l's
rept 16
if blkval=l
exitm
endif
otherwise more to snift
set (extmsk shl 1) or 1
set blkval/2
endm
may be double byte ,Jlocation
if (dks} > 256
set (extmsk shr 1)
endif
may be optional [0 l in last position
if not nul kl6
set kl6
endif
now generate directory reservation bit vector
set dir ;;# remaining to process

63

Ka
yp
roJ
ou
rna
l

164:
165:
166:
167:
168:
169:

dirbks
dirblk

170: 11
l 71:
172:
173:
174:
175:
176:
177:
178:
179:
180:
llll:
182:
183:
184:
lt!S:
11!6:
187:
180:
189:

. . , ,
di rblk

dirrem

dirrem

19!0: 11
191:
192:
193:
194:
195:
196:
197: 11

xlt&dn

xlt&dn

198: nxtsec
199: nxtbas
200:
201:
202:
203: 11
21i:14: 11

. . , ,
neltst

205: nelts
206: xlt&dn
20 7:
21i:18:
209:
210:
211:
212:
213:
214:
215:
216:
217:
210:

nxtsec

nxtsec

nelts

set
set
rept
if
exitm
endif

bls/32
0
16
dirrem=0

iinuruber of entries per block
iifill with l's on each loop

not complete, iterate once again
shift right and add 1 high order bit
set (dirblk shr ~) or 8000h
if dirrem > dirbks
set dirrem-dirbks
else
set 0
endif
endm
dpbhdr dn iiga~erate equ $
ddw %sectors,<isec per track>
ddb %blkshf,<iblcck shift>
ddb %blkmsk,<1blcck mask>
ddb %extmsk,<ie~tnt mask>
ddw %(dks)-l,<iaisk size-1>
adw %(dir)-l,<iairectory max>
ddb %dirblk shr 8,<iallocli:1>
ddb %dirblk ana 0ffh,<iallocl>
ddw %(cks)/4,<icheck size>
ddw %ofs,<ioffset>
generate the translate table, if requested
if nul skf
equ 0 ino xlate table
else
if skf = 0
equ 0 ino xlate table
else
generate the translate table
set 0 11,1ext sector to fill
set 0 iimcves by one on overflow
gcd %sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
neltst is number of elements to generate
before we overlap orevious elements
set neltst ii~ounter
equ $;translate table
rept sectors iionce for each sector
if sectors< 256
ddb %nxtsec+(fsc)
else
ddw
endif
set
if
set
endif
set
if

%nxtsec+(fsc)

nxtsec+(skf)
nxtser >= sectors
nxtsec-sectors

nelts-1
nelts = 0

64

Ka
yp
roJ
ou
rna
l

219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
2 29:
230:
2 31:
232:
2 33:
2 34:
235:
236:
237:
238:
239:
240:
2 41:
242:
243:
244:
245:

nxtbas
nxtsec
nelts

. • defds
lab:

. • lds

;
endet
; ;
begdat
dirbuf:
dsknxt

dsknxt

246: enddat
247: datsiz
24H: ; ;
249:

nxtbas+1
nxtbas
neltst

set
set
set
endif
endm
endif
endif
endm

;;end of nul fac test
;;end of nul bls test

macro
ds
endm

lab,space
space

macro
defds
endm

lb,dn,val
lb&dn,%val&dn

macro
generate the nec~ssary ram data areas
egu $
ds 128 ;directory access buffer
set 0
rept ndisks ;;once for eacn disk
lds alv,%dsknxt,als
lds csv,%dsknxt,css
set dsknxt+l
endm
egu $
egu $-begdat
db 0 at this point forces h~x record
endm

65

Ka
yp
roJ
ou
rna
l

l:
2:
3:
4:
5 :
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
3 2:
33:
34:
35:
36:
37:
38:
39:
4 0:
41:
42:
43:
44:
4 5:
46:
4 7:
48:
49:
50:
51:
52:
53:

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS,

•******W**
' • * ,
• * '

*
Sector Deblocking Algorithms for CP/M 2,0 *

,W *
' •***
' ;

smask .. , , .. , '
@y
@x
, ,

.. , '
@y
@x

utility macro to compute sector mask
macro hblk
compute log2(hblk),
(2 **
set
set
count
rept
if
exitm
endif
@y is
set
set
endm
endm

@x = hblk on
hblk
0

right shifts
8
@y = 1

not 1, shift
@y shr 1
@x + 1

return @x as result
return)

of @y until = l

right one position

;
·*** ,
• * * ,
;* CP/M to host disk constants *
·* * ' •***************************************•************* ,
blk s iz equ 2048 ;CP/M allocation size
hstsiz egu 512 ;host disk sector size
hstspt equ 20 ;host disk sectors/trk
hstblk egu hstsiz/128 ;CP/M sects/host buff
cpmspt equ hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 ;sector mask

smask hstblk ;compute sector mask
secshf egu @x ;log2(hstblk)
;
·***
' • * ' • * ,
• * ,

*
BOOS constants on entry to write *

*
•***
' wrall
wrdir
wrual . ,

equ
equ
egu

0
1
2

;write
;write
;write

to
to
to

allocated
directory
unallocated

;***
·* * ' • * ' • * ' • *

The BDOS entry points given below show the
code which is relevant to deblocking only.

*
*
* ' ·*** ,

66

Ka
yp
roJ
ou
rna
l

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
6 7:
6 8:
69:
70:
71:
72:
73:
74:
7 5:
76:
77:
78:
79:
80:
81:
8 2:
83:

;
dpbase
;
boot:
wboot:

. ,
seldsk:

;
set trk:

8 4: ;
85: setsec:
86:
87:
88:
89:
90:
91:
92:
93:
9 4:
9 5:
96:
97:
98:
99:

100:
101:
10 2:
103:

;
setdma:

sectran:

DISKDEF macro, or hand coded tables go here
egu $;disk param block base

;enter
xra

here on system boot to initialize
a ;0 to accumulator

sta hstact ;host buffer inactive
sta unacnt ;clear unalloc count
ret

;select
mov

disk
a,c
sekdsk
l,a

sta
mov
mvi
rept
dad
endm
lxi
dad
ret

;set
mov
mov
shld
ret

h,0
4
h

d,dpbase
d

track given
h,b
l,c
sektrk

;selected disk number
;seek disk number
;disk number to HL

;multiply by 16

;base of parm block
;hl=.dpb(curdsk)

by registers BC

;track to seek

;set
mov
sta
ret

sector given by register c

;set
mov
mov
shld
ret

a,c
seksec

dma address
h,b
l,c
dmaadr

;translate sector
mov h,b
mov l,c
ret

;sector to seek

given by BC

number BC

67

Ka
yp
roJ
ou
rna
l

104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
12 7:
128:
129:
130:
131:

·*** ,
• * ,
• * ,
• * ,
• * ,

The READ entry point takes the place of
the previous BIOS defintion for READ.

*
*
*
*

·*** ,
read:

:read the selected CP/M sector
mvi a,l
sta readop : read operation
sta rs flag ;must read data
mvi a,wrual
sta wrtype :treat as unalloc
jmp rwoper ;to perform the read

:
·*** ,
• * ,
• * • • * • • * ,

The WRITE entry point takes the place of
the previous BIOS defintion for WRITE.

*
*
*
*

·*** •

13 2:
13 3:
134:
135:
136:
13 7:
138:
139:
140:
141:
14 2:
143:
144:
145:
146:

write:

:
chkuna:

14 7:
148:
149: :
150:
151:
152:
153:
154:
155:
156:
157:
158:

;write the selected
xra
sta
mov
sta
cpi
jnz

a
readop
a,c
wrtype
wrual
chkuna

CP/M sector
;0 to accumulator
;not a read operation
;write type inc

;write unallocated?
;check for unalloc

write to unallocated, set parameters
mvi a, blk s iz/128 ;next unalloc recs
sta unacnt
lda sekdsk ;disk to seek
sta unadsk ;unadsk = sekdsk
lhld sektrk
shld unatrk ;unatrk = sectrk
lda seksec
sta unasec ;unasec = sek sec

;check for write to unallocated sector
lda unacnt ;any unalloc remain?
ora
jz

more
dcr
sta
lda
lxi
cmp
jnz

a
alloc

unallocated
a
unacnt
sekdsk
h,unadsk
m
alloc

records

disks are the same

68

;skio if not

remain
;unacnt = unacnt-1

;same disk?

;sekdsk = unadsk?
;skip if not

Ka
yp
roJ
ou
rna
l

159:
160:
161:
162:
163: ;
164:
16 5:
166:
16 7:
168: ;
169: ;
170:
1 71:
172:
173:
17 4: ;
17 5:
176:
177:

. ,
noovf:

. •
alloc:

lxi
call
jnz

tracks
lda
lxi
cmp
jnz

h,unatrk
sektrkcmp
alloc

are the same
seksec
h,unasec
m
alloc

match, move to next
inr m
mov
cpi
jc

a, m
cpmspt
noovf

;sektrk = unatrk?
;skip if not

;same sector?

;seksec = unasec?
;skip if not

sector for future ref
;unasec = unasec+l
;end of track?
;count CP/M sectors
;skip if no overflow

overflow to next track
mvi
lhld
inx
shld

m, 0
unatrk
h
unatrk

;match found, mark as
xra
sta
jmp

a
rs flag
rwoper

;unasec = 0

;unatrk = unatrk+l

unnecessary read
;0 to accumulator
;rsflag = 0
;to perform the write

;not an unallocated record, requires pre-read
xra a ; 0 to accum
Sta unacnt ;unacnt = 0
inr a ; 1 to accum
sta rs flag ; rs flag = 1

1 78:
179:
180:
181:
18 2:
183:
184:
185:
186:
18 7:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
·208:
209:
210:
211:
212:
213:

;
·*** • • * ,
• * ,
• * ,

Common code for READ and WRITE follows *
*
*

·*** • rwoper:
;enter here to perform
xra
sta
lda
rept
ora
rar
endm
Sta

a
erflag
seksec
secshf
a

sekhst

active host sector?
lxi h,hstact
mov
mvi

a, m
m, 1

69

the read/write
;zero to accum
;no errors (yet)
;compute host sector

;carry= 0
; shift right

;host sector to seek

;host active flag

;always becomes 1

Ka
yp
roJ
ou
rna
l

214:
215:
216:
217:
218:
219:
220:
221:
222: ;
223: ;
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
2~5:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263: ;
264:
265:
266:
267:
268:

.
' f ilhst:

;
match:

.
' nomatch:

ora
jz

host
lda
lxi
cmp
jnz

same
lxi
call
jnz

a
filhst

;was it already?
;fill host if not

buffer active,
sekdsk
h,hstdsk
m

same as seek buffer?

;same disk?
;sekdsk = hstdsk?

nomatch

disk, same track?
h,hsttrk
sektrkcmp
nomatch

;sektrk = hsttrk?

same disk, same track, same buffer?
lda sekhst
lxi
cmp
jz

h,hstsec
m
match

;sekhst = hstsec?

;skip if match

;proper disk, but not correct sector
lda hstwrt ;host written?
ora
cnz

a
writehst

;may
lda
sta
lhld
shld
lda
sta
lda
ora
cnz
xra
sta

have to fill
sekdsk
hstdsk
sektrk
hsttrk
sekhst
hstsec

;copy
lda
ani
mov
mvi
rept
dad
endm

rs flag
a
readhst
a
hstwrt

data to or
seksec
secmsk
l,a
h,0
7
h

;clear host buff

the host buffer

;need to read?

; yes, if 1
;0 to accum
;no pending write

from buffer
;mask buffer number
;least signif bits
; ready to shift
;double count
;shift left 7

hl has
lxi

relative host
d ,hstbuf

buffer address

dad
xchg
lhld
mvi

d

dmaadr
c,128

70

;hl = host address
;now in DE
;get/put CP/M data
;length of move

Ka
yp
roJ
ou
rna
l

269 :.
270:
2 71:
2 7 2:
273:
274:
275:
276:
2 7 7:
278:
279:
280:
281:
28 2:
283:
284 :.
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
3 01:
302:
303:
304:
305:
306:
3 07:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:

rwmove:

;

lda readop ;which way?
ora a
jnz rwmove ;skip if read

write operation, mark and switch direction
mvi a,l
Sta hstwrt ;hstwrt = 1
xchg ;source/dest swap

;C initially
ldax d

128, DE is source, HL is dest
;source character

inx d
mov m,a ;to dest
inx h
dcr C ; loop 128 times
jnz rwmove

data has been moved to/from host buffer
lda wrtype
cpi wrdir
lda erflag
rnz

clear host buffer for
ora a
rnz
xra
sta
call
lda
ret

a
hstwrt
writehst
er flag

;write type
;to directory?
;in case of errors
;no further processing

directory write
;errors?
;skip if so
;0 to accum
;buffer written

;
·*** •
·* * • • * • • *

Utility subroutine for 16-bit compare *
* • ·*** • sektrkcmp:

;HL = .unatrk or .hsttrk, compare with sektrk

;

. •

xchg
lxi
ldax
cmp
rnz
low
inx
inx
ldax
cmp
ret

h,sektrk
d
m

;low byte compare
;same?

bytes equal, test
;return if not

high ls
d
h
d
m ; sets flags

71

Ka
yp
roJ
ou
rna
l

321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:

·*** ,
·* * ,
• * ,
·* ,

WRITEHST
the host
disk .

performs the physical write to
disk, REAOHST reads the physical * .. • * ,

•* * ,
•*** ,
writehst:

;
readhst:

;hstdsk • host disk#, hsttrk = host track i,
;hstsec = host sect#. write •hstsiz" bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error
ret

;hstdsk • host disk i, hsttrk = host track i,
;hstsec • host sect#. read "hstsiz" bytes
;into hstbuf and return error flag in erflag.
ret

;
•*** ,
·* * ,
• * , Unitialized RAM data areas *

* • * ,
•*************************************•*************** ,
;
sekdsk:
sektrk:
seksec:

ds
ds
ds

l
2
l

l

;seek
;seek
;seek

disk number
tr4ck number
sector number

3 52:
353:
354:
355:
356:
357:
358: ;

;
hstdsk:
hst trk:
hstsec: . ,
sekhst:
hstact:
hstwrt:

ds
ds
ds

ds
ds
ds

2
l

l
l
l

;host
;host
;host

;seek
;host
;host

disk number
track number
sector number

shr secshf
active flag
written flag

;unalloc rec cnt
;last unalloc disk
;last unalloc track
;last unalloc sector

359: unacnt:
360: unadsk:
361: unatrk:

unasec:

erflag:
rs flag:
r~adop:
w:type:
dmaadr:
hstbuf:

ds
ds
ds
ds

ds
ds
ds
ds
ds
ds

l
l
2
l

l
l
l
l
2
hstsiz

;error reporting
;read sector flag
;l if read operation
;write operation type
;last dma address
;host buffer

362:
3 6 3:
364:
365:
366:
367:
368:
369:
370:
371:
3 72:
373:
374:
3 7 5:
3 76:

·*** ,
• * ,
• * ,
• * ,

*
The ENDEF macro invocation goes here *

*
·*** ,

end

72

Ka
yp
roJ
ou
rna
l

[ifil [)~IJ~Tfll AESEflACH®
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 INTERFACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Ka
yp
roJ
ou
rna
l

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication mav he reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or by anv
means, electronic, mechanical, magnetic, optical, ehemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California !13950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specif;cally disclaims any
implied warranties of merchantability or fitness for anv parti­
cular purpose. Further, Digital Research reserves the riitht
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Ka
yp
roJ
ou
rna
l

1.

2.

3.

4.

5.

6.

Introduction . .
Operating System

•

CP/M 2.2 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

. . . . • . . .
Call Conventions

A Sami;>le File-to-File Copy Program •

A Sample File Dump Utility . . • •

A Sample Rand an Access Program

System Function Summary . . . •

.• • 1

• 3

• 29

• 34

• 37

• • • 46

Ka
yp
roJ
ou
rna
l

1. INTRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system.

CP/M is logically divided into four parts, called the Basic I/0
System (BIOS), the Basic Disk Operating System (BOOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/0. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide").

The BIOS and BOOS are logically combined into a single module with a
common entry point, and referred to as the FOOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FOOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high
memory

FBASE:

CBASE:

TBASE:

BOOT:

FDOS (BDOS+BIOS)

CCP

TPA

system parameters

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
"CP/M Alteration Guide.• All standard CP/M versions, however, assume
BOOT = 0000H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

Ka
yp
roJ
ou
rna
l

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+0100H which is normally location 0100H.
The principal entry point to the FDOS is at location B00'1"+0005H
(normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient
follows. The
lines following
forms:

programs are loaded into the TPA and executed as
operator communicates with the CCP by typing command

each prompt. Each command line takes one of the

command
command f ilel
command file! file2

where "command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command. COM

If the file is found, it is assumed to be a memory image of a
which executes in the TPA, and thus implicitly originates at
memory. The CCP loads the COM file from the disk into memory
at TBASE and possibly extending up to CBASE.

program
TBASE in
starting

If the command is
the CCP prepares one
system parameter area.
to access files through
section.

followed by one or two file specifications,
or two file control block (FCB) names in the

These optional FCB's are in the form necessary
the FDOS, and are described in the next

The transient program receives control from the CCP and begins
execution, perhaps using the I/0 facilities of the FDOS. The
transient program is "called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free.

The transient program may use the CP/M I/0 facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/0 system is accessed by passing a
"function number" and an "information address" to CP/M through the
FOOS entry point at BOOT+0005H. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FOOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below.

(All Information Contained Herein is Proprietary to Digital Research.)

2

Ka
yp
roJ
ou
rna
l

2. OPERA·rING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
tor performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language ·Manual and Applications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/0, and
disk file I/0. The simple device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/0 Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FOOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+0005H. In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A= Land register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of Intel's
PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

3

Ka
yp
roJ
ou
rna
l

0 System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6 Direct Console I/0
7 Get I/0 Byte
8 Set I/0 Byte
9 Print String

10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close r'ile
17 Search for First
18 Search for Next

19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
2 3 Rename File
24 Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr (Allee)
28 Write Protect Disk
29 Get R/0 Vector
30 Set File Attributes
31 Get Addr(Disk Parms)
32 Set/Get User Code
33 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H), it
is sufficiently large to make CP/M system calls since the FDOS
switcnes to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuminq a standard CP/M system with BOOT = 0000H):

BDOS EQU 0005H ; STANDARD CP /M EN'I'RY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION

ORG 0100H ;BASE OF Tf>A
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER

CALL BDOS ;RE'I'URN CHARACTER IN <A>
CPI '*' ;END OF PROCESSING?
JNZ NEXTC ; LOOP IF NO'r
RE"r ; RE'rURN ·ro CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
category. Tne file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

Ka
yp
roJ
ou
rna
l

which have been established, although they are generally arbitrary:

ASM
PRN
HEX
BAS
INT
COM

Assembler Source
Pr inter Listing
Hex Machine Code
Basic Source File
Intermediate Code
CCP Command File

PLI
REL
TEX
BAK
SYM
$$$

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return line-feed
sequence (0DH followed by 0AH). Thus one 128 byte CP/M record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decanposition into extents is discussed in the paragraphs which
follow, they are of no pai:ticular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file is accessed randomly. The default file
normally located at 005CH can be used for random access
the three bytes starting at BOOT+007DH are available- for
The FCB format is shown with the following fields:

a sequence of
in the case
control block
files, since
th is purpose.

(All Information Contained Herein is Proprietary to Digital Research.)

5

Ka
yp
roJ
ou
rna
l

--ldrlfllf21/ /lf8ltllt2lt31exlslls21rcld01/ /ldnlcrlr0lrllr21

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
. . .
16=> auto disk select drive P.

fl ... f8 contain the file name in ASCII
upper case, with high bit= 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit= 0
tl', t2', and t3' denote the
bit of these positions,
tl' = l => Read/Only file,
t2' = l => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

re record count for extent "ex,"
takes on values from 0 - 128

d0 ... dn filled-in by CP/M, reserved for
system use

er current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional randan record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "er" field. Normally, bytes l through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

Ka
yp
roJ
ou
rna
l

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). 'rhe memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command).

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the line following the
transient name, denoted by "filel" and "file2" in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the de ... dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types

PROGNAME B: X. ZOT Y. ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+005CH is initialized to drive code 2, file name "X" and file type
"ZOT". The second drive code takes the default value 0, which is
placed at BOOT+006CH, with the file name "Y" placed into location
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H.
All remaining fields through "er" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOO'I'+005CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the originaL command, then the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+0080H is initialized to the command line tail typed by the
operator following the program name. 'rhe first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0080H is initialized as follows:

BOO'r+0080H:
+00 +01 +02

14 " u "Bu
+03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
" : " .. x" " " lo z II "O" ''T" II 11 h Y. It " " U z II "A" "P''

where the characters ~re translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is
the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA addre~s is explicitly changed.

The individual functions are described 1n detail in the pages
which fol low.

(All Information Contained Herein is Proprietary to Digital Research.)

7

Ka
yp
roJ
ou
rna
l

*
* FUNCTION 0: System Reset
*

*
*
*

*
*

Entry Parameters:
Register C: 00H

*
*

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOO'I·.

*
*
*

FUNC'rION 1: CONSOLE INPUT
*
*
*

Entry Parameters:

Register C: 01H
*
*
*

* Returned Value: *
* Register A: ASCII Character*

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-B) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

***************************************·
* *
* FUNCTION 2: CONSOLE OUTPUT *

*

*
*
*
*

Entry Parameters:
Register C:
Register E:

*
02H *
ASCII Character*

*

·rhe ASCII character from register
device. Similar to function 1, tabs are
for start/stop scroll and printer echo.

E is sent to the console
expanded and checks are made

(All Information Contained Herein is Proprietary to Digital Research.)

8

Ka
yp
roJ
ou
rna
l

* *
* FUNC'rION 3: READER INPUT *

* *

*
*
*

Entry Parameters:
Register C: 03H

*
*
*

* Returned Value: *
* Register A: ASCII Character*

·rhe Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read.

* *
* FUNC'rION 4: PUNCH OUTPUT
*

*
*

*
*
*
*

Entry Parameters:
Register C:
Register E:

*
0 411 *
ASCII Character*

*

The Punch Output function sends the character from register E to
the logical punch device.

* * * FUNCTION 5: LIST OU'l'PU'f *

* *

*
*
*
*

Entry Parameters:
Register C:
Register E:

*
05H *
ASCII Character*

*

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

Ka
yp
roJ
ou
rna
l

* *
* FUNC'rION 6: DIRECT CONSOLE I/0 *
* *
*************************************** ,. Entry Parameters: *
* Register C: 06H *
* Register E: 0FFH (input) or *
* char (output) *
* *
* Returned Value: *
* Register A: char or status * (no value) *

Direct console I/0 is supported under CP/M for those specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-Pl. Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BOOS so that they can be fully supported under future
releases of MP/Mand CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A= 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in Eis not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

10

Ka
yp
roJ
ou
rna
l

* *
* FUNCTION 7: GET I/0 BY'l'E

*
*
*

* Entry Parameters: *
* Register C: 07H *

* *
* Returned Value: *
* Register A: I/0 Byte Value *

The Get I/0 Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

*
*
*

Fm~c·rION 8: SET I/0 BYTE
*
*
*

*
*
*
*

Entry Parameters:
Register C:
Register E:

08H
I/0 Byte Value

*
*
*
*

The Set I/0 Byte function changes the system
that given in register E.

*
* FUNC'£ION 9:
*

PRI N'l' STRING
*
*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

091!
String Address

*
*
*
*

IOBYTE value to

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a"$"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research,)

11

Ka
yp
roJ
ou
rna
l

* *
* FUNC'I' ION 10: READ CONSOLE BUFFER *
* *

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

0AH
Buffer Address

*
*
*
*

* Returned Value: *
* Console Characters in Buffer *

·rhe Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +l +2 +3 +4 +5 +6 +7 +8

lmxlnclcllc2lc3lc4lc5lc6lc71 . . .
+n

l??I

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by "??" in the above fiqure. A number of control functions are
recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-U
ctl-x

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line
retypes the current line after new line
removes currnt line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to
the extreme left margin). This convention makes operator data input
and line correction more legible.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Ka
yp
roJ
ou
rna
l

* *
* FUNCTION 11: GET CONSOLE s·rA·rus *
* *

*
*
*

Entry Parameters:
Register C: 0BH

*
*
*

* Returned Value: *
* Register A: Console Status *

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value 0FFH is
returned in register A. Otherwise a 00H value is returned.

****w**********************************
* *
* FUNC"rION 12: RE'rURN VERSION NUMBER *
* *

*
*
*

Entry Parameters:
Register C: 0CH

*
*
*

* Returned Value: *
* Registers HL: Version Number *

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 00
designating the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

13

Ka
yp
roJ
ou
rna
l

* *
* FUNCTION 13: RESET DISK SYSTEM *
" * *****************************•*********
* Entry Parameters: *
* Register C: 0DH *
* *

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default OMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program which requires a. disk
change without a system reboot.

*
* FUNCTION 14: SELECT DISK
"

*
*
*

* Entry Parameters: *
* Register C: 0EH *
* Register E: Selected Disk *
" " ***************************************

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= 0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive Pin a full sixteen drive system. The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB's which specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)

14

Ka
yp
roJ
ou
rna
l

* * FUNC'rION 15: OPEN FILE
*

*
*
*

*
*
*

Entry Parameters:
Register C:
Registers DE:

0FH
FCB Address

*
*
*

* * * Returned Value: *
* Register A: Directory Code *

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FOOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no question
marks are included and, further, bytes "ex'' and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a "directory code" with the value 0 through 3 if the open was
successful, or 0FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("er") must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Ka
yp
roJ
ou
rna
l

~**********************************
* *
* FUNCTION 16: CLOSE FILE
*

*
*

•~*************************************
* Entry Parameters: *
* Register C: 10H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is
returned if the file name cannot be found in the directory, A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

Ka
yp
roJ
ou
rna
l

*
*
*

FUNCTION 17: SEARCH FOR FIRST
*
*
*

* Entry Parameters: *
* Register C: llH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A* 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F' hexadecimal) in any
position from "fl" through "ex" matches the ccrresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed.

* *
* FUNCTION 18: SEARCH FOR NEXT
*

*
*

* Entry Parameters: *
! Register C: 12H !
* Returned Value: *
* Register A: Directory Code *

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

Ka
yp
roJ
ou
rna
l

* *
* FUNCTION 19: DELETE FILE
*

*
*

* Entry Parameters: *
* Register C: 13H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255
files cannot be found, otherwise a
returned.

* *
*
*

FUNC'rION 2 0: READ SEQUENTIAL *
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

14H
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

if the referenced file or
value in the range 0 to 3 is

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "er" of the
extent, and the •·er" field is automatically incremented to the next
record position. If the "er" field overflows then the next logical
extent is automatically opened and the "er" field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

18

Ka
yp
roJ
ou
rna
l

*
*
*

FUNCTION 21: WRI'rE SEQUENTIAL
*
*
*

* Entry Parameters: *
* Register C: 15H *
* Registers DE: FCB Address *
* * * Returned Value: *
* Register A: Directory Code *

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "er" of
the.file, and the "er" field is automatically incremented to the next
record position. If the "er" field overflows then the next logical
extent is automatically opened and the "er" field is reset to zero in
preparation for the next write operation. write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A= 00H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

*
*
*

FUNCTION 2}: MAKE FILE
*
*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

16H
FCB Address

*
*
*
* * Returned Value: *

* Register A: Directory Code *

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if "dr'' is zero). The FOOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A= 0,
1, 2, or 3 if the operation was successful and 0FFH (255 decimal) if
no more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

Ka
yp
roJ
ou
rna
l

* *
*
*

FUNC'rION 23: RENAME FILE *
*

* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position 0 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 0 and 3 if the rename was successful, and
0FFH (255 decimal) if the first file name could not be found in the
directory scan.

* *
*
*

FUNC'I' ION 2 4: RETURN LOGIN VECTOR *
*

*
*
*

Entry Parameters:
Register C: 18H

*
*
*

* Returned Value: *
* Registers HL: Login Vector *

The login vector value returned by CP/M is a 16-bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line, while
a "l" bit marks an drive tha.t·is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is ma·intained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

Ka
yp
roJ
ou
rna
l

*
*
*

FUNCTION 25: RETURN CURRENT DISK
*
*
*

* Entry Parameters: *
* Register C: 19H *
* * * Returned Value: *
* Register A: Current Disk *

in
to

Function 25 returns the currently selected default disk number
register A. The disk numbers range from 0 through 15 corresponding
drives A through P.

*
* FUNC'rION 26: SET OMA ADDRESS
*

*
*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

lAH
OMA Address

*
*
*
* ***************************************

'_'DMA" is an acronym for Direct Memory Address, which is often
used 1n connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-DMA access (i.e.,
the data is transfered through programmed I/0 operations), the OMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the OMA address is
automatically set to BOOT+0080H. The Set OMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set OMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to Digital Research,)

21

Ka
yp
roJ
ou
rna
l

* *
*
*

FUNC'rION 27: GET ADDR(ALLOC) *
*

*
*
*

Entry Parameters:
Register C: lBH

*
*
*

* Returned Value: *
* Registers HL: ALLOC Address *

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Al though th is fun ct ion is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide."

* *
* FUNCTION 28: WRI'rE PROTECT DISK *
* *

*
*
*

Entry Parameters: *
*
*

Register C: lCH

The
protection
the disk,
message

disk write protect function provides temporary write
for the currently selected disk. Any attempt to write to

before the next cold or warm start operation produces the

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

Ka
yp
roJ
ou
rna
l

*
*
*

FUNCTION 29: GET READ/ONLY VECTOR
*
*
*

* Entry Parameters:
* Register C: lDH
*

*
*
*

* Returned Value: *
* Registers HL: R/0 Vector Value*

Function 2Y returns a bit vector in register pair iiL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *

* Entry Parameters: *
* Register C: lEH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are /not involved
in the matching process during file open and close operations.
Indicators f5' through f8' and t3' are reserved for future system
expansion.

(All Information Contained Herein is Proprietary to Digital Research.)

23

Ka
yp
roJ
ou
rna
l

* *
*
*

FUNCTION 31: GET ADDR(DISK PARMS) *
*

* Entry Parameters: *
* Register C: lFH *
* *
* Returned Value: *
* Registers HL: DPB Address *

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk paftl!T,eters
when the disk environment changes, if requir--ea. Normally, application
programs will not require this ~ilfty.

**********i**************************#*
* *
*
*

FUNC'I'ION 3 2: SE"r/GE'r USER CODE *
*

* Entry Parameters: *
* Register C: 20H *
* Register E: 0FFH (get) or *
* User Code (set) *

" *
* Returned Value: *
* Register A: Current Code or *
* (no value) *

An application program can change or interrogate the currently
active user number by calling function 32. If register E = 0FFH, then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31. If register Eis not 0FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

Ka
yp
roJ
ou
rna
l

* *
* FUNCTION 33: READ RANDOM
*

*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

21H
FCB Address

*
*
*
*

* Returned Value: *
* Reaister A: Return Code *

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 0 to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into th-:> random record field
(r0,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/0 operation.

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

Ka
yp
roJ
ou
rna
l

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)

26

Ka
yp
roJ
ou
rna
l

* * FUNCTION 34: WRITE RANDa.!
*

*
*
*

Entry Parameters:

Register C: 22H
*
*
*
*

Registers DE: FCB Address

*
*
*
* * Returned Value: *

* Register A: Return Code *

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode.

The error codes returned
random read operation with
indicates that a new extent
over fl ow.

by a random write are identical to the
the addition of error code 05, which
cannot be created due to directory

(All Information Contained Herein is Proprietary to Digital Research.)

27

Ka
yp
roJ
ou
rna
l

* *
* FUNCTION 35: COMPUTE FILE SIZE *

*

* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiquous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a
16-bit value (r0 is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

Ka
yp
roJ
ou
rna
l

* *
* FUNC'rION 3 6: SET RAND(l,1 RECORD *
* *

* Entry Parameters: *
* Register C: 24H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *

The Set Random Record function causes the
produce the random record position from a file
written sequentially to a particular point.
useful in two ways.

BDOS to automatically
which has been read or
The function can be

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
•rhe scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

(All Information Contained Herein is Proprietary to Digital Research.)

29

Ka
yp
roJ
ou
rna
l

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example of
file 6perations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at 006CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at 005CH is
properly set-up by the CCP upon entry to the COPY program. That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at 007CH. •rhe program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this is
successful, the program loops at the label COPY until each record has
been read from the source file and placed into the destination file.
Upon completion of the data transfer, the destination file is closed
and the program returns to the CCP command level by jumping to BOOT.

. sample file-to-file copy program ' . •
at the ccp level, the command .

' copy a:x.y b:u.v

copies the file named x.y from drive
; a to a file named u. v on drive b.
;

0000 = boot equ 0000h . system reboot •
0005 = bdos equ 0005h bdos entry point
005c = fcbl equ 005ch first file name
005c = sfcb equ fcbl . source fcb ' 006c = fcb2 equ 006ch second file name
0080 = dbuff equ 0080h default buffer
0100 = tpa equ 0100h beg inning of tpa . •
0009 = printf equ 9 ; print buffer func#
000f = openf equ 15 open file func#
0010 = closef equ 16 ; close file func#
0013 = delete£ equ 19 delete file func#
0014 = readf equ 20 sequential read
0015 = writef equ 21 sequential write
0016 = makef equ 22 make file func#

;
0100 org tpa beginning of tpa
0100 3llb02 lxi sp,stack; local stack .

' move second file name to dfcb
0103 0el0 mvi c,16 ; half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

Ka
yp
roJ
ou
rna
l

010 5 l l 6c0 0
0108 2lda01
010b la mfcb:
010c 13
010d 7 7
010e 23
010f 0d
0110 c20b01

0113 af
0114 32fa01

011 7 l l 5c0 0
011a cd6901
011d 118701
0120 3c
0121 cc6101

0124 llda01
0127 cd7301

012a llda01
012d cd8201
0130 119601
0133 3c
0134 CC6101

;

;

;
0137 115c00 copy:
013a cd7801
013d b7
0 l 3e c2 5101

0141 llda01
0144 cd7d01
0147 lla901
014a b7
014b c46101
014e c33701

0151 llda01
0154 cd6e01
0157 2lbb01
015a 3c
015b cc6101

.
'

eofile:

.
'

lxi
lxi
ldax
inx
mov
inx
dcr
jnz

d, fcb2
h,dfcb
d
d
m,a
h
C

mfcb

; source of move
destination fcb

; source fcb
ready next
dest fcb
ready next
count 16 ... 0

; loop 16 times

name has been moved, zero er
xra a ; a= 00h
sta dfcbcr ; current rec= 0

source and destination fcb's ready

lxi
call
lxi
inr
CZ

source
lxi
call

lxi
call
lxi
inr
CZ

d,sfcb source file
open ; error if 255
d,nofile; ready message
a 255 becomes 0
finis ; done if no file

file open,
d,dfcb
delete ;

d,dfcb
make
d,nodir
a
finis

prep destination
destination
remove if present

destination
create the file
ready message
255 becomes 0
done if no dir space

source file open, dest file open
copy until end of file on source

lxi
call
ora
jnz

d,sfcb
read
a
eof ile

source
; read next record

end of file?
skip write if so

not end
lxi

of file, write the record
d,dfcb destination

call
lxi
ora
cnz
jmp

; end
lxi
call
lxi
inr
CZ

write write record
d,space ready message
a 00 if write ck
finis end if so
copy loop until eof

of file,
d,dfcb
close

close de~tination

h,wrprot;
a ;
finis

destination
255 if error
ready message
255 becomes 00
shoulcln't happen

copy operation complete, end-

(All Information Contained Herein is Proprietary to Digital Research.)

31

Ka
yp
roJ
ou
rna
l

015e llcc01

0161
0163
0166

0e09
cd0500
c30000

;
finis:

;

lxi

; write
mvi
call
jmp

d,normal; ready message

message given by de, reboot
c,printf
bdos ; write message
boot ; reboot system

system interface subroutines
(all return directly from bdos)

;
0169 0e0f open: mvi
016b c30500 jmp .

' 016e 0el0 close: mvi
0170 c30500 jmp

;
0173 0el3 delete: mvi
0175 c30500 jmp

' 01780el4 read: mvi
017a c30500 jmp

;
017d 0el5 write: mvi
017f C30500 jmp .

' 0182 0el 6 make: mvi
0184 c30500 jmp

;

c,openf
bdos

c,closef
bdos

c,deletef
bdos

c,readf
bdos

c,writef
bdos

c,makef
bdos

0187
0196
0la9
0lbb
lillcc

.
' 6e6f20fnof ile:

console
db

messages
'no source file$'

6e6f209nodir:
6f7574fspace:
7 7 7 2695wrprot:
636f700normal:

0 lcla
0lfa =

dfcb:
dfcbcr

0lfb

021b
stack:

db
db
db
db

data
ds
equ

ds

end

'no directory space$'
'out of data space$'
'write protected?$'
'copy complete$'

areas
33
dfcb+3 2 ;

destination fcb
current record

32 ; 16 level stack

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32 byte default area--starting at
location 005CH for ASCII question marks. A check should also be made
to ensure that the file names have, in fact, been included (check
locations 005DH and 006DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

Ka
yp
roJ
ou
rna
l

the size of memory by fetching FBASE from location 0006H and use the
entire remaining portion of memory for a data buffer. In this case,
the progr~mer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

Ka
yp
roJ
ou
rna
l

4. A SAMPLE FILE DUMP U'l'ILITY.

'rhe file dump program shown below is slightly more complex than
the simple copy program qiven in the previous section. The dump
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

0100
0005 =
0001 =
0002 =
0009 =
000b =
0 00f =
0014 =

0 0 Sc =
0080 =

0 00d =
0 00a =

0 05c =
005d =
0065 =
0068 =
006b =
007c =
007d =

0100 210000
0103 39

0104 221502

0107 315702

010a cdcl 01
010d feff
0 l0f c2lb01

0112 llf301
0115 cd9c01
0118 c35101

DUMP program reads input file and displays hex data
;

bdos
cons
typef
pr1ntf
brkf
openf
readf

fcb
buff

ora
egu
eou
egu
egu
egu
equ
equ

egu
equ

100h
00 05h
l
2
9
11
15
20

Sch
80h

;dos entry point
; read console
; type function
;buffer print entry
;break key function (true if char
;file open
;read function

;file control block address
;input disk buffer address

non graphic characters
er egu 0dh ;carriage return
lf

fcbdn
fcbfn
fcbf t
fcbrl
fcbrc
fcbcr
fcbln

egu 0ah ; line feed

file control block definitions
egu fcb+(J ;disk name
egu fcb+l ;file name
equ fcb+9 ;disk file type (3 characters)
equ fcb+l2 ;file's current reel number
equ fcb+l5 ;file's record count (0 to 128)
equ fcb+32 ;current (next) record number (0
equ fcb+33 ;fcb length

set up stack
lxi h,0
dad sp
entry stack pointer in hl from the ccp
shld oldsp
set sp to local stack area (restored at finis)
lxi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file not there, give error message and return
lxi
call
jmp

d,opnmsg
err
finis ;to return

(All Information Contained Herein is Proprietary to Digital Research.)

34

Ka
yp
roJ
ou
rna
l

011b 3e80
011d 321302

0120 210000

0123 es
0124 cda201
0127 el
0128 da5101
012b 4 7

012c 7d
012d e60f
012f c24401

0132 cd7201

0135 cd5901

0138 0f
0139 da5101

013c 7c
013d cd8f01
0140 7d
0141 cd8f01

0144 23
0145 3e20
0147 cd6501
014a 7 8
014b cd8f01
014e c32301

0151 cd7201
0154 2al502
015 7 f9

0158 c9

0159 eSdScS
015c 0e0b
015e cd0500
0161 cldlel

openok:

.
' .
' gloop:

nonum:

;
finis:

.
'
;
break:

;open operation ok, set buffer index to end
mvi a,80h
sta ibp
hl contains
lxi h,0

;set buffer
next address to

;start with

pointer
print
0000

;save line position

to 80h

push
call
pop

h
gnb
h ;recall line position

jc
mov
print
check
mov
ani
jnz
print
call

check
call
accum
rrc
jc

mov
call
mov
call

inx
mvi
call
mov
call
jmp

finis
b,a

hex values

;carry set by gnb if end file

for line fold
a,l
0fh ;check low 4 bits
nonum

line number
crlf

for break key
break

lsb = 1 if character ready
; into carry

finis ;don't print any more

a,h
phex
a,l
phex

h
a, I I

pchar
a,b
phex
gloop

;to next line number

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call crlf
lhld oldsp
sphl
stack pointer contains ccp's stack location
ret ;to the ccp

subroutines

;check break key (actually any key will do)
push h! push d! push b; environment saved
rnvi c,brkt
call bdos
pop bl pop d! pop h; environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

Ka
yp
roJ
ou
rna
l

0164 c9 ret
1
pchar: ;print a character

0165 e5d5c5 push h ! push d ! push b; saved
0168 0e02 mvi c,typef
016a Sf mov e,a
016b cd0500 call bdos
016e cldlel pop b! pop d! pop h; restored
0171 c9 ret

1
er lf:

0172 3e0d mvi a,cr
0174 cd6501 call pchar
0177 3e0a mvi a,lf
0179 cd6501 call pchar
01 7c c9 ret

pnib: ;print nibble in reg a
017d e60f ani 0fh ; low 4 bits
0 l 7f fe0a cpi 10
0181 d28901 jnc 010

less than or equal to 9
0184 c630 adi '0'
0186 c38b01 jmp prn

greater or equal to 10
0189 c6 3 7 pl0: adi 'a, - 10
018b cd6501 prn: cal 1 pchar
018e c9 ret

1
phex: ;print hex char in reg a

018f f5 push psw
0190 0f rrc
0191 0f rrc
0192 0f rrc
0193 0f rrc
0194 cd7d01 call pnib ;print nibble
0197 fl pop psw
0198 cd7d01 call pnib
019b c9 ret

1
err: ;pr int error message

d,e addresses message ending with "$''
019c 0e09 mvi c,printf ;print buffer function
019e cd0500 cal 1 bdos
0 lal c9 ret

1
gnb: ;get next byte

0 la2 3al302 lda ibp
0 laS fe80 cpi 80h
0 la7 c2b30l jnz g0

read another buffer

(All Information Contained Herein is Proprietary to Digital Research.)

36

Ka
yp
roJ
ou
rna
l

0laa cdce01
0lad b7
0lae cab301

0lbl 3 7
0lb2 c9

0 lb3 Sf
0lb4 1600
0lb6 Jc
0lb7 321302

0lba 218000
0lbd 19

01be 7e

0 lbf b7
0lc0 c9

0 lcl af
0lc2 327c00

0lc5
0lc8
0lca

ll.5c00
0e0f
cd0500

0lcd c9

0lce e5d5c5
0 ldl l l 5c0 0
0ld4 0el4
0ld6 cd0500
0ld9 cldlel
0ldc c9

.
'

.
' g0:

; .
'

;

.
' setup:
;

.
' .
' diskr:

;
0ldd 46494c0signon:
0lf3 0d0a4e0opnmsg:

.
' 0213 ibp:

0215 oldsp:

0217
stktop: .
' 0257

call diskr
ora a
jz g0
end of data,
stc
ret

;zero value if read ok
;for another byte

return with carry set for

;read the byte at buff+reg a

eof

mov e,a ;ls byte of buffer index
mvi d,0 ;double precision index to de
inr a ;index=index+l
sta ibp ;back to memory
pointer is incremented
save the current file address
lxi h,buff
dad d
absolute character address is in hl
mov a,m
byte is in the accumulator
ora a ;reset carry bit
ret

;set up file
open the file
xra a

for input

sta fcbcr
;zero to accum
; clear cur rent record

lxi d,fcb
mvi c,openf
call bdos
255 in accum if
ret

open error

;read disk file record
push h! push d! push b
lxi d,fcb
mvi c., r.eadf
call bdos
pop b! pop d! pop h
ret

fixed
db

message area
'file dump version 2.0$'

db cr,lf,'no input file present on disk$'

variable area
ds 2 ;input buffer pointer
ds 2 ;entry sp value from ccp

stack area
ds 64 ;reserve 32 level stack

end

(All Information Contained Herein is Proprietary to Digital Research.)

37

Ka
yp
roJ
ou
rna
l

5, A SAMPLE RANDOO ACCESS PROGRAM,

This manual is concluded with a rather extensive, but complete
example of randan access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assanbled, and placed into a file labelled RANDOO,COM, the CCP level
command:

RANDOO X. DAT

starts the test program. The program looks for a file by the name
X,DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given, Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return,
The input commands take the form

nw nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDOO program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOO then writes the character string into the
X,DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console, If the
Q command is issued, the X,DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted, The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input line processor, called "readc,"
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

Ka
yp
roJ
ou
rna
l

0100

0 000 =
0005 =

0 001 =
0002 =
0 009 =
000a =
000c =
000f =
0010 =
0 016 =

• 0 0 21 =
0 022 =

005c =
007d =
007f =
0 080 =

000d =
000a =

0100 3lbc0

0103 0e0c
0105 cd050
0108 fe20
010a d2160

010d l l lb0
0110 cdda0
0113 c3000

0116 0e0f
0118 l l 5c0
0 llb cd050
0 lle 3c
0 llf c2370

·*** ,
• * * ,
;* sample random access program for cp/m 2.0 * • * * ,
·*** ,

reboot
bdos

coninp
conout
pstring
rstring
version
openf
closef
makef
readr
writer

fcb
ranrec
ranovf
buff

er
lf

org

egu
egu

egu
egu
egu
egu
egu
egu
egu
egu
egu
egu

egu
egu
egu
egu

egu
egu

10 0h

0000h
0 005h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

;base of tpa

;system reboot
;bdos entry point

;console input function
;console output function
;print string until '$'
;read console buffer
;return version number
;file open function
;close function
;make file function
; read rand om
;write random

;default file control block
;random record position
;high order (overflow) byte
;buffer address

; carriage return
;line feed

,
·*** ,
• * * ,
;* load SP, set-up file for random access *
• * * ,
·*** ,

;
versok:

lxi sp, stack

version 2.0?
mvi
call

c,version
bdos

cpi 20h ;version 2.0 or better?
jnc
bad
lxi
call
jmp

ve r sok
version, message and go back

d,badver
print
reboot

correct version for r anciom access
mvi c,openf ;open default fcb
lxi d,fcb
call bdos
inr a ;err 255 becomes
jnz ready

cannot open file, so create it

zero

(All Information Contained Herein is Proprietary to Digital Research.)

39

Ka
yp
roJ
ou
rna
l

0122 0el6
0124 ll5c0
0127 cd050
012a 3c
012b c2370

0 l2e l 13a0
0131 cdda0
0134 C3000

0137 cde50
013a 22 7d0
013d 217f0
0140 3600
0142 feSl
0144 c2560

0147 0el0
0149 l 15c0
014c cd050
014f 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b l 14d0
015e cdda0
0161 0e7f
0163 21800

0166 cs
0167 es
0168 cdc20
016b el

mvi c,makef
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

; . cannot create file, directory full ,
lxi d,nospace
call print
jmp reboot ; back to ccp .

' •***
' • * *
' • * '

loop back to "ready'' after each command *
• * * ' ·*** ' .
' ready:
; file is ready for processing

call read com ;read next command
shld ranrec ;store input record#
lxi h,ranovf
mvi m,0 ;clear high byte if set
cpi 'Q. ;quit?
jnz notq

quit processing, close file
mvi c,closef
lxi d,fcb
call bdos
inr a ;err 255 becomes 0
jz error ;error message, retry
jmp reboot ; back to ccp

;
·*** ,
• * * •
;* end of quit command, process write *
• * * ,
·*** •
notq:

r loop:

not
cpi
jnz

this
lxi
call
mvi
lxi

the quit command, rand om write?
'W'
notw

is a random write, fill buffer
d,datmsg
print ;data prompt

until

c,127 ;up to 127 characters
h,buff ;destination

; read next character to buff
push b ;save counter
push h ;next destination
call getchr ;character to a
pop h ;restore counter

er

(All Information Contained Herein is Proprietary to Digital Research.)

40

Ka
yp
roJ
ou
rna
l

016c cl
016d fe0d
016f ca7 80

0172 77
0173 23
017 4 0d
0175 c2660

0178 3600

017a
017c
0 l 7f
0182
0183
0186

0e22
ll 5c0
cd050
b7
c2b90
c3370

0189 fe52
018b c2b90

018e 0e21
0190 115c0
0193 cd050
0196 b7
0197 c2b90

019a
019d
019f

cdcf0
0e80
21800

0la2 7e
0 la3 2 3
0la4 e67f
0la6 ca370
0la9 cS
0laa es
0lab fe20
0lad d4c80
0 lb0 el
0 lbl cl
0lb2 0d
0lb3 c2a20
0lb6 c3370

er loop:

pop
cpi
jz
not
mov
inx
dcr
jnz

b
er
er loop

end, store
m,a
h
C

rloop

;restore next to fill
;end of line?

character

;next to fill
;counter goes down
;end of buffer?

end of read loop, store 00
mvi m, 0

write the record to selected record number
mvi
lxi
call
ora
jnz
jmp

c,writer
d, fcb
bdos
a
error
ready

;error code zero?
;message if not
;for another record

;
;***
·* ,
;* end of write command, process read
·* •

*
*
*

·*** ,
notw:
;

. •

; . •

wloop:

not a write command, read record?
cpi
jnz

read
mvi
lxi
call
ora
jnz

'R'
error ; skip if not

random record
c, read r
d,fcb
bdos
a ;return code 00?
error

read was successful, write to console
call crlf ;new line
mvi c,128 ;max 128 characters
lxi h,buff ;next to get

mov
inx
ani
jz
push
push
cpi
enc
pop
pop
dcr
jnz
jmp

a,m
h
7fh
ready
b
h
' '
putchr
h
b
C

wloop
ready

;next character
;next to get
;mask parity
;for another command if ~0
;save counter
; save next to get
;graphic?
;skip output if not

; count=count-1

(All Information Contained Herein is Proprietary to Digital Research.)

41

Ka
yp
roJ
ou
rna
l

0lb9 11590
0lbc cdda0
0lbf c3370

0 lc2
0lc4
0 lc7

0e01
cd050
c9

0lc8 0e02
0lca 5f
0lcb cd050
0 lce c9

0lcf 3e0d
0ldl cdc80
0 ld4 3e0a
0ld6 cdc80
0ld9 c9

0lda d5
0 ldb cdcf0
0 lde dl
0ldf 0e09
0lel cd050
0 le4 c9

0le5 116b0
0 le8 cdda0
0leb 0e0a
0led 117a0
01f0 cd050

. ,
;***
·* * ,
;* end of read command, all errors end-up here
• * , *

*
;***

error:
lxi
call
jmp

d,errmsg
print
ready

,
;***
·* * ,
;* utility subroutines for console i/o *
·* * ,
•*** ' getchr:

putchr:

crlf:

pr int:

. ,
read com:

; read
mvi
call
ret

next console character to a
c,coninp
bdos

;write character from a to console
mvi
mov
call
ret

c,conout
e,a ;character to send
bdos ;send character

;send carriage return line feed
mvi
call
mvi
call
ret

;print
push
call
pop
mvi
call
ret

a,cr ;carriage return
putchr
a,lf ;line feed
putchr

the buffer addressed by de until$
d
crlf
d ;new line
c,pstring
bdos ;print the string

;read
lxi
call

the next command line to the conbuf
d ,prompt

mvi
lxi
call
command

print ;command?
c,rstring
d,conbuf
bdos ;read command line
line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)

42

Ka
yp
roJ
ou
rna
l

0lf3 21000
0lf6 ll 7c0

h,0 ;start with 0000
d,conlin;command line

0lf9 la readc:

lxi
lxi
ldax
inx
ora
rz
not
sui
cpi

d ;next command character
0lfa 13
0 lfb b7
0lfc c8

0lfd d630
0lff fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
0 20a 8 5
0 20b 6f
020c d2f90
0 20f 2 4
0210 C3f90

0213 C630
0215 fe61
0217 dB

0218 e65f
0 21a c9

;

endrd: .
'

d ;to next command position
a ;cannot be end of command

zero, numeric?

jnc
add-in
dad
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

I 0 I

10 ;carry if numeric
endrd

next digit
h ; *2
c,l
b,h
h
h
b
1
l,a
readc
h
readc

;be= value* 2
;*4
;*8
;*2 + *8 = *10
; +digit

;for another char
;overflow
;for another char

end of read, restore value in a
adi '0' ;command
cpi 'a' ;translate case?
re
lower case, mask lower case bits
ani 101$llllb
ret

;
·*** ' • * * ,
; * string data area for console messages * • * * ,
·*** ,
badve r:

021b 536f79 db 'sorry, you need cp/m verdion 2$'
nospace:

0 23a 4e6f29 db 'no directory space$'
datmsg:

024d 547970 db 'type data: $ I

er rmsg:
0259 457272 db 'error, try again.$'

prompt:
026b 4e6570 db 'next command? $ I

(All Information Contained Herein is Proprietary to Digital Research.)

43

Ka
yp
roJ
ou
rna
l

027a 21
0 27b
0 27c
0 021 =

029c

0 2bc

;***
• * * ,
;* fixed and variable data area *
•* * ,
;***
conbuf: db conlen ; length of console buffer
crrnsiz: ds 1 ; resulting size after read
conl in: ds 32 ; length 32 buffer
conlen egu $-consiz

ds 32 ;16 level stack
stack:

end

Again, major improvements could be made to this particular
program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GE'l'KEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DA'r LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LAS'rNAME field, alonq with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical
list of LAS'rNAME fields with their corresponding record numbers.
(This list is called an "inverted index" in information retrieval
parlance.)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DA'r data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)

44

Ka
yp
roJ
ou
rna
l

At this point you're just getting started. With a little more
work, you can allCM a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randornly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL; and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

Ka
yp
roJ
ou
rna
l

6, SYSTEM FUNCTION SUMMARY,

FUNC FUNCTION NAME INPUT PARAME"rERS OUTPUT RESULTS

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I/O
Get I/O Byte
Set I/O Byte
Print String
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
Write Sequential
Make File
Re name Fi 1 e
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr(Alloc)
Write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr(disk parms)
Set/Get User Code
Read Random
Write Random
Compute File Size
Set Randan Record

none
none
E = char
none
E = char
E = char
see def
none
E = IOBYTE
DE = .Buffer
DE= ,Buffer
none
none
none
E = Disk Number
DE= ,FCB
DE= ,FCB
DE= .FCB
none
DE= .FCB
DE = . FCB
DE= .FCB
DE= ,FCB
DE= ,FCB
none
none
DE= ,DMA
none
none
non~
DE= .FCB
none
see def
DE= ,FCB
DE= ,FCB
DE= ,FCB
DE= .FCB

* Note that A= L, and B = H upon return

none
A= char
none
A= char
none
none
see def
A = IOBYTE
none
none
see def
A= 00/FF
HL= Version*
see def
see def
A= Dir Code
A= Dir Code
A = Dir Code
A= Dir Code
A = Dir Code
A= Err Code
A= Err Code
A= Dir Code
A= Dir Code
HL= Login Vect*
A= Cur Disk#
none
HL= ,Allee
see def
HL= R/O vect*
see def
HL= .DPB
see def
A= Err Code
A = Err Code
r0, rl, r2
r0, rl, r2

(All Information Contained Herein is Proprietary to Digital Research,)

46

Ka
yp
roJ
ou
rna
l

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M ASSEMBLER (ASM)

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH Ka
yp
roJ
ou
rna
l

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Ka
yp
roJ
ou
rna
l

Table of Contents

Section Page

1.
2.
3.

4.

5.

6.
7.

INrRJIXJCTIOl • ••••••••••••••••••••••••••••••••••••••
PRCXiRAM R)ll'AT •••••••••••••••••••••••••••••••••••••

POll4Illi THE CPERAND ••••••••••••••••••••••••••••••••
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

labels•••••••••••••••••••••••••••••••••••••••
Naneric Constants••••••••••••••••••••••••••••
leserved Words•••••••••••••••••••••••••••••••
Strirg Constants•••••••••••••••••••••••••••••
Arithmetic and I.Dgical Operators•••••••••••••
Precedence of Operators••••••••••••••••••••••

ASSEMBLER D~IVES •••••••••••••••••••••••••••••••
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

'rtle OR; Directive
'rtle END Directive
'rtle EQU Di.recti ve
'rtle SET Directive
'!be IF and mDIF
'!be 00 Directive
'!be CW Directive

• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••

Directives••••••••••••••••••
• ••••••••••••••••••••••••••••
• ••••••••••••••••••••••••••••

CPERATIOO CDIES ••••••••••••••••••••••••••••••••••••
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Jumps, calls, and Returns••••••••••••••••••••
Inmediate Operarrl Instructions•••••••••••••••
Increment and Decrement Instructions•••••••••
Data r-twement Instructions•••••••••••••••••••
Arithmetic u:>gic Unit Operations•••••••••••••
Control Instructions•••••••••••••••••••••••••

ERR)R r-ESSAGES •••••••••••••••••••••••••••••••••••••
A SAMPLE SESSIOO •••••••••••••••••••••••••••••••••••

1
2
4
4
4
5
6
6
7
8
8
9
9

10
Hl
11
12
12
13
14
14
14
15
16
16
17

Ka
yp
roJ
ou
rna
l

CP/M Asselli>ler User's Guide

1. INl'IOll.Cl'I~.

The CP/M assent>ler reads assent>ly language source files fran the diskette,
and i;roduces 8080 machine language in Intel hex format. The CP/M assentiler is
initiated by typing

ASM filename
or

ASM filename.parms

In both cases, the assent>ler assunes there is a file on the diskette with the
name

filename.ASM

which contains an 8080 assentily language source file. The first and second
forms slDwn above differ only in that the second form allows puameters to be
passed to the assent>ler to control source file access and hex and p:int file
destinations.

In either case, the CP/M assentiler loads, and p:ints the message

CP/M ASSEMBLER VER n.n

where n.n is the a.irrent version runtier.
the assent>ler reads the source file with
two output files

filename.HEX
and

filename.PRN

In the case of the first carmand,
assumed file type "ASH" and creates

the "HEX" file contains the nachine code corres~nding to the original i;rogram
in Intel hex format, and the "PRN" file contains an annotated listing showing
generated machine code, error flags, aoo source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The secooo camnaoo form can be used to redirect input and output files
fran their defaults. In this case, the "parms" POrtion of the carmand is a
three letter group which specifies the origin· of the source file, the
destination of the hex file, and the destination of the p:int file. The form
is

filename.plp2p3

where pl, p2, and p3 are single letters

pl: A, B, ••• , Y designates the disk name which contains

1

Ka
yp
roJ
ou
rna
l

p2:

p3:

Thus, the canmand

A9'I

A,B,

z
A,B,

X
z

X,AAA

••• , y

••• , y

the source file
designates the disk name which will re­
ceive the hex file
skips the generation of the hex file
designates the disk name which will re­
ceive the print file
places the listing at the console
skips generation of the print file

indicates that the source file {X.ASM) is to be taken fran disk A, and that
the hex {X.HEX) and print (X,PRN) files are to be created also on disk A.
This form of the canmand is implied if the asserri:Jler is run fran disk A. 'lhat
is, given that the operator is currently addressing disk A, the above conmand
is equivalent to

A9'I X

The canmand

A9'I X,ABX

indicates that the source file is to be taken fran disk A, the hex file is
placed on disk B, and the listing file is to be sent to the console. 'lhe
command

Af:M X,BZZ

takes the source file fran disk B, and skips the generation of the hex and
pr int files {this canmand is useful for fast execution of the asserri:Jler to
check program syntax).

The source program format is canpatible with both the Intel 8080 asserri:Jler
{macros are not currently implemented in the CP/M asserri:Jler, however) , as well
as the Processor Technology Software Package #1 asserrbler. That is, the CP/M
asserrbler accepts source programs written in either format. There are certain
extensions in the CP/M asserri:Jler which make it somewhat easier to use, These
extensions are described below.

2. PROORAM FORMAT,

An asserri:Jly language program acceptable as input to the asserrbler consists
of a sequence of statements of the form

line# lauel operation operand :canment

W'lere any or all of the fields may be present in a particular instance. Each

2

Ka
yp
roJ
ou
rna
l

"embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "!" which is a treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The linet is an optional decimal integer value representing the source
program line number, v.hich is allowed on any source line to maintain
canpatibili ty with the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original i:rogram, and thus ASM ignores this field if present.

or

The label field takes the form

identifier

identifier:

and is optional, except v.here noted in particular statement types. The
identifier is a sequence of alphanumeric characters (alphabetics and nuJOOers),
where the first character is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($) v.hich
can be used to improve readability of the name. Further, all lower ,case
alphabetics becane are treated as if they were uwer case. Note that the ":"
following the identifier in a label is optional (to maintain canpatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

X
x:
XlY2

xy
yxl:
Xlx2

long$name
longer$named$data:
x234$5678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8080 machine operation code, The pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements, Again, the canplete details of properly formed,
expressions are given below.

The canment field contains arbitrary characters following the ":" symbol
until the next real or logical end-of-line. These characters are read,
1 isted, and otherwise ignored by the assembler. In order to maintain
canpatability with the Processor Technology assembler, the CP/M assembler also
treat statements v.hich begin with a "*" in column one as canment statements,
which are listed and ignored in the assembly µ:ocess. Note that the Processor

3

Ka
yp
roJ
ou
rna
l

Technology assenbler has the side effect in its c:peration of ignoring the
characters after the c:perand field has been scanned. 'ltlis causes an ant>iguous
situation when attempting to be canpatible with Intel ·s language, since
arbitrary expressions are allowed in this case. Hence, IX"ograms which use
this side effect to introduce canments, must be edited to place a ":" before
these fields in order to assenble correctly.

'ltle assent>ly language IX"ogram is formulated as a sequence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. F0!"1I~ THE CPERAND.

In order to canpletely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed sl.i:>expressions by arithmetic and logical operators. 'ltle expression
canputation is carried out by the assent>ler as the assenbly proceeds. Each
expression must produce a 16-bit value during the assentily. Further, the
m.mber of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte !IDve illmediate instruction,
then the rost significant 8 bits of the expression must be zero. '!he
restrictions on the expression significance is given with the individual
instructions.

3.1. Labels.

As discussed above, a label is an identifier which occurs on a p:irticular
statement. In general, the label is given a value determined by the type of
statement which it precedes. 1f the label occurs on a statement which
generates machine code or reserves iremory sp:ice (e.g, a IOlJ instruction, or a
OS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SET, then the label is given
the value which results fran evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assenbler. 'ltlis value can then be canbined with other operands and c:perators
to form the c:perand field for a particular instruction.

3.2. Numeric Constants.

A numeric constant is a 16-bit value in one of several bases.
called the radix of the constant, is denoted by a trailing radix
The radix indicators are

B binary constant (base 2)
o octal constant (base 8)

4

'ltle base,
indicator.

Ka
yp
roJ
ou
rna
l

O octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix irxlicator for octal nunt>ers since the letter O is
easily cmfused with the digit 0, Any numeric constant which does not
terminate with a radix irxlicator is assumed to be a decimal constant,

A constant is thus composed as a sequence of digits, followed by an
optional radix irxlicator, \okiere the digits are in the appropriate range for
the radix. That is binary constants must be composed of 0 and 1 digits, octal
constants can contain digits in the range 0 - 7, \okiile decimal constants
contain decimal digits, Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (10D) , B (11D) , C (12D) , D (13D) , E (14D) , am F
(15D). Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading 0 will always suffice) , A constant composed in this
manner must E!\Taluate to a binary rn.utber which can be contained within a 16-bit
counter, otherwise it is truncated on the right by the assent>ler, Similar to
identifiers, imbedded "$" are allowed within constants to improve their
readability, Finally, the radix irxlicator is translated to upper case if a
lower case letter is encountered, The following are all valid instances of
numeric constants

1234
1234H
33770

1234D
0FFEH
0fe3h

3,3, Reserved Words,

1100B
33770
1234d

1111$0000$1111$0000B
33$77$22Q
0ffffh

There are SE!\Teral reserved character sequences which have predefined
meanings in the q:>erand field of a statement, The names of 8080 registers are
given below, \okiich, when encountered, produce the value shown to the right

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(again, lower case names have the same values as their upper case
equivalents), Machine instructions can also be used in the cp!rand field, am
evaluate to their internal codes, In the case of instructions which require
operands, where the s~cific cp!rand becanes a p:lrt of -the binary bit p:lttern

5

Ka
yp
roJ
ou
rna
l

of- -ttie instruction (e.g, MJV A,B) , the value of the instruction (in this case
MJIJ) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MJV produces 40H).

When the syrrbol "$" occurs in the operand field (not inbedded within
identifiers and numeric constants) its value beccmes the address of the next
instruction to generate, not including the instruction contained withing the
current logical line.

3.4. String Constants.

String constants represent sequences of ASCII characters, and are
represented by enclosing the dlaracters within apostrophe syrrbols ('). All
strings must be fully contained within the current physical line (thus
allowing "!" syrrbols within strings), and must not exceed 64 characters in
length. The apostrophe dlaracter itself can be included within a string by
representing it as a double apostrophe (the two keystrokes • '), which beccmes
a single apostrophe when read by the asserrbler. In rrost cases, the string
length is restricted to either one or two dlaracters (the DB pseudo operation
is an exception), in which case the string beccmes an 8 or 16 bit value,
respectively. Two character strings beccme a 16-bit constant, with the second
character as the low order byte, and the first dlaracter as the high order
byte.

The value of a dlaracter is its corresponding ASCII code. 'lbere is no
case translation within strings, and thus both u~r and lower case dlaracters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

'a""' """n"

'Walla Walla Wash.·
'She said "Hello" to me.·
·1 said "Hello" to her. •

3.5. Arithmetic and Logical Operators.

The cperands described above can be combined in normal algebraic notation
using any combination of properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a + b
a - b

+b
- b

a * b
a/ b
a MJD b
NO!' b

unsigned arithmetic s1.111 of a and b
unsigned arithmetic difference between a and b
unary plus (produces b)
unary minus (identical to 0 - b)
unsigned magnitude multiplication of a and b
unsigned magni-tude division of a by b
remainder after a/ b
logical inverse of b (all 0·s beccme 1·s, 1·s
beccme 0 • s) , where b is considered a 16-bi t value

6

Ka
yp
roJ
ou
rna
l

a AND b
a OR b
a XOR b
a SHL b

a SHR b

bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logicl exclusive or of a and b
the value which results fran shifting a to the
left by an anount b, with zero fill
the value which results fran shifting a to the
right by an anount b, with zero fill

In each case, a ard b represent simple operands (labels, numeric
constants, reserved words, and one or two dlaracter strings), or fully
enclosed i;arenthesized subexpressions such as

10+-20 10h+37Q Ll /3 (L2+4) SHR 3
OR (PSW+M) (a, and 5fh) + , 0, (B, +B)

(1+(2+c)) shr (A-(B+l))

Note that all canputations are i:erformed at assembly time as 16-bit unsigned
operations. Thus, -1 is canputed as 0-1 which results in the value 0ffffh
(i.e., all 1 • s) • The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bi ts of the expression must
be zero. As a result, the operation "ADI -1" produces an error message (-1
becanes 0ffffh llt]ich cannot be represented as an 8 bit value), while "ADI (-1)
AND 0FFH" is accepted by the asserrbler since the "AND" operation zeroes the
high order bits of the expression.

3.6. Precedence of Operators.

As a convenience to the p:-ogrammer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of i;arentheses. The resulting expression
has assumed i;arentheses lltlich are defined by the relative p:-ecedence. The
order of awlication of operators in unparenthesize expressions is listed
below. Operators listed first have highest p:-ecedence (they are applied first
in an unparenthesized expression) , while operators listed last have lowest
precedence. Operators listed on the same line have equal p:-ecedence, and are
applied fran left to right as they are encountered in an expression

*/MOD SHL SHR
- +
Nor
AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a* b + c
a + b * c
a IDD b * c SHL d

7

(a * b) + c
a + (b * c)
((a MOD b) * c) SHL d

Ka
yp
roJ
ou
rna
l

a OR b AND NOl' C + d SHL e a OR (b AND (NO!' (c + (d SHL e))))

Balanced p.renthesized sli>expressions can always be used to override the
assl.Dlled p.rentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(a OR bl AND (NO!' C) + d SHL e

resultirr:i in the assl.Dlled p.rentheses

(a OR b) AND ((NO!' c) + (d SHL e))

Note that an inparenthesized expression is well-formed only if the expression
which results £ran inserting the assumed p.rentheses is well-formed.

4. ASSEMBLER DIRECTIVES.

Assen'bler directives are used to set labels to specific values during the
assnt>ly, perform conditional assent>ly, define storage areas, and specify
starting crldresses in the program. F.ach assent>ler directive is denoted by a
"pseudo operation" which appears in the C{)eration field of the line. The
acceptable pseudo cperations are

Offi
END
mu
SE!'
IF
ENDIF
00
DYl
r:s

set the program or data origin
end program, optional start crldress
numeric "equate"
numeric 11 set 11

begin conditional asserbly
end of conditional assent>ly
define data bytes
define data words
define data·storage area

The individual pseudo operations are detailed below

4.1. The Offi directive.

The OR; statement takes the form

label ORG expression

where "label" is an optional program label, and expression is a 16-bit
expression, coosisting of operands llihich are defined previous to the ORG
statement. The assent>ler begins nachine code generation at the location
specified in the expression. There can be any nuntier of ORG statements within
a p.rticular program, and there are no checks to ensure that the programmer is
not defining overlapping menory areas. Note that 110st programs written for
the CP/M system begin with an ORG statement of the form

O.R; 100H

8

Ka
yp
roJ
ou
rna
l

which causes machine code generation to begin at the base of the CP/M
transient Irogram area. If a label is specified in the Offi statement, then
the label is given the value of the expression (this label can then be used in
the ~rand field of other statements to represent this expression).

4.2. The END directive.

The END statement is optional in an assent>ly language program, but if it
is ixesent it must be the last statement (all subsequent statements are
ignored in the assent>ly). The two forms of the END directive are

label END
label END expression

where the label is cgain optional. If the first form is used, the assent>ly
process stops, arrl the default starting address of the p:ogram is taken as
0000. otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results frcm the assent>ly) •
Thus, most CP/M assent>ly language µ:oqrams errl with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient
program area).

4.3. The EQU directive.

The EQU (equate) statement is used to set up synonyms for particular
numeric values. the form is

label mu expression

where the label must be ixesent, and must not label any other statement. The
asserrbler evaluates the expression, arrl assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a nore human-oriented manner. Further, this name is used
throughout the program to "parameterize" certain functions. Suppose , for
example, that data received frcm a Teletype appears on a i:articular input
port, arrl data is sent to the Teletype through the next output port in
sequence. The series of equate statements could be used to define these ports
for a particular hardware environment

'I'IYBASE
T'IYIN
T'IYOUT

mu 10H ;BASE IDRI' NUMBER FOR T1'Y
mu Tl'YBASE ;Tl'Y mTA IN
EQU T'IYBASE+l ;Tl'Y mTA OUT

At a later p:,int in the ixogram, the statements which access the Teletype
could appear as

9

Ka
yp
roJ
ou
rna
l

IN Tl'YIN ;READ T1'Y mTA 'IO REX.-A

•••
our T!'Your ;WRITE mTA 'IO T1'Y FRCM REX;-A

making the program nore readable than if the absolute i/o "fnrts had been
used. Further, if the hardware envirornnent is redefined to start the Teletype
communications "fnrts at 7FH instead of 10H, the first statement need only be
changed to

TIYBASE EX)U 7FH ;BASE FOR!' NUMBER FOR T1'Y

and the program can be reassent>led without changing any other statements.

4.4. The SE'l' Directive.

·!'he SET statement is similar to the EQU, taking the form

label SET expression

except that the label can occur on other SET statements within the program.
The expression is E!ll'aluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, 'ilhile the
SET statement defines a value which is valid fran the current SET statement to
the ,nint where the label occurs on the next SET statement. '.Ihe use of the
SET is similar to the EQU statement, but is used rrost often in controlling
conditional assembly.

4.5. The IF and ENDIF directives.

The IF and ENDIF statements define a range of asserrbly language statements
which are to be included or excluded during the asserrbly process. The form is

IF expression
statement#l
statement#2

•••
statement#n
ENDIF

Upon encountering the IF statement, the asserrbler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, then
statement#! through statement#n are asserrbled; if the expression evaluates to
zero, then the statements are listed but not asserrbled. Conditional asserrbly
is often used to write a single "generic" program which includes a nuroer of
possible run-time envirornnents, with only a few specific portions of the
program selected for any particular assembly. The following program segments
for example, might be p,rt of a i:roqram which canmunicates with either a
Teletype or a CR!' console (but not both) by selecting a i:articular value for
TTY before the asseroly begins

10

Ka
yp
roJ
ou
rna
l

"TiWE: B;)U 0FFFFH
FALSE B;)U NOi' TRJE .
' 'I'lY B;)U TRJE .
' 'I'IYBASE B;)U 10H
CRIBASE B;)U 20H

IF 'I'lY
CDNIN Er;>U TIYBASE
CDNCX.11' F.QU TIYBASE+l

ENDIF

IF Nor 'I'lY
CDNIN EX;)U CRI'BASE
CDNCX.11' B;)U CRI'BASE+ 1

ENDIF
•••
IN
•••
OUT

CDNIN

CDNOOI'

;DEFINE VALUE CF TRJE
;DEFINE VALUE CF FALSE

;TRJE IF TTY, FALSE IF CRl'

;BASE CF TTY I/O roRTS
; BASE CF CRl' I/O roRTS
;ASSEMBLE RELATIVE 'ID TTYBI\SE
;CONSOLE INPUT
;CDNSOLE OUTPUT

;ASSEMBLE RELATIVE 'ID CRl'BASE
;CDNSOLE INPUT
;CONSOLE OUTPUT

;RF.AD (l)NSOLE ffiTA

;wlUTE CDNSOLE ffiTA

In this case, the p:ogram would
is connected, based at port 10H.
to

assentile for an envirornnent lohere a Teletype
The statement defining TTY could be changed

'I'lY B;)U FALSE

and, in this case, the p:ogram would assemble for a CR!' based at port 20H.

4.6. The DB Directive.

The DB directive allows the p:ogrammer to define initialize storage areas
in single p:ecision (byte) format. The statement form is

label DB e#l, e#2, ••• , e#n

i.here e#l through e#n are either expressions lohich evaluate to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 characters. There is no p:actical restriction on the runtier
of expressions included on a single source line. The expressions are
evaluated arxl placed sequentially into the IIBchine code file following the
last i:rogram oodress generated by the assembler. String characters are
similarly placed into nemory starting with the first character arxl erxling with
the last character. Strings of length greater than two dlaracters cannot be
used as ~rands in more canplicated expressions (i.e., they must stand alone
between the canJIBS). Note that ASCII characters are always placed in memory
with the i;;arity bit reset (lil). Further, recall that there is no translation
fran lower to uwer case within strings. The qitional label can be used to
reference the data area throughout the renainder -of the p:ogram. Exaroples of

11

Ka
yp
roJ
ou
rna
l

valid DB statements are

data: DB
00

signon: 00
00

4.7. The r:llil Directive.

0,1,2,3,4,5
data and 0ffh,5,377O,1+2+3+4
• please type your name • , er , lf, 0
'AB' SHR 8, ·c·, 'DE' l\ND 7FH

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label OW e#l, e#2, .•• , e#n

W'lere e#l through e#n are expressions lrklich evaluate to 16-bit results. Note
that ASCII strings of length one or two c:naracters are allowed, but strings
longer than two c:naracters disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the
expression is stored forst in nemory, followed by the rrost significant byte.
Examples are

doub: r:llil 0ffefh,doub+4,signon-$,255+255
DW • a. , 5, • ab • , • CD. , 6 shl 8 or llb

4.8. The rs Directive.

The rs statenent is used to reserve an area of uninitialized memory, and
takes the form

label rs expression

where the label is q;>tional. The asserrt>ler begins subsequent code generation
after the area reserved by the DS. Thus, the DS statenent given above has
exactly the same effect as the statenent

label: EOU $;LABEL VALUE IS CURRENI' CXlrE LOCATION
OR. $+expression ;MJVE PASr RESERVED AREA

5, OPERATICN rores.

Assent>ly language operation codes form the principal part of asserrt>ly
language programs, and form the operation field of the instruction, In
general, A9'I accepts all the standard IITiem:>nics for the Intel 8080
microcanputer, W1ich are given in detail in the Intel manual "8080 Assent>ly
Language Programming Manual." Labels are q;>tional on each input line and, if
included, take the value of the instruction address immediately before the
instruction is issued. The individual operators are listed breifly in the

12

Ka
yp
roJ
ou
rna
l

followin, sections for canpleteness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range 0-7
l'klich can be one of the pi:edefined registers
A, 8, C, 0, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255

el6 represents a 16-bit value in the range 0-65535

l'k!ich can themselves be formed from an arbitrary combination of operands and
operators. In oorne cases, the operands are restricted to particular values
within the allowable range, such as the PUSH instruction. 'Ihese cases will be
noted as they are encountered.

In the sections l'klich follow, each operation codes is listed in its most
general form, along with a si;:ecific example, with a short explanation and
special restrictions.

• 5.1. Jumps, Calls, and Returns.

'!he Jump, Call, and Return instructions allow several different forms
which test the condition flags set in the 8080 microcomputer CPU. '!he forms
are

JMP el6 JMP Ll. Jump unconditionally to label
JNZ el6 JMP L2 Jump on non zero condition to label
JZ el6 JMP 100H Jump on zero condition to label
JNC el6 JNC Ll.+4 Jump no carry to label
JC el6 JC L3 Jump on carry to label
Jro el6 Jro $+8 Jump on parity odd to label
JPE el6 JPE L4 Jump on even i:arity to label
JP el6 JP Gr>.MMA Jump on positive result to label
JM el6 JM al Jump on minus to label

CALL el6 CALL Sl call subroutine unconditionally
CNZ el6 CNZ S2 ca11 subroutine if non zero flag
CZ el6 CZ 100H Call subroutine on zero flag
CNC el6 CNC S1+4 Call subroutine if no carry set
cc el6 cc S3 Call subroutine if carry set
cro el6 cro $+8 ca11 subroutine if parity odd
CPE el6 Cffi S4 call subroutine if i:arity even
CP el6 CP Gr>.MMA Call subroutine if positive result
CM el6 CM bl$c2 Call subroutine if minus flag

RST e3 RST 0 Programmed ''restart", equivalent to
CALL 8*e3, except one-byte call

13

Ka
yp
roJ
ou
rna
l

RET
RNZ
RZ
ROC
RC
RPO
RPE
RP
RM

lleturn fran subroutine
lleturn if non zero flag set
lleturn if zero flag set
Return if no carry
lleturn if carry flag set
lleturn if parity is odd
lleturn if parity is even
Return if positive result
lleturn if minus flag is set

5,2, Inmediate Operand Instructions.

Several instructions are available \\hich load single or double precision
registers, or single µ:ecision memory cells, with constant values, along with
instructions \\hich perform immediate arithmetic or logical operations on the
accumulator (register A).

MVI e3,e8

ADI es
ACT es
SUI es
SBI es
ANI e8
XRI es
ORI e8
CPI e8

LXI e3,el6

MVI B,255

ADI 1
ACI 0FFH
SUI L + 3
SBI LAND 11B
ANI $ AND 7FH
XRI 1111$0000B
ORI LAND l+l
CPI ·a.

LXI B,100H

Move immediate data to register A, B,
C, D, E, H, L, or M (memory)
Add immediate operand to A without carry
Md immediate operand to A with carry
Subtract fran A without borrow (carry)
Subtract fran A with borrow (carry)
Logical "and" A with immediate data
"Exclusive or" A with immediate data
Logical "or" A with immediate data
Compare A with irrmediate data (same
as SUI except register A not changed)

Load extended immediate to register pair
(e3 must be equivalent to B,D,H, or SP)

5,3, Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3

OCR e3

INX e3

ocx e3

INR E

OCR A

INX SP

OCX B

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement register (e3
µ:oduces one of A, B, C, D, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register p:iir
(e3 must be equivalent to B,D,H, or SP)

5,4. Data Movement Instructions,

14

Ka
yp
roJ
ou
rna
l

Instructions i.hich nove data from meI110ry to the CPU and from CPU to
meioory are given below

IIOV e3,e3

Lmx e3

STAX e3

LHLD el6

SHLD el6

Lm el6
STA el6
FOP e3

Pl.EH e3

IN eB
our ea
XTHL
PCHL
SPHL
XCHG

IDV A,B

Lmx B

STAX D

LHLD Ll.

SHLD L5+x

Lm Gamma
STA X3-5
FOP PSW

Pl.EH B

IN 0
our 255

Move data to leftnost element from right­
nost element (e3 produces one of A,B,C
D,E,H,L, or M). IDV M,M is disallowed
Load register A from canputed address
(e3 must produce either B or D)
Store register A to computed address
(e3 must produce either B or D)
Load HL direct from location el6 (double
precision load to H and L)
Store HL direct to location el6 (double
precision store from Hand L to memory)
Load register A from address el6
Store register A into memory at el6
Load register p:iir from stack, set SP
(e3 must produce one of B, D, H, or PSW)
Store register p:iir into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Load register A with data from port eB
Send data from register A to p:>rt eB
Exchange data from top of stack with HL
Fill program counter with data from HL
Fill stack p:,inter with data frClll HL
Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations.

Instructions i.hich act up::m the sinqle precision accumulator to perform
arithmetic and logic q,erations are

ADD e3 ADD

AOC e3 AOC
SUB e3 SUB

SBB e3 SBB

ANA e3 MIA
XRA e3 XRA
ORA e3 ORA
CMP e3 CMP
mA

CMA
S'K:

B

L
H

2

l+l
A
B
H

Add register given by e3 to accumulator
without carry (e3 must i:roduce one of A,
B, C, D, E, H, or L)
Add register to A with carry, e3 as above
Subtract reg e3 from A without carry,
e3 is defined as above '
Subtract register e3 from A with carry,
e3 defined as above
Logical "and" reg with A, e3 as above
"Exclusive or" with A, e3 as above
Logical "or" with A, e3 defined as above
Compare register with A, e3 as above
Decimal adjust register A based upon last
arithmetic logic unit operation
Complement the bits in register A
Set the carry flag to 1

15

Ka
yp
roJ
ou
rna
l

ere
RLC

rue

RAL

RAR

mo e3 mD B

Complement the carry flag
Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A register to left (carry is
involved in the rotate)
Rotate carry/A register to right (carry
is involved in the rotate)

Double precision crld register pair e3 to
HL (e3 must produce B, D, H, or SP)

5.6. Control Instructions.

The four remaining instructions are categorized as control instructions,
and are listed below

HLT
DI
EI
NCI'

6. ERROR 1£SSAGES.

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost p:,sition of the oource listing. 'llle
line in error is also echoed at the console oo that the oource listing need
not be examined to determine if errors are present. The error codes are

D

E

L

N

0

p

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be canputed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features 1"ttich will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

Overflow: expression is too canplicated (i.e,, too
many pending operators) to canputed, simplify it

Phase error: label does not have the same value on
two slilseguent passes through the program

16

Ka
yp
roJ
ou
rna
l

R Register error: the value specified as a register
is not canpatible with the q:,eration code

V value error: operand encountered in expression is
improperly formed

Several error rressage are printed which are due to terminal error
conditions

NO SCXJRCE FILE PRESENT

NO DIRECI'ORY SPACE

SCXJRCE FI LE ~ ERROR

SOORCE FI LE' READ ERROR

CXJrpur FI LE l'lUTE ERROR

CllNNOI' CLOOE FI LE

7. A SAMPLE SESSI(l,I,

The file specified in the ASM conunand does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file narre (e,g,, it
is specified with "?" fields)

Source file cannot be read properly by the
asserrbler, execute a TYPE to determine the
p:,int of error

Output files cannot be written i::coperly, most
likely cause is a full disk, erase and retry

Output file cannot be closed, check to see
if di sk is write i::c otected

The following session slnws interaction with the assembler and debugger in
the development of a simple asserrbly language program,

17

Ka
yp
roJ
ou
rna
l

ASl'I SORT.;i

CP/l'I .ASSEMBLER - VER 1.0

~ 1 s c ~ -tru ad.~ves,.; •)
003H USE FACTOR o(o ti -+i..1.1~ os&l. oo To f'F Ct,.,.,,"-d«<,;.,J
END OF AS·SE l'IBL Y

DIR SORT. *,1

SO~T
SORT
SO~T
SORT
A> TVPE

IN CP11'1 ASSEMBLY LANGUAGE wa4,....e. cJL lo~ ;
0 10 0 ~ _;

SORT PROGRAN
START AT THE BEGINNING OF THE TRANS JENT PROl.i~J!ll'I "-~

'l~l,,j. v,ec.1,....., Cc.de.
0100 2l4601~ SORT,
0103 3601
0105 214701
0108 3600

010A 7E COMP,
0108 FE09
010D D21901

0 I 1 0 214601
0 l I 3 7EB7C20001

0118 FF

ORG 100H

LXI H, SW
MV I M, I
Li<! H, I
Ml/ I M, 0

COMPARE I WIT t1

MDV A,M
CPI N-1
JHC COHT

EHD OF ONE PASS
LXI H, SW
MOY A,N! ORA A!

RST 7

;ADDRESS SWITCH TOGGLE
;SET TO 1 FOR FIRST ITERATION
; ADDRESS INDEX
; I = 0

ARRAY SIZE
; A REGISTER = I
;CY SET IF I < < N -1)
; COHTI HUE IF I < = <N-2)

THROUGH DATA
;CHECK FOR ZERO SWITCHES
JNZ SORT ;END OF SORT IF SW=0

;GO TO THE DEBUGGER INSTEAD OF REr

r:~~c~.WCOHTIHUE THIS PASS
ADDRESSING I, so LOAD AV (I) INTO REGISTERS

D, 0 ! LXI H, AV! DAD D! DAD D 0 11 9 SFI 600214BCOHT, MOY E,A! 11'111
0121 4E792346 MOY C,M! 11 DY A, C ! It-IX H! MDV B., l'I

LOW ORDER B'fTE IH A AIH C, HIGH ORDER BYTE IN B

MOY HAND L TQ ADDRESS AY<I+I)
0125 23 Ill X H

COMPARE VALUE WITH REGS COHTAIHIHG AY(I)
0126 965778239E SUB 11! MOY D,A! l'IOY A, B! IHX H' SBB 11 ;SUBTRACT

BORROW SiT IF AY(l+I) > AY(I)
012B DA3F01 JC INCi ;SKIP IF IH PROPER ORDER

CHECK FOR EQUAL VALUES
01j!E 82CA3F01 ORA D! JZ UICI ;Sl<IP IF AY(J) = AY(l+l>

Ka
yp
roJ
ou
rna
l

0132 5670285E MOY D, i't ! 110V M, 8 ! DCX H! MDV E, M

0136 7128722873 MOY H, C ! DCl< H! MOY 11, D ! DC l< H! 110Y ti, E

IHCREIIEHT SWITCH COUNT
0138 21460134 LXI H, S1' ! !HR M

INCREMENT I
013F 21470134C31HCI, L l< I H, I ! JNR M ! Jl'IP COMP

DEFINITION SECTION
0146 00 SW,

DIHA
DB 0 ;RESERVE SPACE FOR SWITCH COUNT

0147 I, DS I ;SPACE FOR INDEX
0148 050064001EAY, DW

EQU
END

5,100, 30, 50, 20, 7, 1000, 3~0, 100, -32767
000A = H.
0 I 5C ~(t~ IIA.[~

A>TYPE SORT.HEX..;,

($-AV>,2 ;COMPUTE N INSTEAD OF PRE

, 10010000214601360121470136007EFE09D2190140
, 1001100021460t7EB7C20001FFSFl6002148011988
, 10012000194E79234623965778239EDA3F0182CAA7
, 100130003F0156702BSE71287228732146013421C7
,07014000470134C30A01006E
, l0014800050064001E00320014000700E8032C0188
,04015800640001808E
, 0000000000
A>DDl SORT. HEX; sM dt/,W\ l'r.lV\..

161< DDT YEI'< I. 0 J
~ ~ ;~ B: ~0 defu...tt a~ess (~ add,~ °" BiD sh.~
·XP.,,)

P=0000 100~ c~"je fc.-to 100

-u FF FF,) 14~ -fw 6~3.,-s-1<-ps

C0Z0M0E010 A=00 8=0000 D=0000 H=0000 S=0!00 P=0100 LXI
• T I 0',} 1'tdU [0 -.f~

" C0Z0M0E010 A=8 I 9,.9990 D•0000 H=0146 5 .. 9100 Pm0100 LXI
C0Z01'18E0l0 /1=01 8=0000 D=8 000 Ha0146 S=0100 P=0103 11 YI
C0Z01'18E0l0 A=01 8=0000 D=0000 H=0146 S=0100 p .. 010s LXI
C0Z01'18E0J0 A•0I 8=0 00 0 D=0 0 00 H=0147 S=-0100 P=0108 M'/1
C0Z0M0E0l0 A=01 8=0000 D=0000 H=014? S=0100 P=010A 1101/
C0Z01'10E0l0 A=00 8=0000 D =0 000 H=0147 S=0100 p .. 0100 CPI
CIZ0MIE010 /1=00 8=0000 D=0000 H=0147 S=0100 P=0l0D JNC
CIZ0MIE0l0 A=0 0 8=0000 D=0000 H=0147 S=0100 P= 0 11 0 LXI
CIZ0MIE0l0 11=00 8 =0 00 0 D=0000 H = 0 I 46 S=0!00 P=.0113 MOI/
C1Z0HIE0l0 Az0t 8=0000 D .. 0000 H=0146 5=0100 Pm 0 11 4 ORA
C0Z0MBE0l0 A=01 8=0000 Da0000 H=0146 5=0100 Pm0115 JNZ
C0Z0HBEBI0 A=01 8=0000 D=0000 H=0146 S=0100 p .. 0100 LXI
C0Z0N8E0l0 A=0 I 8=0000 D "0000 Hs0146 5=010'0 P=0103 111/ I
C0Z0M0E0l0 A=BI 8=0000 D=0000 H=0146 S=0100 P=0105 LXI
C0Z0MBE010 A=01 ,8=0000 D=0000 H=0147 $=0100 P=0l08 MYl
C0Z01'10E0l0 A=01 8=000·0 D=0000 H =0J 47 S=0100 P=01iiJA 11nv
~Al0D

~'«wfw'JI..
~ l'U-bDI.Ct

H,0146•0100

H, 0146
11, 0 I
H,0147
11, 0 0
A, 11
09
0119
H,0146
A, 11
A
0100
H,0146
11, 0 I
H,0147
M,00
/l,l'l*l!l08

19

Ka
yp
roJ
ou
rna
l

-XP;

~J.--b b<!"c;i·,.,;,,':j cof frdjram P•0108 18 ~ l'e~+ --p.-o~>'Gl.,.,. a,-.,-ltv

-Tl0 +r~ ~-f~ (OH s-kys
¥

A=00 8=0000 D=0000 H=0147 S=0100 P=0100 U(I H,0146 C0Z0N8E010
C0Z0110E010 A=00 8=0000 D=0000 H=0146 S=0.100 P=010J MVI

. ;.(V'if
11,01 J\ ...

C0Z01'10E010 A=00 9=0000 D=0000 H=0146
C0Z01'10E010 A=00 9=0000 D=0000 H=0147
C0Z0110E010 A=00 8=0000 D =00 00 H=0147
C0Z0110E010 A=00 8=0080 D=0000 H=0147
C1Z0111 E010 A=00 8=0000 D=0000 H=0147
C1Z0NIE010 A=00 9=0000 I•=0000 H=0147
C1Z0N1E010 A=00 9,.9000 D =00 00 H=0147
C1Z0111E010 A=00 9 =0 000 D=00 00 H=0147
C1Z0NIE010 A=00 B=0000 D=0000 H=0148
·g0Z0N1 E010 A=00 9=0000 D=0000 H=0l48

0Z0111E010 A=00 0=0000 D=0000 H=0148
C0Z0111E010 A=00 9=0005 D=00 00 H=0148
C0Z0111E0l0 A=0S 8=0005 D =00 00 H=0148
C0Z0M1E0l0 A=0S 8=0005 D=0008 H•0149
-Ll0~

0100 LXI H,0146
0103 MVI l'I, 0 I
0105 LXI H,0147
0108 MVI
010A 110Y
0108 CPI
810D JC

M, 00
A, 11
09
·0 l l 9

l lst f;OIM.{. cc,d.<!

~ lDOI{
0 I 10 LXI H,0146
01 I 3 110V A,M
01 14 ORA A
01 15 JNZ 0100
-L iJ

0118 RST 07
0 I I 9 11 OY E, A
011A NVI D,00
01IC LXI H,0148

S=0100 P=0105 LXI
S=0100 P=0108 MVI
S=0100 P=010A MOY
$=0100 P=010B CPI
$=0100 P=010D JC
S=0100 P=0119 MOY
S=0100 P=011A MVI
$=0100 P=011C LXI
S=0100 P= 0 11 F DAD
S=0l00 P=0l20 DAD
S=0100 P=0121 MO\/
S=0101'1 f'=.:-122 i10\/
$=0100 P=0123 I NX
S=0100 P=0124 l'IOY

H,0147 l(l-~-
M, 0 0 ~\
A, 11)
09 ;t"
0 I I 9
E,A
D,00
H,0148
D
D
C, i1
A,C
H

- a.k,,,+ h-tt 1,.u;,1,1.. rv.l.,'4- + · I
-L~ ~ ~?C.. (orz.~) ().,,.d \'wL l~ V'tt:l\ ,~ --ro lf~H

-C, 11 B; ~ °r'°':)'1111,1,. lll""'-

•0127 *pr~i:! ~~ ""'- e.r~-l i~n,pf 7 -tYrMA 1v-a,i..f ~.,.4 ('f'Y~w. w::l'5

-T 4,z loolo: Gtt (OOf•~ fYoyAIM \'- wt mok +' l9'f 1>1j 1~1~)

D,A
A,B
H
1'1*0128

C9Z0N8E010 A•38 9=0064 D•B006 H•01S6 $•0100 P•0l27 110V
C0Z0N0E010 A=38 8=0064 D=3806 H•9156 5=0100 P=9128 l'IOV
C0Z0110E919 A=00 8"0064 D•3806 H•9l56 S=0l00 P=0129 INX
C0Z0110E010 A=00,9=0064 D=3806 H=01S7 S=0100 P=012A S88
-D 148 _r-&d-A i,; ~, \,.J- 'l''O,rt•w Jo~~t s¼,.
0148 85 88 07 00 14 00 IE 00
0150 32 00 64 00 64 00 2C 01 EB 03 01 80 00 00 00 00 2 D.D ,
0160 00 00 00 00 00 00 00 00 00 lJt) 00 00 00 00 00 00 , · ·, ·, · · · · • • • • • • l0

Ka
yp
roJ
ou
rna
l

-~ ret-..-¼ C.f/M

DDi SORT. HEX¥ rdo1:1d fk, me.,,,,...j 1tl'\~

161(DDT YER I. 0
HEXT PC
DISC 8000
-XP

P•0808 180..,Z St\-'f'C. ...\o ½'~,.,;~ t1t fiYAA't
- L 10 D,1 l\-,l- l.,a,/. Of Coal

010D JHC 0119/
0110 LXI H,0146

- o.\.»w-+ I~ w~-l\. n...loOIA!"

- A 10 D _,? a.s~\L UU1 'f(o,k

010D JC II~

81 I~

-Ll00; ti:..~ -s\u~ s~ of 'f""j~

0100 LXI H,0146
0103 MY! 11,01
0105 LXI H, 0147
0108 MY! M,00
- o.ioM {i$t ~~ ,v.l,o t
-Al03,z cl.o.'"'f "sw.,-1-d,/ ~\A-·-1-,.;...i,i.,.~ --lo ¢~

0103

0 I 05,2

- ~ C rdw ... --Ip CT/1-l u,,:\-l,, d(-C. (Gp wc,,ks C..S well)

SAVE I SORT. COM; $C,.Vl 1 fli¥ (is-, L.:,½~s,f-. 1.00!-l-lv1.ffH.) OY\ «Ls!<. \~ CC.t.L-
. w~ l.o.\/L. it> ,,-e[oo.<1. [ocief"

A>DDT SORT. COM,;, ,-e~..-t- 1>"Di w~
s.,.~d .,..L..,°"j ,.,.....,e

16K DDT YER 1.0
HEXT PC • •
0 2 0 0 0 l 0 0 • (?ot.(• -h I(. c;. l wo. :is s +,...+s w,-\-\. ~ l 00~

-c.z r ... "'~ y~c~\f.,.""' +.- ?c~100H

•0110 M•o.-~d. slop (2.sr1) e.llll•i.<~
--Dl48

0148 05 00 07 00
0150 32 00 64 00
0160 00 00 00 00
0170 00 00 00 1!0

-Gi,i ,~ -lo (!j' /M.

14 00
64 00
00 00
00 00

1 E
2C
00
00

0 I ES 03 01 80 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00

2.D.D.,, ...

21

Ka
yp
roJ
ou
rna
l

H, I

CPtN ASSEMBLER - VER 1.0

01'5C ~~e..s-\o~c.
0€11H USE FACTOR
END OF ASSEMBLY

;SET TO 1 FOR FIRST ITERATION

;ADDRESS INDEX

;ZERO SIJ

;ADDRESS IHDE>I

;CONTINUE IF I <= <H-2)

DDT SORT. Hl!X~ -Its+ Y,-°}~-c!.w.~s

16K DDT \/ER 1. 0
HE:-'.T PC
01:5(0000
-GH10~

•0118
-D 14 8,1

,,('"' da..-Jr..5o..!al
0148 05 00 07 00 14 00 1 E 00
0150 32 00 64 00 64 00 2C 0 1 EB 03 0 I 80 00 ae 0000.2D.D.,
0160 00 00 0 ft 00 00 00 00 00 00 00 00 00 0 >) 0 il 0 0 fJ 0

- 1).\,11',~ wrt\.. .-..I,, ... t

2.2.

Ka
yp
roJ
ou
rna
l

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM

USER'S MANUAL

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Ka
yp
roJ
ou
rna
l

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, ·electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Ka
yp
roJ
ou
rna
l

Table of Contents

l. ED TUTORIAL . . . l

l.l Introduction to ED l

1.2 ED Operation . . . l

1.3 Text Transfer Functions l

1.4 Memory Buffer Organization 5

1.5 Memory Buffer Operation 5

1.6 Command Strings 7

1.7 Text Search and Alteration 8

1.8 Source Libraries 11

1.9 Repetitive command Execution 12

2, ED ERROR CONDITIONS 13

3, CONTROL CHARACTERS AND COMMANDS . . . 14

ii

Ka
yp
roJ
ou
rna
l

ED USER'S MANUAL

l. ED TUTORIAL

1.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

{

<filename> }

ED <filename>.<filetype>

In general, ED reads segments of the source file given by
<filename> or <filename>. <filetype> into central memory,
where the file is manipulated by the operator, and subse­
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure l.

1.2. ED Operation

ED operates upon the source file, denoted in Figure l
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory b~ffer
is written to the temporary file, followed by any rem ining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most re ent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

\
1.3. Text Transfer Functions

Given that n is an integer value in the range O through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem­
porary (and eventually final) file:

Ka
yp
roJ
ou
rna
l

Source

File

x.y

After
Edit (E)

Backup

File

x.BAK

Figure 1, Overall ED Operation

Append
(A)

Source
Libraries

(R)

Memory Buffer

Insert
(I)

Write
(W)

Type
(T)

Temporary

File

x. $$$

I
I

After 1

Edit I
I
I

f

(E)

New

Source

File

x.y

Note: the ED program accepts both lower and upper case ASCII
characters as input from the console. Single letter commands
can be typed in either case. £he U command can be issued to
cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.
Characters are echoed as typed without translation, however.
The ,u command causes ED to revert to "no translation" mode.
ED starts with an assumed -U in effect.

2

Ka
yp
roJ
ou
rna
l

Figure 2. Memory Buffer Organization

Source File Memory Buffer Temporary File

l First Line :

2 , 'Appended , ,
·- .. ' ~ ':__

3 : 'L~n .. e~, ,::..
SP -,-. ,-. -,-, '- -

l .' First Line'

2 ~ Buffered 2.,_

~ ' Text ""_
' ' ' '\.,

\..-.+ ~P-'' I I
I Unprocessed: Next I Free

-,- '--,-1

: Source I Append : Memory

, Lines : I Space
1

l

2

3

TP _..

Nex;-;-.,t __ ___

Write

' E:irst Line'­

' Processed·,'-

'- T~xt \, , _._ \ --
' ' ' \ ' ' -,-, \-.
Free File

Space

I
I
I
I
I

L- - - - - - _, L- - - - - - - - ~ i_ __ -- - --·

Figure 3. Logical Organization of Memory Buffer

first
line

current
line CL

last
line

Memory Buffer

---------<cr><lf>

--------<cr><lf>

-------Q------<cr><lf>

--------<cr><lf>

3

Ka
yp
roJ
ou
rna
l

nA<cr>* - append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

nW<cr>

E<cr>

H<cr>

O<cr>

Q<cr>

write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

end the edit. Copy all buffered text
to temporary file, and copy all un­
processed source lines to the temporary
file. Rename files as described
previously.

move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position 1 of the s~urce file. The
effects of the previous editing commands
are thus nullified.

quit edit with no file alterations,
return to CP/M.-

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then 1 is assumed. Thus, the commands A and W append
one line and write 1 line, respectively. In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<er> represents the carriage-return key

4

Ka
yp
roJ
ou
rna
l

commands are provided as a convenience. The command OA fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require­
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

1. 4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carr~e­
return (<er>) and line-feed (<lf>) characters, and cp
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
line which contains the CP.

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the lines directly from the console
with the insert command

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <er> (the <lf> is supplied automatically),
until a control-z (denoted by tz is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>
NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

5

Ka
yp
roJ
ou
rna
l

NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf~

C3:J

Various commands can then be issued which manipulate the CP
or display source text in the vicinity of the CP. The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by
±, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced
by 65535. If an integer n is optional, but not supplied,
then n=l is assumed. Finally, if a plus sign is optional,
but none is specified, then+ is assumed.

±B<cr> - move CP to beginning of memory buffer
if+, and to bottom if-.

±nC<cr> - move CP by ±n characters (toward front
of buffer if+), counting the <cr><lf>
as two distinct characters

±nD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

±nK<cr> - kill (ie remove) ±n lines of source text
using CP as the curren~ reference. If
CP is not at the beginning of the current
line when K is issue~, then the charac­
ters before CP remain if+ is specified,
while the characters after CP remain if -
is given in the command.

±nL<cr> - if n=0 then move CP to the beginning of
the current line (if it is not already
there) if nF0 then first move the CP to
the beginning of the current line, and
then move it to the beginning of the
line which is n lines down (if+) or up
(if-). The 'CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified.

6

Ka
yp
roJ
ou
rna
l

±nT< er> - If n=0 then type the cont en ts of the
current line up to CP. If n=l then_
type the contents of the current line
from CP to the end of the line. If
n>l then type the current line along
with n-1 lines which follow, if+
is specified. Similarly, if n>l and
- is given, type the previous n lines,
up to the CP. The break key can be
depressed to abort long type-outs.

±n<cr> - equivalent to ±nLT, which moves up or
down and types a single line

1.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <er> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command:

Rubout

Control-U

Control-C

Control-E

remove the last character

delete the entire line

re-initia:ize the CP/M System

return carriage for long lines
without transmitting buffer
(max 12 8 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String

1. B2T<cr>

2. SC0T<cr>

Effect

move to beginning
of buffer and type
2 lines:
"NOW IS THE

TIME FOR"

move CP 5 charac­
ters and type the
beginning of the
line
"NOW I"

Resulting Memory Buffer

~NOW IS THE<cr><lf>

TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW I/,.~ S THE<cr><l f>
L=!:.J

Ka
yp
roJ
ou
rna
l

3.

4.

5.

6.

7.

2L-T<cr>

-L#K<cr>

I<cr>
TIME TO<cr>
INSERT<cr>
tz

-2L#T<cr>

<er>

move two lines down
and type previous
line
"TIME FOR"

move up one line,
delte 65535 lines
which follow

insert two lines
of text

move up two lines,
and type 6 55 35
lines ahead of CP
"NOW IS THE"

move down one line
and type one line
"INSERT"

1.7. Text Search and Alteration

NOW IS THE<cr><lf>

TIME FOR<cr><lf>

~ ALL GOOD MEN<cr><lf>

NOW IS THE<cr><lf> BJ

NOW IS THE<cr><lf>

TIME TO<cr><lf>

INSERT<cr><lf>~
L::!:J

NOW IS THE<cr><lf> ,0,,
c.:!:J TIME TO<cr><lf>

INSERT<cr><lf>

NOW IS THE<cr><lf>

TIME TO<cr><lf>/"'\....,
~

INSERT<cr><lf>

ED also has a command which locates strings within the
memory buffer. The command takes the form

where c 1 through ck represent the characters to match followed
by either a <er> or control -z*. ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is
moved directly after the character ck. If then matches are
not successful, the CP is not moved from its initial position.
Search strings can include""""tl'(control-1), which is replaced
by the pair of symbols <cr><lf>.

*The control-z is used if additional commands will be typed
following the tz.

8

Ka
yp
roJ
ou
rna
l

The following commands illustrate the use of the F
command:

Command String

1. B#T<cr>

2. FS T<cr>

3. Fitz0TT

Effect

move to beginning
and type entire
buffer

find the end of
the string "S T"

find the next "I"
and type to the
CP then type the
remainder of the
current line:
"TIME FOR"

Resulting Memory Buffer

~ NOW IS THE<cr><lf>

TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW IS T .-0-, HE<cr><lf>
L.:E.1

NOW IS THE<cr><lf>

TI ~ME FOR<cr><lf> cp
ALL OD MEN<cr><lf>

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

c <er>
n

where c1 through en are characters to insert. If the inser­
tion string is terminated by a tz, the characters c1 through
c; are inserted directly following the CP, and the CP is
moved directly after character en· The action is the same.
if the command is followed by a <er> except that a <cr><lf>
is automatically inserted into the text following character
Cn· Consider the following command sequences as examples
of the F and I commands:

Command String Effect

BITHIS IS tz<cr> Insert "THIS IS"
at the beginning
of the text

9

Resulting Memory Buffer

THIS IS~OW THE <cr><lf>

~
TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

Ka
yp
roJ
ou
rna
l

FTIME+z-4DIPLACEtz<cr>

find "TIME" and delete
it; then insert "PLACE"

3FOtz-3DSDICHANGESt<cr>

-BCISOURCE<cr>

find third occurrence
of "O" (ie the second
"O" in GOOD), delete
previous 3 characters;
then insert "CHANGES"

move back 8 characters
and insert the line
"SOURCE<cr><lf>"

THIS IS NOW THE<cr><lf>

PLACE~ FOR<cr><lf>

ALL GOOD MEN<cr><lf>

THIS IS NOW THE <cr><lf>

PLACE FOR<cr><lf>

ALL CHANGES~<cr><lf>
LS:]

THIS IS NOW THE<cr><lf>

PLACE FOR<cr><lf>

ALL SOURCE<cr><lf>

~CHANGES<cr><lf>

ED also provides a single command which combines the F and
I commands to perform simple string substitutions. The command
takes the form

and has exactly the same effect as applying the command string

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successively sub­
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to Fis provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

which searches the entire source file for the nth occurrence
of the string c1c2···ck (recall that F fails if the string
cannot be found in the current buffer). The operation of the

10

Ka
yp
roJ
ou
rna
l

;, command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #Wis issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the
string c 1c 2 ... ck. If found, insert the string dkd 2 ... ,a.,,,,
and move CP to follow dm· Then delete all characters foilowing
CP up to (but not including) the string e 1 ,e 2 , ... eq, leaving
CP directly after dm· If e1,e2,···eq cannot be found, then
no deletion is made. If the current line is

fP) NOW IS THE TIME<cr><lf>

Then the command

JW tzWHATtztl<cr>

Results in

NOW WHAT~ <cr><lf>
~

(Recall that tl represents the pair <cr><lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1.8. Source Libraries

ED also allows the inclusion of source libraries during
the editing process with the R command. The form of this
command is

11

Ka
yp
roJ
ou
rna
l

where f1 f2 .. fp is the name of a source file on the disk with
as assumed filetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the charac­
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command Mallows the ED user to group ED com­
mands together for repeated evaluation. The M command takes
the form:

where c1c2···ck represent a string of ED commands, not inclu­
ding another M command. ED executes the command string n
times if n>l. If n=0 or l, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).

As an example, the following macro changes all occur­
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMAtz-5DIDELTAtz0TT<cr>

or equivalently

MSGAMMAtzDELTAtz0TT<cr>

12

Ka
yp
roJ
ou
rna
l

2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

?

>

0

unrecognized command

memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or S
strings too long.

cannot apply command the number
of times specified (e.g., in
F command)

cannot open LIB file in R
command

Cyclic redundancy check (CRC) information is written with
each output record under CP/1-1 in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where dis the currently selected drive (A,B, ...). The oper­
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con­
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where xis the file being edited. Then remove the primary
file:

ERA x.y<cr>

and rename the BAK file:

REN x.y=x.BAK<cr>

The file can then be re-edited, starting with the previous
version.

13

Ka
yp
roJ
ou
rna
l

3. CONTROL CHARACTERS AND COMMANDS

The following table summarizes the control characters
and commands available in ED:

Control Character

tc

te

ti

tl

tu

tz

rubout

break

Function

system reboot

physical <cr><lf> (not
actually entered in
command)

logical tab (cols 1,8,
15, ...)

logical <Cr><lf> in
search and substitute
strings

line delete

string terminator

character delete

discontinue command
(e.g., stop typing)

Ka
yp
roJ
ou
rna
l

Command

nA

±B

±nC

±nD

E

nF

H

I

nJ

±nK

±nL

nM

nN

0

±nP

Q

R

ns

±nT

± u

nW

nz

±n<cr>

Function

append lines

begin bottom of buffer

move character positions

delete characters

end edit and close files
(normal end)

find string

end edit, close and reopen
files

insert characters

place strings in juxtaposition

kill lines

move down/up lines

macro definition

find next occurrence with
autoscan

return to original file

move and print pages

quit with no file changes

read library file

substitute strings

type lines

translate lower to upper case if U,
no translation if -u
write lines

sleep

move and type (±nLT)

15

Ka
yp
roJ
ou
rna
l

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are founlrin the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the 11V11 (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by
a number followed by a colon, in the same format as the line number display. 1h this
case, the ED program moves the current line reference to the absolute line nu111ber,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expan~ed
section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolu~e line number by a colon. Thus,
the command

:400T

is interpreted as "type from the current line number through the line whose absolute
number is 40111." Combining the two line reference forms, the command

345 ::40ClT

for example, is interpreted as "move to absolute line 34~, then type through absolute
line 4~fl." Note that absolute line references of this sort can precede any of the
standard ED commands.

A special case of the V command, 11\JV11
, prints the memory buffer statistics ir

the form:

free/total

ll{here "free" is the number of free bytes in the memory buffer (in decimal), and "total"
is the size of the memory buffer.

Ka
yp
roJ
ou
rna
l

ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer)
command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$$.LIB

which is active only during the editing process. In general the user can reposition
the current line reference to any pCl)rtion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines, from the memory buffer, although a K command
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas­
terous commands to be typed as single letters, rather than in composite commands.
The commands

E (end), H (head), 0 (original), Q (quit)

must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT c

where x is the error character, and c is the commaf\d where the error occurred. Ka
yp
roJ
ou
rna
l

(!ID lJ~B~Tfll RESEflRCH®
,>ost Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M DYNAMIC DEBUGGING TOOL (DDT)

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Ka
yp
roJ
ou
rna
l

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Ka
yp
roJ
ou
rna
l

Table of Contents

Section Page

I. INI'RODUCTION • •••••••••••••••••••••••••••••••••••• 1
II. DIJI' OOMMANJ:6 • •••••••••••••••••••••••••••••••••••• 3

1. The A (Assenble) Command • •••••••••••••••••••• 3
2. The D (Display) Command •••••••••••••••••••••• 4
3. The F (Fill) Command ••••••••••••••••••••••••• 4
4. The G (Go) Comrrand ••••••••••••••••••••••••••• 4
5. The I (Input) Comrrand •••••••••••••••••••••••• 5
6. The L (List) Command ••••••••••••••••••••••••• 6
7. The M (Move) Command • •••••••••••••••••••••••• 6
8. The R (Read) Command ••••••••••••••••••••••••• 6
9. The S (Set) Command • ••••••••••••••••••••••••• 7
10. The T (Trace) Command •••••••••••••••••••••••• 7
11. The u (Un trace) Command •••••••••••••••••••••• 8
12. The X (Examine) Command •••••••••••••••••••••• 8

III. IMPLEMENTATION NOI'ES • •••••••••••••••••••••••••••• 9
IV. AN EXAMPLE • •••••••••••••••••••••••••••••••••••••• 10

Ka
yp
roJ
ou
rna
l

CP/M Dynamic Debugging Tool (DIJI')

User's Guide

I. Introduction.

The DIJI' program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment. The debugger is initiated by
typing one of the following canmands at the CP/M Console Command level

Dor
Dor filename.HEX
Dor filename.CX>M

where "filename" is the name of the program to be loaded and tested. In both
cases, the Dor program is brought into rrain memory in the place of the Console
Canmand Processor (refer to the CP/M Interface Guide for standard memory
organization), and thus resides directly below the Basic Disk Operating System
portion of CP/M. The BIXS starting address, W'lich is located in the address
field of the JMP instruction at location SH, is altered to reflect the reduced
Transient Program Area size.

The second and third forms of the Dor command shown above perform the same
actions as the first, except there is a subsequent automatic load of the
specified HEX or CX>M file. The action is identical to the sequence of
commands

Dor
!filename.HEX or !filename.COM
R

where the I and R canmands set up and read the specified program to test (see
the explanation of the I and R carunands below for exact details).

Upon initiation, Dill' prints a sign-on message in the format

nnK Dor-s VER m.m

where nn is the memory size (which must rratch the CP/M system being used) , s
is the hardware system which is assumed, corresponding to the codes

D Digital Research standard version
M Mffi version
I IMSAI standard version
O Qnron systems
S Digital Systems standard version

and m. m is the revision nurrber.

1

Ka
yp
roJ
ou
rna
l

Followirg the sign on rressage, DDr prompts the operator with the character
"-" arxl waits for input commands from the console, The operator can type any
of several single character camnands, terminated by a carriage return to
execute the camnand, Each line of input can be line-edited using the standard
CP/M controls

rubout
ctl-U
ctl-C

remove the last character typed
remove the entire line, ready for re-typing
system reboot

Any camnand can be up to 32 characters in length (an automatic carriage return
is inserted as the 33rd character) , where the first character determines the
camnand type

A enter assembly language mnemonics with operands
D display memory in hexadecimal and ASCII
F fill rremory with constant data
G begin execution with optional breakp:>ints
I set up a standard input file control block
L list rremory using assembler mnemonics
M move a rremory segment from source to destination
R read program for subsequent testing
S substitute rremory values
T trace program execution
U untraced program rronitoring
X examine and optionally alter the CPU state

The cornmarxl character, in some cases, is followed by zero, one, two, or three
hexadecimal values \okiich are separated by camnas or single blank characters,
All DD!' numeric output is in hexadecimal form, In all cases, the commands are
not executed until the carriage return is typed at the end of the command.

At any µ:,int in the debug run, the operator can stop execution of DDr
using either a ctl-C or G0 (jmp to location 0000H) , and save the current
memory image using a SAVE command of the form

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on disk, The
number of blocks can be determined by taking the high order byte of the top
load address and converting this nurrber to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the number of
pages is 12H, or 18 in decimal. Thus the operator could type a ctl-C during
the debug run, returning to the Console Processor level, followed by

SAVE 18 X,COM

The rremory image is saved as x.COM on the diskette, and can be directly
executed by simply typing the name x. If further testing is required, the
memory image can be recalled bv typing

2

Ka
yp
roJ
ou
rna
l

our x.COM

.
which reloads ireviously saved ixogram from loaction 100H through p:ige 18
(12FFH). The machine state is not a part of the O'.)M file, and thus the
program must be restarted from the beginning in order to properly test it.

n. our mMMANr:s.

'!'he individual canmands are given below in some detail. In each case, the
operator must wait for the i:rompt character (-) before entering the cormnand.
If control is p:issed to a .rogram under test, and the .rogram has not reached
a breakp:iint, control can be returned to oor by executing a RST 7 from the
front p:inel (note that the rubout key should be used instead if the i:rogram is
executing a T or U canmand). In the explanation of each cormnand, the cormnand
letter is soown in some cases with numbers separated by canmas, llhere the
numbers are represented by lower case letters. These numbers are always
assumed to be in a hexadecimal radix, and from one to four digits in length
(longer numbers will be automatically truncated on the right).

Many of the canmands operate up:>n a "CPU state" which corresponds to the
program under test. 'l'he CPU state holds the registers of the program being
debugged, and initially contains zeroes for all registers and flags except for
the p:ogram counter (P) and stack µ,inter (S) , llhich default to 100H. The
program counter is subsequently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I and R
commands).

1. The A (Asserrl:Jle) Command. oor allows inline assembly language to be
inserted into the current memory image using the A command which takes the
form

As

where s is the hexadecimal starting address for the inline assembly. DIJr
prompts the console wi. th the a:ldress of the next instruction to fill, and
reads the console, looking for assembly language mnemonics (see the Intel 8080
Assembly language Reference Card for a list of rmemonics) , followed by
register references and aperands in absolut0 hexadecimal form. Each sucessive
load address is irinted before reading the console. The A command terminates
when the first anpty line is input from the console.

Upon completion of assembly language input, the operaLor can review the
memory segment using the ODI' disassembler (see the L command).

Note that the assembler/disassembler i:ortion of oor can be overlayed by
the transient i;cogram being tested, in which case the ODI' program responds
with an error condition \lhen the A and L commands are used (refer to Section
IV).

3

Ka
yp
roJ
ou
rna
l

2. The D (Display) Command. The D ccmnand allows the operator to view
the contents of memory in hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, memory is displayed from the
(initially 100H), and continues for 16 display lines.
the form shown below

current display address
Each display line takes

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display address in hexadecimal, and bb represents data
present in rremory starting at aaaa. The ASCII characters starting at aaaa are
given to the riqht (represented by the sequence of e's), \\here non-graphic
characters are p: inted as a period (.) syrrt,ol. Note that both upper and lower
case alphabetics are displayed, and thus will appear as upper case symbols on
a console device that supports only upper case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so that the next line begins at an address which is a multiple of 16.

The second form of the D ccmmand shown above is similar· to the first,
except that the display address is first set to address s. The third form
causes the display to continue froo, address s through address f. In all
cases, the display address is set to the first address not displayed in this
coo,mand, so that a continuing display can be accomplished by issuing
successive D coo,mands with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

3. The F (Fill) Command. The F coo,mand takes the form

Fs,f,c

where s is the starting address, f is the final address, and c is a
hexadecimal byte constant. The effect is as follows: nor stores the constant
cat address s, increments the value of sand tests against f. Ifs exceeds f
then the cperation terminates, otherwise the operation is repeated. Thus, the
fill canmand can be used to set a memory block to a specific constant value.

4. The G (Go) Coo,mand. Program execution is started using the G comand,
with up to two optional breakpoint addresses. The G coo,mand takes one ot the
forms

G
Gs
Gs,b

4

Ka
yp
roJ
ou
rna
l

Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the i:rogram counter in the current machine state, with no breakpoints set
(the only way to re::iain control in DIJI' is through a RST 7 execution) . The
current i:rogram counter can be viewed by typing an X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are s~cified, one at b and the other at c. Encountering either
breakpoint causes execution to stop, and both breakpoints are subsequently
cleared. The last two forms take the program counter from the current machine
state, and set one and two breakpoints, res~ctively.

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting crldress
and the break crldress by DDT. Thus, if the program under test does not reach
a breakpoint, control cannot return to DDT· without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and ty~s

*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) command. The operator must s~cify breakpoints which
differ from the i:rogram counter crldress at the beginning of the G command.
Thus, if the current program counter is 1234H, then the commands

G,1234
and

G400,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

5. The I (Input) Command. The I command allows the operator to insert a
file name into the default file control block at SCH (the file control block
created by CP/M for transient i:rograms is placed at this location; see the
CP/M Interface Guide). The default FCB can be used by the i:rogram under test
as if it ha'.l been passer! by the CP/M Console Processor. Note that this file
name is also used by DDT for reading crlditional HEX and COM files. The form
of the I command is

!filename
or

5

Ka
yp
roJ
ou
rna
l

Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R canmand for further details).

6. •rhe L (List) Command. The L canmand is used to list asserrbly language
mnaronics in a particular program region. The forms are

L
Ls
Ls,f

The first canmand lists l:J,,/elve lines of disassembled machine code from the
current list crldress. The second form sets the list crldress to s, an:l then
lists l:J,,/elve lines of code. 'rhe ·1ast form lists disassembled code from s
through crldress f. In all three cases, the list crldress is set to the next
unlisted location in preparation for a subsequent L command. Upon
encountering an execution breakµ:,int, the list crldress is set to the current
value of the program counter (see the G an:l T canmands). Again, long typeouts
can be aborted using the rubout key during the list process.

7. The M (Move) Cornman:!. The M command allows block movement of program
or data areas from one location to another in memory. The form is

Ms,f,d

where s is the start crldress of the IIDVe, f is the final crldress of the IIDVe,
and d is the destination crldress. Data is first 11Dved from s to d, an:l both
addresses are incremented. If s exceeds f then the 11Dve operation stops,
otherwise the IIDve operation is repeated.

8. The R (Read) Command. The R command is used in conjunction with the I
canman:l to read COM an:l HEX files frm the diskette into the transient program
area in preparation for the debug run. The forms are

R
lb

where b is an ootional bias crldress llhich is added to each ixogram or data
address as it is loaded. '!'he load operation must not overwrite any of the
system parameters from 000H through 0FFH (i.e., the first page of memory). If
b is anitted, then b=0000 is assumed. The R canmand requires a previous I
comman:l, specifying the name of a HEX or COM file. The load crldress for each
record is obtained from each in:lividual HEX record, llhile an assumed load
address of 100H is taken for COM files. Note that any number of R canmands
can be issued following the I command to re-read the irogram under test,

6

Ka
yp
roJ
ou
rna
l

assuming the tested program does not destroy the default area at SCH.
Further, any file si:ecified with the filetyi:e "COM" is assumed to contain
machine code in pure binary form (created with the LCll'J) or SAVE command), and
all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM command).

Recall that the ccmmand

DDr filename.filetype

which initiates the Dill' program is equivalent to the commands

DDr
-Ifilename.filetype
-R

Whenever the R command is issued, DDr responds with either the error indicator
"?" (file cannot be opened, or a checksum error occurred in a HEX file), or
with a load rressage taking the form

NEXT PC
nnnn PJ:PP

where nnnn is the next a'.ldress following the loaded program, and pppp is the
assumed program counter (100H for COM files, or taken fran the last record if
a HEX file is si:ecified).

9. The S (Set) Command.
examined an:l optionally altered.

Ss

The s command allows rrcmory locations to be
The form of the canmand is

where s is the hexadecimal starting a'.ldress for examination and alteration of
memory. DDr responds with a numeric cranpt, giving the rremory location, along
with the data currently held in the rremory location. If the operator tyi:es a
carriage return, then the data is not altered. If a byte value is tyi:ed, then
the value is stored at the ixanpted address. In either case, D111' continues to
pranpt with successive addresses and values until either a period (.) is typed
by the operator, or an invalid input value is detected.

10. The T (Trace) Command. The T command allows selective tracing of
program execution for 1 to 65535 program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next program step is
executed. The program terminates imrrediatel y, with the termination address

7

Ka
yp
roJ
ou
rna
l

di splayed as

*hhhh

where hhhh is the next crldress to execute. The display address (used in the D
command) is set to the value of H and L, and the list address (used in the L
command) is set to hhhh. 'rhe CPU state at program termination can then be
examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a pr:ogram
breakp:>int is occurs. A breakp:>int can be forced in the trace node by typing
a rubout character. The CPU state is displayed before each program step is
taken in trace node. The format of the display is the same as described in
the X canmand.

Note that pr:ogram tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the . program under test. Thus, CP/M
functions which access I/0 devices, such as the diskette drive, run in
real-time, avoiding I/0 timing problems. Programs running in trace node
execute approximately 500 times slower than real time since DDI' gets control
after each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that canmands \\hich use the breakp:>int facility
(G, T, and U) accomplish the break using a RST 7 instruction, 11.hich means that
the tested program cannot use this interrupt location. Further, the trace
mode always runs the tested program with interrupts enabled, \\hich may cause
problems if asynchronous interrupts are received during tracinq.

Note also that the operator should use the rubout key to get control back
to DDr during trace, rather than executing a RS1' 7, in order to ensure that
the trace for the current instruction is completed before interruption.

11. The U (Untrace) Command. The U command is identical to the T command
except that intermediate program steps are not displayed. The untrace node
allows from l to 65535 (0FFFFH) steps to be executed in nonitored node, and is
used pr:incipally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command apply to the U
command.

12. The X (Examine) Command. The X command allows selective display and
alteration of the current CPU state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag
z Zero Flag

(0/1)
(0/1)

8

Ka
yp
roJ
ou
rna
l

M Minus Flag (0/1)
E Even Parity Flag (0/1)
I Interdigit Carry (0/1)
A Accumulator (0-FF)
B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register p;;tir (0-FFFF)
s Stack Pointer (0-FFFF)
p Program Counter (0-FFF'F)

In the first case, the CPU register state is displayed in the format

CfZfMfEfif A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or l flag value, bb is a byte value, and dddd is a double byte
quantity corresponding to the register p;;tir. 'Ihe "inst" field contains the
disassE!IIDled instruction llhich occurs at the location addressed by the CPU
state's i;rogram counter,

The second form allows display and optional alteration of register values,
where r is one of the registers given above (C, z, M, E, I, A, B, D, H, S, or
P), In each case, the flag or register value is first displayed at the
console, The DDT program then accepts input fran the console, If a carriage
return is typed, then the flag or register value is not altered, If a value
in the i;roper range is typed, then the flag or register value is altered,
Note that BC, DE, and HL are displayed as register pairs, Thus, the operator
types the entire register pair llhen B, c, or the BC pair is altered,

III, IMPLEMENTATICN NOl'ES,

The organization of DIJI' allows certain non-essential portions to be
overlayed in order to gain a larger transient program area for debugging large
programs, The DDT program consists of two parts: the DOI' nucleus and the
asSE!IIDler/disasSE!IIDler nodule. '!he DDT nucleus is loaded Oller the Console
Camnand Processor, and, although loaded with the DIJI' nucleus, the
asserrbler/disassE!IIDler is 01Terlayable unless used to assE!IIDle or disasserrble,

In particular, the Blm address at location 6H (address field of the JMP
instruction at location SH) is nodified by DIJI' to address the base location of
the DDT nucleus llhich, in turn, contains a JMP instruction to the BIX)S, 'Ihus,
programs llhich use this crldress field to size iremory see the logical end of
memory at the base of the DDT nucleus rather than the base of the Blm,

The asselltller/disassE!IIDler nodule resides directly below the DDT nucleus
in the transient i;rogram area, If the A, L, T, or X commands are used during
the debugging i;rocess then the DIJI' program a:iain alters the address field at
6H to include this nodule, thus further reducinq the logical end of memory,
If a i;rogram loads beyond the beginning of the asselltller/disasselltller nodule,
the A and L camnands are lost (their use i;roduces a "?" in response), and the

9

Ka
yp
roJ
ou
rna
l

trace an:'l display (T and X) commands list the "inst" field of the display in
hexadecimal, rather than as a decoded instruction.

N. ~ EXAMPLE.

The followin::i example shows an edit, assent>le, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest value is taken fran the vector, and stored into "~E"
at the termination of the ixogram

ED SCAH. ASM
1 ,. LL,~ • I.

* I j-r' f. tJ.o"' .,.,..t• «0
1
•

-~ t-1 ORG f.t 100H \:_-L~;T OF TRANSIENT AREA,
M\ll Wfj ;LEHGTH OF VECTOR TO SCflH; ,.
Ml/I C, 0 ; LARGER_Ril VALUE SO Ff)R_,

LOOP __ p_o_o_L w H, \IECT ;BASE OF VECTOR,
L...Q.Qf..\ .!:!.Q.!'. A,M ;GET\IALUE,r

l .. m L ; LARGER vAu'E I H c -,.1

~dl"o~ NFOLIND 1,Jl!M.P IF LARGER I/ALU£ ~,!OT FOUN.D
.:.~ HEio! LARGEST \/ALUE, STORE IT TO c:

1
J

MO\/ C, A
HFOUHD, ffi -H- 3

; TO HE:n ELEMENT
;MORE TO SCAH> J

; FOR AtrnTHER,1 J
Crtak Sou<~
1't~VO.IM. - (.1lildU(1.-t~

C~11 <<ldetS '6Pt~
..
.!...

L -;J
YECT.
LEH
LARGE,

~ *B0P ,i'

LOOP,

HFOUHD,

DCR B
JHZ LOOP

END
!:!.Q.'L
~
ill

TEST
DB
EQU
DS
EHD~

ORG
MIii
M \/ I
LXI
MOY
SUB
JNC
H Ell
MOY
I Hl<
DCR
JHZ

OF SCAH., STORE c.,
.8..::...£ ;GET LARGEST VALUE
LARGE

I
J,

Jl..
~ 9"CIS Y-~m 11\ti'.

DATA

1'J" YtPI~ l'l>f1'o,t
(t~(i,'\,.

2, 0, 4, 3, S, 6., 1 ., 5J
f.-YECT ;LEHGTH,:1

! ; LARGEST YALUE ON EXIT.I

100H ;START OF TRANSIENT AREA
B,LEH ;LENGTH OF \/ECTOR TO SCAN
C,0 ;LARGEST \IALUE SO FAR
H,\IECT ;BASE OF \/ECTOR
A.,M ;GET \/ALUE
C ;LARGER \IALUE INC•
NFOUHD ;JUMP IF LARGER \/ALUE NOT FOUND

LARGEST YALUE, STORE IT TO C
C., A
H
B
LOOP

;TO NEXT ELEMENT
;MORE TO SCAN'
;FOR ANOTHER

10

Ka
yp
roJ
ou
rna
l

ENI1 OF SCAN, STORE C
MO\/ A., C ; GET LARGEST VALUE
STA LARGE
JMP 0 ,REBOOT

TEST DATA
\.'ECT,
LEN
LARGE

DB 2,0.,4,3,5,6.,1,5
EQLI $-VECT :LENGTH
DS I •LARGEST VALUE ON EXIT
E NI1 .

..- ~ kci cf lxlit

CP,M ASSEMBLER - VER 1.0

0 l 2 2
002H LISE FAC1LIR
ENII OF AS:,EMBL'r'

T'IFE SCAN. PRN
- J

Code AJAi6..)
0 1 c, 0 \.J.oc1'~t Ccxii
0100 0608,)

r Sou<re frcyrGM
~ ORG 100H ,START OF TRANSIENT AREA

•LENGTH OF VECTOR TO SCAN Ml/1 8,LEN
0102 0E00 MVI C, 0 , Li"4F~CE:;:T VALUE SO FAR
0104 211901 LKI H. VECt ,BASE OF VECTOR
0107 7E LOOP MOY A,M ,GET VALUE
0108 91 SUB C ,LARGER VALUE IN C?
0109 D20D01 JNC NFOUND ;JUMP JF L1RGER VALUE NOT FOUND

NEW LARGEST VALUE, STORE IT TO C
010C 4F
010D 23

MD'./
NFOIJND, IH,:

C., A
H , TO flO:T ELEMENT

, MORE TO :,,::AW' 010E 05
010F C20701

0112 79
0113 322101
0116 C3~~0~ I .

CcMldir... lu:11'1J ,
iru.'la!td '-"'t ;

0119 0200040305VECT
0008 = <t\ LEN
0121 Valueq_J LARGE,
0 1 2 2 E~LUM.

A>

TiCR
JNZ

B
LOOP , FOF: IHIOTHEF:

END OF SCAN, STORE C
MDV A. C ,GET !_~RtEST VAi.UE
STA LAF'CE
JMP PE80CIT

TEST DATA
DB 2., €1, 4., 3., i:,, 61 1, 5
EQll $-','ECT , LENGTH
DS I ,LARGEST VALUE ON EXIT
E!Hi

I l

Ka
yp
roJ
ou
rna
l

DI•T SCAN. HD:
J 5-kt 1)eb~u ~~ ht'X 11YIMI" mtllltt~t c.ode.

161< DI•T VER
HEXT f>C

~!2\0000

1 . 0

[C1,'i,t load c.M,,e5-. + I ,-ktd-1~
i -lo e.i<ecu.-k o.t -J

C0Z0M0E0l0
-Xf>

A=00 9=0000 D=0000 H=000B 8=0100 P•0000 OLIT 7F 7CsO

-J __ rxaiuu1t-ve,t~ ~ de~~ Y\.t.Vl.­
P=0000 100

-,1

-t., lock. at
e~{tnje fc..10 (00

Vts \Sb,6 tl9Ctl;,._

C0Z0M0E0l0 A=00 B=0000 D=0000 H=0001 S=0108
-Ll00J

0 1 e0 MVI B, 0 8
0102 M\1I C,00
0104 LXI H.,0119
0107 MOV A., M
0108 SUB C 'Dl'51l~~l,J M.ad.,~l 0109 JHC 010D
010(: MO\/ C,A Code a~ too~ .
010D IHX H

$.ei 'SoJta ud-~ ~I0E DCR B
~10F JHZ 0107 di' ~ lS OK)
0 1 12 MO\/ A, C
-L -,
0i13 STA 0121
0116 cll'IP 0000
0119 STAXB
01IA HOP
011s IHR B _ A lr\l-e VWJ'<~
0 1 1 c I H x B ~ad,uvie. Code.
01ID DCR B /.
011E MVI B,01 Lllulk--l-wxl?<q9mm

0 1 2 0 D c R B e.v.d.s a-\ lDt'.a."fu>n I lb
0 I 2 1 L X ! r,, 2 2 0 0 ·u \

r 'PC. c.k.11.~d-
F'=0100 MVI 8,08)

~ I ~<J.vudio'I\
-to 6/fctcit al f'i:='Llc)

0124 LxI H,020 0 . W1w.a.:ruPtnt\COOJ
-A 11.; ~ e1A..leY ·,'l\litt, a-.se~~ modi -lo e~ -1-k .::n.tf -t:i OOQ; l~ o,. fSi 1, w~1cl,,
0116 RST

7
~ill Cu.I& -fk pt~YO.M undu -f.~ -\o ye_it{M, -\o Wf 'tf 111,\-1

,1 1~ eve..r e~w\td.
8 l 1 7i (".,lnj\c CO.tl"\.0.$ V°dufl\ ":>io~ Cl.'i>StWIIJe Wlo4!)

- L 11 3'1 \.ls\-Cod.t 'at t\'5" -lo d,tJ ~ ~ 7 WIS fvof'<(~ 1nseM

0 1 1 3 s r A 0 1 2 1 ,..... 1~ p(act ~ J'Mf
0116 RST 07 __,

r 2..

- - -J

Ka
yp
roJ
ou
rna
l

01 I 7 HOP
01 18 NOP
01 19 STAX B
0 1 I A HOP
0 1 I B IHR B
0 I IC I H~: B

-x loat al V(.!ltstrs -i
C020M0E010 A=00 B=0000 D=0000 H=0000 8=0100 P=0100 M\11 B, 08

- L., &ic.u..Je fr~fam-i,r 0'11(, "Skf · i~LnG-1 CRu -s~-lt-, ~e\vf€ J i\ ~u.-kd
C0Z0M0E010 A=00 8=0000 D=0000 H=0080 8=0100 P=0100 MVI B,08*0102

-1.; ll/U OGt -iP ®;11 (V\Ok OJI-I ,·n g) al.Ct>vw,:fu. kfeo.kpo,~+ .J
C0Z0M0E0l0 A=00 8•0800 D=0000 H=0000 8=0100 P=0102 MVI C,00•0104

-L; Tvc.l'e a5a;Y\ (1<e1~u C ;~ d~rtd)
C020M0E0l0 A=00 B=0S00 D=0000 H=0000 8=0100 P=0104 LXI H,0119*0107

-r 3 , Tra.ce. ·fvwu 4.tis
C020M0E010 A=00 8=0800 D=0000 H=0119 8=0100 P•0107 MO¥ A., M
C020M0E010 A=02 8=0800 D=0000 H=0119 S=0100 P•0108 SUB C
C0Z0M0E01 I A=02 8=0800 [1=0000 H=0119 :3=0100 P=0109 JNC 010D•010D
- D 11 9 ' ~Y1t-a\:

O.~ breo}1701m-a110D~__J -, 'OtsQl~ ll'llYIO(!I n l!qH,
0119 02 00 04 03 05 06 01 l'r,eramd•

.. ~, . '. l,J .•.. @. 0120 05 11 00 22 21 00 02 7E EB 77 13 23 EB 08 78
0130 C2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00. ' ...).
01•0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 v~-.. d. ~~-.
01'50 00 00 00 00 00 0e 00 00 00 00 00 00 00 00 00 00 ... _lS ll .
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ·i"1t· ~~¼a.,, •..
0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .• 11.lt v·. -1i-· ·f ...
0180 00 00 00 00 00 00 00 00 01; 00 00 00 00 00 00 00 LIA_ ... ll?t __ oj\o_ ...
0 I 90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .V\IIYl.'jfGip~ic
01A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 el-uirauc("$.
01B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
-x -1 Cu.l'ftl.d-CPl.l 'Sh.~ "\
C0Z0M0E0l1 A=02 8=0800 D=0000 H=0119 8=0100 P=010D JHX H

- r
5

_. irate ~ ..¼: es tlMI CLLffeL-rt CPl.l sll
C020M0E011 A=02 8=0800 D=0000 H=01!9 8=0100 P=010D IHX H
C:0Z0M0E0l 1 A=02 B•0800 D=0000 H=01 IA ~:=0100 P•010E DCR 8 ~,k:
C0Z0M0E0ll A•02 B•0700 D=0000 H=011A S=0100 P•010F JNZ 0 I 0g~ kyoi.q-
C0Z0M0E0l1 A=02 8=0700 D=0000 H=011A S=0100 P=0107 MOY A,M
C0Z0M0E011 A=00 8•0700 D=0000 H=011A S=0100 P•0108 SUB C*0109

U5 • • •
--1 \rlACl \.lll~lw-\ lt'fu~ \\\.-bw.edlC.dt, ~ks
C0Z1M0Ell! A=00 B=0700 D=0000 H=011A 8=0100 P=0109 JHC 0!0D*0108
-~J CA.I. ~-k /i.t tw!of us ~
C0Z0M0Ell I A=04 8:0600 D=0000 H=0118 8=0100 P•010ic!-·3llB C

13

Ka
yp
roJ
ou
rna
l

-g_,, ~?i.,n ?ro_1ro.111 "tl!»I. currort i'c w..il eo,,,,1>lth~" {1~ too.-+1~)

"0 I j 6 'o1eA l:.poiJ: ~t ll61-l I C/11.dil'.d. ~ erew.-h'l!I R'Sf 1 \Yi Y)!Dc/,it,i£ Me.-

- K.,1 rt'U ~k cd-ew:t J P~mtl
C0Z1M0EIII A=00 B=0000 D=0000 H=0121 8=0100 P=0116 RST 07

- ~, llClll'lll~ o.vr{ lWA¥t~l 1)~ et>V.r\W'

P=0116 100,l

-x -J
,,,~•" C0Z1M0Ell I A=00 B=0000 D=i:1000 H=0121 s-e,100 P=0100fM\11 8 .. is 0, ,.

- r 10,1 "Tro lO ~~\) ~ ~tfl~ ~ e,~{ c,PJ.,,.,,¾ Lti ~~ II A<. l
C:021 M0E 111 A=00 9,:0000 r,-0 0 H=0121 s- 100 p.fic10 MVI 8, 08
C0Z1M0E111 A=00 8=0800 D 000 S=0100 P•0102 MVI C,00
C0ZIM0Ell1 A•00 8=080 •0000 8=0100 P=0104 LXI H,0119
C0ZI M0El 1 l A=00 s,-. 8!-@. D= H=0119 $=0100 P=B 107 MO\/ A., M
C0Zlt10Ell 1 ii=@ •0~ =0000 H=0119 S=0100 P•0108 SUB C
C020M0E011 A=02 8•0800 D=0000 H=0119 8=0100 P•0109 JN • 010D
C020M0E011 A=02 9=0800 D=0000 H=0119 $=0100 P=010D IN H
C020110E011 A=02 8=0800 D=0000 H=01 IA 8=0100 P•0l0E DCR B
C0Z0M0E011 A=02 8=0700 D=0000 H=011A S=0l00 P•010F JNZ 0107
C020M0E011 A=02 8=0700 D=0000 H=011A $=0100 P•0107 MDV A,M
C020110E0l 1 A=00 8=0700 D=0000 H=01 IA S=0l 00 P•0108 SUB C
C021M0E111 A=00 8=0700 D=0000 H=011A 8=0100 P•0109 JNC 010D
C021M0Elll A=00 B•0700 D=0000 H=011A 8=0100 P•010D !NM H
C02IM0E!II A=00 B=0700 D=0000 H=011B 8=0100 P=010E DCR B
C020110Elll A=00 8=0600 D=0000 H=011B S•0100 P•010F JNZ 0107
C020M0Ell1 A=00 8•0600 D=0000 H=0l19 8=0100 P•0107 ~OV A,M*0108
-A109 -l

0 i 0 C,1

161<. DDT \/ER 1. 0
HEXT PC
0200 0100
- L 1 0 0 J L1.;..t SOillt C#le
0100 M\11 B., 08
0102 M\11 C:., 0'0
~104 LXI H • 0 11 9 iev10L1S • 0107 MOV A.,Mr-5
0108 SUB C
0109 JC 010

Pat~ . f(t'Sfltt X,~f-1 1, llll

I

Ka
yp
roJ
ou
rna
l

010C l'I OY CI H
0 1 0D IHX H
0 1 0 E DCR 8
010F JHZ 0107
0 1 12 MOY 4., C
- x" -,;
P=0100,I

- r 10 1 T re.ct +ti See bw Pcctd.u{ vevs11~ oPtuc.tt!S
C0Z0M0E010 A=00
C0Z0M0E010 4=00
C020110E0l0 4=00
C0Z01'10E010
C0Z0M0E0l0
C0Z01'10E0I 1
C0201'10E011
C0Z0110E011
C0Z01'10E011
C0201'10E011 A=02
C0Z01'10E011 fi=02
C0Z01'10E011 A=00
C!Z01'1!E010 A=FE
C!Z01'1!E0l0 A=FE
C!Z01'1!E0l0 l'l=FE
C!Z01'10E111 A=FE
-x -J

8=0000
8=8800
9=0800
B=080e

ee
&

B=
B=
B=0702
E:=0?02
8=0702
B =0 70 2
B =0 70 2
8=0702
8=0602

D=~000
D=0000
r, =0 0 00
D=0000
D=000l:l
D=00
D . 00
D=0000
D=0000
D=0000
D=0000
D=0000
D =0 0 00
D = 0 0 00
D=0000
D=0000

H=:i\000 :,=0100
H=0000 S = 01 -
H=0000 ::, = 1 0 0
H=0119 ,=01 <!0
H=0 '3=0100

1 1 9 :,=0100
S=0100

H=0119 S=0100
H=011A ·,=0100
H=01 1 A S=0100
H=01 l A S=01i'.10
H=01 1 A :,:=01 <10
H=0i iA ·,=0100
H=01 1 A $=0100
H=01 18 :,.=0100
H=011B S=0100

=0100 !'t l~ I a> 0 B
P=0102 11 ',I C .• 00
F'=0104 LXI H.,0113
P=~l07 11 0 \I A., 11
P=0108 SUB .
P=0109 JC 010D
P=010C ,., 0 \I C,A
P=010D I H ►: H
P=010E DCR B
P=010F ,INZ 0107
F'=~107 "101/ A·' M
P=0108 SUB C
P=0109 JC 010D
P=~l0D IHX H
P=010E DCR B
P=010F JHZ 0107•0107

~~~ Jb- lb~ 
C1Z01'10Ell1 A=FE 8=0602 D=0000 H=f.118 ~=01<10 P=010? !10\1 1'1.,1'1 

- G • 1 0 8 I 121,4,\ -tniM CUrv( ~t f'l aY1d. ~e;U<po:>'£1 .. t fWH 
•0108 
-1.., 

C!Z01'10Elll 
-T -, 
C!Z01'10Elll 
-T 

-,1 

C0Z01'10E01 ! 
-)l,I 

,~od- ~JllM 

A=04 8=0602 D=0000 

<ol~it 5lcp +Of 
A=04 B=0602 D=0000 

A=02 B =0 60 2 D=0000 

H=0118 '::=0100 P=0108 

a. .Jz.w ~des 
H=01 iB S=0100 P=0108 

H=0118 S=010t• P=0109 

SUB 

:,UB 

,.JC 

C0Z0M0E011 A=02 B=0602 I•=0000 H=0118 :,:=0100 P=010C i'IOV 
-G -, 
• 0 11 6 
- 'f:...1 

I<~ -\o CJr11.Pkh~ 

C 

C•0109 

010D•010C 

C., A 

C0Zll'l0Elll A=03 8=0003 D=0000 H=0121 $=0100 P=0116 RST 07 

-
5 1 2 1, \ ook. at -t\Ae 1.tillll d "tAfG€ 0 

0 ! 21 0 3,1 WvCKlj lkllu.t f 

Ka
yp
roJ
ou
rna
l



-- ---~- --- --- ------

IH22 00; 

0123 22; 

0124 21.1 

0125 00., 

0 1 2 6 0 2" / ~\\d ~ ~ s Comn\O.vJ. 

0127 7E • -~ 
-Ll00 -; 
01 •)0 MY! B,08 
0102 M\/1 C,00 
0104 LXI H, 0119 
0107 MO\I A., M 
0108 SLIB (: 

[11 09 JC 010D 
0 1 0(; MO\/ C,A 
010r, I HX H 
010E DCR B 
0111iF JHZ 0107 

>-rle11~ 1k c«le. 0 112 MO\I A., C 
-L 
-J 
0 1 I 3 STA 0121 
0 116 RST 07 
0 1 1 7 HOP 
0 11 B HOP 
0 1 19 STAX B 
0 1 I A HOP 
0 I I B !HR 8 
011 C: IHX B 
01 ID DCR B 
0 11 E M \I I 8, 0 I 
0120 DCR B 
-XP -~ 

Qtise-1: -\\.i 1'e P=0116 100 J 

-T 5,.,,;,lt ~ , o.vt&. ~ct,. ~ v~llds -J 
C021M0E111 A=03 8=0003 D=0000 H=0121 
-T 
-J 

C0Z1M0Elll A=03 8=0803 D=0000 H=0121 
-T 

(c~ lo.,41..t'sd -,1 

C:0ZIM0EIII A=03 8~0800 D=0000 H=0121 

S=0100 P=0100 MVI 

S=0100 P=0102 MVI 

S=0100 P=0104 LXI 
-T 

r i,_ ~ i ~ ~t -J 

A=03 8=0800 D=0000 H=0119 S=0100 P=0107 MO\/ C0Z1M0E111 

,, 

8., 08•0102 

C,00•0104 

H.,0119•0107 

A.,1'1*0108 

Ka
yp
roJ
ou
rna
l



-T 
-J r+1~1-iia,l,;. ri- ~o"Ol<t-h A 

C0Z1M0Elll A=02 8=0800 D=0000 H=0119 8=0100 P=0108 SUB C•0109 
-T -J 

C0Z0M0E011 A=02 8=0800 D=0000 H=Oi i9 ~;=0100 P=,1109 ,JC 
-T -; 
C0Z0M0E011 
-T -J 
C0Z0M0E011 
-T -,1 

C:0Z0M0E0il 
-T -.; 
C0Z0M0E011 
-T -; 
C0Z0M0E0ll 
-1., 

C0Z0M0E0l1 
-T -J 
C1Z0M1E0l0 
-T 

-,1 

A=02 8=0800 D=0000 H=0119 S=010,3 P=010C MO\/ 

,~w d.,d.. J.... Y'tl(Wtd -J. c. COlfed-lj 

A=02 8=080 2 [1=0000 H=0119 8=0100 P~€I10D I NX 

A=02 8=0802 [1=0000 H=01 IA :,=0100 P=010E DCR 

A=02 8=0702 D=0000 H=011A S=01 IH• P=010F ,INZ 

A=02 8=8702 D=B800 H=011A 5=8100 P=8107 ~ov 
r stcov,,.1 GW,. ~ ~.o ... .,kt' .4,, J,. 

A=00 8=0702 D=0000 H=011A S=0100 P=0108 SUB 

[" sid,,fyitd dMY00s dalit. Vtxlld. \.Alk1cl, w ... s (~t~ .l.lf 
A=FE 8=0702 D•0000 H=01 IA S=01[10 P=0109 JC 

010D•010C 

C.,A*010D 

Hat<010E 

l3at<010F 

0107*1;1107 

010D•010D 

CIZ0M1E0l0 A=FE B:=0702 D=0000 H=01 IA S=0100 P=010D IN~: H:t010E 
-LI 00 --c; 
0100 
0102 
0104 
0107 
0108 
0109 
010C 
0 1 9 ~t 

010E 
0 1 >)F 
0 I I 2 
-·Al(18 
--J 

0109., 

MVI 
MVI 
LXI 
MOV 
SUB 
clC 
MO\/ 
I H~; 
DCR 
,.INZ 
MO\/ 

CMPC 

B., 08 
C., 00 
H,0119 

~,M .. --~ sl...auld ~tvt kfl.l o. CMP so--tkrt-v-e_qrs~r A 
~ -~ : D !AkM.ld ur ~ deJr09ttl • 
H 
B 
0107 
A., C 

J 

-G0 ...LP iX>T -k S/ilf: -J -::5\0 

Ka
yp
roJ
ou
rna
l



SAVE 1 SCAN. COM,) 

A>DDT SCAN. COM.1 

16K DDT VER 1.0 
HEXT PC 
0200 0100 
-XPJ 

P=0100~ 

-~., 
0116 RST 07 
0117 NOP 
0118 HOP 
0119 STAX B 
011A HOP 
- ( YI.Llo..d) 

loo~ o.t cc<!t fo ~e 'tf it wc,s ?~Di>~ Lc,cx&.tt( 

Clol'l.g 1h~o/.lt a.~\ L,Jl¾, • Yu.k.M l 

- G • 11 6 ;' {('UV\ ~~ \O(M +o ('.,'11-~~tL~ 

•0116 

-)ii~ ~co~ ctt U.f~ ( Co(rJekl bpo) 
Cl~ 

-~i Look a.t (fu. "31z:tl-t. 
CIZIM0E1l1 A=06 8=0006 0=0000 H=0121 5=0100 P•0116 RST 07 

-~-- loo" a+'' l.arJt O 
- it afi>qfS -k Ire C.rrtlt 

0121 06l 

01;;2 00,1 

0123 

ED SCANeASM ; 

NFOUIH 

NFOUiH 

;LARGER 

;LARGER 

., JLIMP 1 F 

; ,.I LI MP IF 

VALLIE IN C? 

VALUE I N ... .-, '~· •• 

LARGEF: VALLIE 

LARGER VALLIE 

"!OT FOIJHD 

!<!OT FOIJIH 

Ka
yp
roJ
ou
rna
l



HSM :,CAN AA"Z-,;-Qt-a~w.lalt. ~ch~ ~CMu ~r~ dt4-A 
wx -+o d1~ A r•( ) CF.•M ASSEMBLER - \/ER 1 · 0 ftLiict-w :C (Seki$ I,\{) -p,1~rne 

0 1 i:: 2 
002H USE FACTOR 
ENI• OF ASSEMBLY 

[iD r scAN. HE,:.,, t!t-h1.1,t, de~1e, -to C~l~ ~~ 
.\6,. I•DT VER 1.0 
IIE/T PC 
0121 0000 

-Lll\l 

ill lt: clMP 'l•3CH3 e!AtdL -b Oli.u.Vt blG. .lS ~-+'Ill tlt II&~ 
0119 STA,: 8 
011A NOP 
0llB INR B 
- (,..'ao,.tl-) 

- G 10 0, l 16,,., fu ~ ~tci;~Vl·I~ Wl~ lo-rta.~po;.,t ~ elAC! 
• O l ! 6 ~ laJ Po,~ V'w~«I 
-E1i..!, J Loo~ at ''LAt'I:." co.r,d 1alul c,-.pid,J 
i.1121 ~2 7E EB 7? 13 23 
01·~0 C2 27 01 C3 03 29 00 d~ 00 00 00 
0140 00 00 80 08 00 00 00 80 03 01 B0 

- (vLtJ.,...,t) ~ l 01A1 i'j~t-

- G "'; -s-k,p t>DT / dtbw. 'S(SS(O"' ~VII~ 

,, 

EB 08 78 Bl •1 

(10 00 00 00 00 
00 00 00 011 il0 

. " . hi. I .. ~: . 
. ) . 

Ka
yp
roJ
ou
rna
l




