DS

.

10

DIGITAL RESEARCKH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIES

COPYRIGHT (e) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (e) 1976, 1977, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transeribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manua! or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Section

l-

2.

6.

Table of Contents

IN'ImD[JcrIm F R E R xR Y E N N R N RN R N R R IR A BE N

mTImAL DESCRIPI‘I(NOF CP/M 'EEEEEREN N RN NN NENIEIR}N BN}]
2.1. General Command SCYUCEUrE ..eeeccscccsscasasss
2.2. File REferenCeS " E R Y R FEEEEEEFE R E NN E N RN N

mI'ICHING DISKS IEN NN NENNERENNENNNRNNNRIENNENNEJNNRE N BB NI

THE FORM OF BUILT-IN CDMMAN]:S EE YRR EERRRERNNE R RN N RN]
4n1. ERA afn CL ceevsssssnsnssssnrsssaasssnsscnsoanssn
4.2, DIR 28fN CF cuccescccccccscnssannacssaserscnnen
4 3. REN ufn1=Ufn2 CL Lesvssansscsasscscssnsssassnss
4¢4¢ SAVE n ufn CL ssssscnssasssssssscssccssascsananse
4 5. TYPE ufn CL Leessssssnvcssssssscaansnsnancassnsnse

LINE EDITING mD O[}IIP[E mNTmL......----‘-...I....I

TRmSIENII (I)Mmm 'FEEEREENEF N R ENNEERNNENERNIEREJNENERESNX}]
6.1. STAT Cr [EFEFERRFENEENE ENENENEICE R ERERERENJEREJRJESR}
Am ufrl cr IE R FENNFERENNERENRNNIRERJIENHNNEERENJREJNENRESSEN})
MDUfn cr IF NN F R R NEFRNENENNERNENEIR}RNNERNEREJRRRLRER.]

PIP cr IFFENNFNENENEFEENNENNERIRIENENREH®SIJENJNNRE}EJR}RRERHEJNJER]

ED ufn cr 28 588988808 ORREINABRABBREBOERDARSS

SY%EN cr I FENFERENNNE R NN NERNNNNENNNERJNERNESERERSEH:R]

SUBMIT ufn parm#l ... PArmMn Cr ,..ececcvcesce
DIJMP ufn Cl’.' [FEE E RN E NN EFFRERRRRRRRR NN RN NN
WCPM Cr [FEFENEFENNENNENENRENNENRIEHNNNNNERJEEJNJ;NEJNJNKENS;]

[We Wy e We We)\ Wo
L]

O 00~ O U b W N
.

BW EMR mssms IE R RN NN NNNRENRNERINNNNNERJNEJNNEJ;JERN;N;}N}

OPERATIWG‘ CP/M ONTI-EM [E R NN ERENENNNENRNNENSNRENH}EJ;NHJN]

Page

[+ (VU VS U] -

O WO 00O~ ~2

30

34

This book actually contains several books:

An Introduction to CP/M Features and Facilities, pages 1-35
CP/M 2 User's Guide, pages 1-33

CP/M 2.2 Alteration Guide, pages 1-72

CP/M 2.2 Interface Guide, pages 1-4§

CP/M Assembler (ASM) User's Guide, pages 1-22

ED: A Context Editor for the CP/M Disk System--User's Manual,
pages 1-17

CP/M dynamic Debugging Tool (DDT) User's Guide, pages 1-19

1, INTRODUCTION,

CP/M is a monitor control program for microcomputer system development
which uses IBM~compatible flexible disks for backup storage, Using a camputer
mainframe based upon Intel’s 8@88 microcomputer, CP/M provides a general
enviromment for program construction, storage, and editing, along with
assembly and program check-out facilities, An important feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8088 (or Zilog 2-8@) Central Processing Unit, and has at least
16K.bytes of main memory with up to four IBM-compatible diskette drives, A
detailed discussion of the modifications required for any particular hardware
enviromment is given in the Digital Research document entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single~density Intel MDS B80@, several different hardware manufacturers
support their own input-output drivers for CP/M,

The CP/M nmonitor provides rapid access to programs through a
comprehensive file management package, The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and random file access, Using this file system, a large number of
distinct programs can be stored in both source and machine executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler,
and debugger subsystems, Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with wvarious
high-level languages, When coupled with CP/M’s Console Command Processor, the
resulting facilities equal or excel similar large computer facilities,

CP/M is logically divided into several distinct parts:

BIOS Basic I/0 System (hardware dependent)
BDOS Basic Disk Operating System

CcCp Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRI, Paper
Tape Reader/Punch, and user—-defined peripherals), and can be tailored by the
user for any particular hardware erwvironment by “patching” this portion of
CP/M. The BDOS provides disk management by controlling one or more disk
drives containing independent file directories, The BDOS implements disk
allocation strategies which provide fully dynamic file construction while
minimizing head movement across the disk during access. Any particular file
may contain any number of records, not exceeding the size of any single disk,
In a standard CP/M system, each disk can contain up to 64 distinct files, The

BDOS has entry points which include the following primitive operations which
can be programmatically accessed:

SEARCH Look for a particular disk file by name,

OPEN Open a file for further operations,

CLOSE Close a file after orocessing,

RENAME Charge the name of a particular file,

READ Read a record from a particular file,

WRITE Write a record onto the disk,

SELECT Select a particular disk drive for further
operations,

The CCP provides symbolic interface between the user’s console and the
remainder of the CP/M system, The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section,

The last segment of CP/M is the area called the Transient Program Area
{(TPA)., The TPA holds vrograms which are loaded from the disk under command of
the CCP, During program editing, for example, the TPA holds the CP/M text
editor machine code and data areas, Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA,

It should be mentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing program, That is, once a user’s program is
loaded into the TPA, the CCP, BDOS, and BIOS areas can be used as the
program’s data area, A "bootstrap” loader is programmatically accessible
whenever the BIOS portion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk,

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
enwiromment in which CP/M is executing, Thus, the standard system can be
easily modified to any non-standard enviromment by changing the peripheral
drivers to handle the custom system,

2. FUNCTIONAL DESCRIPTION OF CP/M,

The user interacts with CP/M primarily through the CCP, which reads and
interprets commands entered through the console. In general, the CCP
addresses one of several disks which are online (the standard system addresses
up to four different disk drives)., These disk drives are labelled A, B, C,
and D, A disk is "logged in" if the CCP is currently addressing the disk, In
order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol ">"
indicating that the CCP is ready for another command., Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number, All CP/M systems are initially set to operate
in a 16K .memory space, but can be easily reconfiqured to fit any memory size
on the host system (see the MOVCPM transient command), Following system
signon, CP/M automatically logs in disk A, prompts the user with the symbol
"A>" (indicating that CP/M is currently addressing disk "A"}, and waits for a
command, The commands are implemented at two levels: built-in commands and
transient cammands,

2.1. GENERAL (OMMAND STRUICTURE,
Built~in cammands are a part of the CCP program itself, while transient

commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified files,

DIR List file names in the directory.

REN Rename the specified file,

SAVE Save memory contents in a file,

TYPE Type the contents of a file on the loqged' disk.

Nearly all of the cammands reference a particular file or group of files, The
form of a file reference is specified below.

2.2. FILE REFERENCES,

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M, These file references can be either
"unambiguous" (ufn) or ‘“ambiguwous" (afn), An unambiguous file reference
uniquely identifies a single file, while an ambiguous file reference may be

satisfied by a number of different files,

File references consist of two parts: the primary name and the secondary
name, Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM,” for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file, The two names are separated by a “." as shown below:

PEPPPPRP. SSS

where ppoppppp represents the primary name of eight characters or less, and
sss is the secondary name of no more than three characters, As mentioned
above, the name

DPPPREPR

is also allowed and is eqguivalent to a secondary name consisting of three
blanks. The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

<> = 2% []
while all alphanumerics and remainina special characters are allowed.

An ambiguwous file reference is used for directory search and pattern
matching, The form of an ambiguwus file reference 1is similar to an
unambiguwous reference, except the symbol "?" may be interspersed throughout
the primary and secondary names, In various commands throughout CP/M, the "?"
symbol matches any character of a file name in the "?" position. Thus, the
ambiguwous reference

X?Z2.C2M

is satisfied by the unambiquous file names
XYZ .COM

and

X3z .CAM

Note that the ambiguous reference

* *

is equivalent to the ambiguwous file reference

while

PPRePPPPR. *
and

* _SS8S

are abbreviations for

PPPPPPPP. 772
and

respectively, As an example,
DIR *.*

is interpreted by the CCP as a command to list the names of all disk files in
the directory, while

DIR X,Y
searches only for a file by the name X.Y Similarly, the command
DIR X?Y,C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambigwus reference.

The following file namwes are valid unambiquous file references:
X XYZ GAMMA
X.Y XYZ ,Q0M GAMMA,1
As an added convenience, the programmer can generally specify the disk
drive name along with the file name, In this case, the drive name is given as
a letter A through 7 followed by a colon (:)., The specified drive is then
“logged in" before the file operation occurs, Thus, the following are valid
file names with disk name prefixes:
A:X.Y B:XYZ C:GAMMA
2:XYZ , M B:X,A?M C:* ,ASM
It should also be noted that all alphabetic lower case letters in file

and drive names are always translated to upper case when they are mprocessed by
the CCp.

3. SWITCHING DISKS,

The operator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console imput. Thus, the sequence of prompts and commands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR
SAMPLE ASM
SAMPIE PRN
A>B:

B>DIR *_ASM
DUMP ASM
FILES ASM
B>A:

List all files on disk A,

Switch to disk B.

List all “ASM" files on B,

Switch back to A,

4, THE FORM OF BUILT-IN COMMANDS.

The file anmd device reference forms described above can now be used to
fully specify the structure of the built-in commands. In the description
below, assume the following abbreviations:

ufn - mambiguous file reference
afn - ambiguwous file reference
cr - carriage return

Fur ther, recall that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in cammand names and file references,

4.1 ERA afn cr

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the “>"). The files
which are erased are those which satisfy the ambiquous file reference afn,
The following examples illustrate the use of ERA:

ERA X.Y The file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned,

ERA X, * aAll files with primary name X are removed from
the current disk,

ERA * ASM All files with secondary name ASM are removed
from the current disk,

ERA X?Y.C?M All files on the current disk which satisfy the
ambiguous reference X?Y,C?M are deleted,

ERA * * Erase all files on the current disk (in this case
the CCP prompts the console with the message
"ALL FILES (Y/N)?"
which requires a Y response before files are
actually removed) .

ERA B:*_FRN All files on drive B which satisfy the ambiguous

of the currently logged disk,

4,2, DIR afn cr
The DIR (directory) command causes the names of all files which satisfy
the ambiguwous file name afn to be listed at the console device, As a special
case, the canmand
DIR

lists the files on the currently logged disk (the command "DIR* is equivalent
to the cammand "DIR *.*"), Valid DIR commands are shown below., :

DIR XY

DIR X?Z,C?M

DIR ??2.Y

Similar to other CCP commands, the afn can be preceded by a drive name,

The following DIR coammands cause the selected drive to be addressed before the
directory search takes place,

DIR B:

DIR B:X,Y

DIR B:* A?M

If no files can be found on the selected diskette which satisfy the
directory reguest, then the message "NOT FOUND" is typed at the console,

4,3, REN ufnl=ufn2 cr

The REN (rename)} command allows the user to change the names of files on
disk, The file satisfying ufn2 is changed to ufnl. 'The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the egual sign, if the user’s console

supports this graphic character, Examples of the REN command are
REN X.Y=Q.,R The file Q.R is changed to X.Y.
REN X¥2Z,00M=XYZ XXX The file XYZ.XXX is changed to XYZ.OOM.

The operator can precede either ufnl or ufn? {or both) by an optional
drive address. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl, Similarly, if ufn2 is preceded by
a drive name, then ufnl is assumed to reside on that drive as well, If both
ufnl and ufn2 are preceded by drive names, then the same drive must be

specified in both cases, The following REN commands illustrate this format,

REN A:X,ASM = Y ,ASM The file Y.ASM is changed to X,ASM on
drive A.

REN B:ZAP,BAS=Z0T,BAS The file ZOT,BAS is changed toc ZAP.BAS
on drive B,

REN B:A,ASM = B:A,BAK The file A,BAK is renamed to A,ASM on
drive B,

If the file ufnl is already present, the REN command will respond with
the error “FILE EXISTS" and not perform the change., If ufn2 does not exist on
the specified diskette, then the message “NOT FOUND" is printed at the
console,

4,4, SAVE n ufh cr

The SAVE command places n pages (256-byte blocks) onto disk from the TPA
and names this file ufn., In the CP/M distribution system, the TPA starts at
100H (hexadecimal), which is the second page of memory. Thus, if the user’s
program occupies the area from 100H through 2FFH, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed, Examples are:

SAVE 3 X.0OM Copies 180H through 3FFH to X,C0M.

SAVE 44 Q Copies 1@¢H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal),

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the afn portion of the
command, as shown below.

SAVE 16 B:20T.COM Copies 10 pages (100H through @AFFH) to
the file ZOT.C0OM on drive B.

4,5, TYPE ufn c¢r

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device, Valid TYPE commands are

TYPE X.Y

TYPE X.PLM

TYPE XXX

The TYPE command expands tabs (clt-I characters), assumming tab positions

are set at every eighth colum,
shown below,

TYPE B:X.PRN

The ufn can also reference a drive name as

The file X,PRN from drive B is displayed.

10

5. LINE EDITING AND OUTPUT (ONTROL,

The CCP allows certain line editing functions while typing command lines.

rubout

ctl=U
ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Delete and echo the last character typed at the
console,

Delete the entire line typed at the conscle,
(Same as ctl-U)

Retype current command line: types a "clean line” fol-
lowing character deletion with rubouts,

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input from the console (used in PIP and ED),

The control finctions ctl-P and ctl-S affect console output as shown below,

ctl-P

ctl-Ss

Copy all subsequent console output to the currently
assigned list device (see the STAT command), Output
is sent to both the list device and the console device
mntil the next ctl-P is typed.

Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S), This feature is
used to stop output on high speed consoles, such as
CRI''s, in order to view a segment of output before con-
tinuing,

Note that the ctl-key seguences shown above are obtained by depressing the
control and letter keys simultaneously. Further, CCP command lines can
generally be up to 255 characters in lenath; they are not acted upon until the
carriage return key is typed.

11

6. TRANSIENT COMMANDS,

Transient commands are loaded from the currently logged disk and executed
in the TPA, The transient commands defined for execution under the CCP are
shown below, Additional functions can easily be defined by the user (see the
LOAD command definition).

STAT List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter device
assignment,

ASM Load the CP/M assembler and assemble the specified
program from disk,

LCAD Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command under the CCP).

DDT Load the CP/M debugger into TPA and start execution,

PIP Load the Peripheral Interchange Program for subseguent
disk file and peripheral transfer operations,

ED Load and execute the CP/M text editor program,

SYSGEN Create a new CP/M system diskette,

SUBMIT Submit a file of commands for batch processing.

DUMP bump the contents of a file in hex.

MOVCPM R:::-qenerate the CP/M system for a particular memory
size,

Transient cammands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user, As an added
convenience, the transient command can be preceded by a drive name, which
causes the transient to be loaded from the specified drive into the TPA for
execution, Thus, the command

B:STAT

causes CP/M to temporarily “log in" drive B for the source of the STAT
transient, and then return to the original logged disk for subsequent
processing,

12

The basic transient cammands are listed in detail below.

6.1. STAT cr

The STAT command provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT cr
STAT "command line" cr

Special forms of the "command line* allow the current device assignment to be
axamined and altered as well. The wvarious command lines which can be
specified are shown below, with an explanation of each form shown to the
right,

STAT cr If the user types an empty cammand line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

X: R/W, SPACE: nnnk
or
¥X: R/0, SPACE: nnnk

for each active drive x, where R/W indicates the
drive may be read or written, and R/O indicates
the drive is read only (a drive becomes R/O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start), The space
remaining on the diskette in drive x is given

in kilobytes by nnn,

STAT x: Ccr If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the command “STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK
STAT afn cr The command line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor-
age reguirements for each file under the heading

RECS BYTS EX D:FILENAME,TYP
rrrr bbbK ee d:pppppepp.sss

where rrrr is the number of 128-byte records

13

allocated to the file, bbb is the number of kilo-
bytes allocated to the file (bbb=rrrr*128/1624),
ee is the number of 16K extensions (ee=bbb/16),

d is the drive name containing the file (A...Z),
peoppppe is the (up to) eight-character primary
file name, and sss is the (up to)} three-~-character
secondary name, After listing the individual
files, the storage usage is summarized,

STAT x:afn cr As a convenience, the drive name can be given
ahead of the atn, 1In this case, the specified
drive is first selected, and the form “STAT afn"
is executed,

STAT x:=R/0 cr This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place. When a disk is read-only,
the message

BDOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x, CP/M waits until a key

is depressed before performing an automatic warm
start (at which time the disk becomes R/W),

The STAT command alsc allows control over the physical to logical device
assignment (see the IOBYI'E function described in the manuals “CP/M Interface
Guide" and "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices, The four logical devices are
named:

CON: The system console device (used by CCP
for conmunication with the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list device

The actual devices attached to any particular computer system are driven
by subroutines in the BIOS portion of CP/M, Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape, In order to allow some flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch orocessing (console is current RDR:,
output goes to current LST: device)

UCl: User-defined console

PTR: Paper tape reader (high speed reader)
UR1: User—defined reader #1

URZ2: User-defined reader #2

PTP: Paper tape punch (high speed punch)
UPl: User-defined punch #1

Up2: User—defined punch #2

LPT: Line printer

ULl: User-defined list device #1

It must be emphasized that the physical device names may or may not
actually correspond to devices which the names imply, That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes,
The exact correspondence and driving subroutine is defined in the BIOS portion
of CP/M. In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 880 development system.

The possible logical to physical device assignments can be displayed by

typing
STAT VAL: cr

The STAT prints the possible values which can be taken on for each logical
device:

CON. = TTY: CRT: BAT: UCIl:
RDR: = TTY: PTR: URl: UR2:
PUN: = TTY: PTP: UPl: UP2:
LST: = TTY: CRT: LPTI': ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line, The current logical to
physical mapping is displayed by typing the command

STAT DEV: Cr

15

which produces a listing of each logical device to the left, and the current
corresponding physical device to the right, For example, the 1list might
appear as follows:

(ON: = CRT:
RDR: = URl:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing a
STAT command of the form

STAT 1d1 = pdl, 1d2 = pd2 , ... , 1dn = pdn cr
where 1d1 through 1ldn are logical device names, and ©ndl through pdn are
compatible physical device names (i.e., 1di and pdi appear on the same line in
the "VAL:" cammand shown above), The following are valid STAT commands which
change the current logical to physical device assignments:

STAT CQON:=CRT: cr
STAT PUN: = TTY:,LST:=LPT:, RDR:=TTY: Cr

6.2, ASM ufn cr
The ASM command loads and executes the CP/M 8088 assembler. The ufn
specifies a source file containing assembly lanquage statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM commands are valid:
ASM X
ASM GAMMA

The two-pass assembler is automatically executed, If assembly errors occur
during the second pass, the errors are printed at the console,

The assembler produces a file
X . PEN
where X is the primary name specified in the ASM command, The PRN file
contains a listing of the source vprogram (with imbedded tab characters if

present in the source program), along with the machine code generated for each
statement and diagnostic error messaqes, if any., The PRN file can be listed

16

at the console using the TYPE command, or sent to a peripheral device using
PIP (see the PIP command structure below), Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftmost 16 columns (program addresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: 1if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator’s guide) by removing the
leftmost 16 characters of each line (this can be done by issuing a single
editor "macro" cammand), The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subseguent editing
and assembly, The file

X HEX

is also produced which contains 8680 machine language in Intel “hex" format
suitable for subsequent loading and execution (see the LOAD command), For
complete details of CP/M’s assembly lanquage program, see the “CP/M Assembler
Language (ASM) User’s Guide."

Similar to other transient commands, the source file for assembly can be
taken fram an a.ternate disk by prefixing the assembly lanquage file name by a
disk drive name, Thus, the comand

ASM B:ALPHA cr
loads the assembler from the currently logged drive and operates upon the

source program ALPHA,ASM on drive B, The HEX and PRN files are also placed on
drive B in this case.

6.3. LOAD ufn cr

The LOAD command reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed., The file name ufn is assumed to be of the form

x HEX

and thus only the name x need be specified in the command, The LOAD command
creates a file named

X . COM
which marks it as containing machine executable code, The file is actually
loaded into memory and executed when the user types the file name X
immediately after the prampting character ">" printed by the CCP,
In general, the CCP reads the name x following the prompting character

and looks for a built-in function name, If no function name is found, the CCP
searches the system disk directory for a file by the name

17

x ., OOM

If found, the machine code is loaded into the TPA, and the program executes,
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. 1In this way,
the user can "invent" new commands in the CCP, (Initialized disks contain the
transient commands as (OM files, which can be deleted at the user’s option,)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name, Thus,

1.CAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins,

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which begin at 108H, the beginning of the TPA, Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read. Thus,
LOAD must be used only for creating CP/M standard "COM" files which operate in
the TPA, Proarams which occupy regions of memory other than the TPA can be
loaded under DDT.

6.4. PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files. The PIP program is initiated by tvping one of the following forms

(1) PIP cr
{2) PIP “"command line" cr

In both cases, PIP is loaded into the TPA and executed, In case (1), PIP
reads caommand lines directly from the console, prompted with the "**
character, until an empty command line is typed (i.e.., a single carriage
return is issued by the operator). Each successive command line causes some
media conversion to take place according to the rules shown below, Form (2)
of the PIP command is equivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines,
The form of each cammand line is

destination = source#l, source#2, ... , sourced#n cr

where "destination” is the file or peripheral device to receive the data, and

18

"source#l, ..., source#n” represents a series of one or more files or devices
which are copied from left to right to the destination.

When multiple files are given in the command line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the O parameter to
override this assumption). The egual symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCIT character, to improve
readability. Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions, Finally,
the total cammand line lenqth cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width) .

The destination and source elements can be wmambiquous references to CP/M
source files, with or without a preceding disk drive name, That is, any file
can be referenced with a preceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored, When
the drive name is not included, the currently logged disk is assumed,
Further, the destination file can also appear as one or more of the source
files, in which case the source file is not altered until the entire
concatenation is complete, If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
cordition arises), The following command lines (with explanations to the
right) are valid as input to PIP:

X=Yecr Copy to file X from file Y,
where ¥ and Y are unambiquous
file names; Y remains unchanged.

X=Y,2 cr Concatenate files Y and 2 and
copy to file X, with Y and 2
unchanged,

X ASM=Y _ASM,Z ASM,FIN,ASM cr Create the file X,ASM from the
concatenation of the Y, 2, and
FIN files with type ASM,

NEW,ZOT = B:OLD,ZAP cr Move a copy of OLD,ZAP from drive
B to the currently logged disk;
name the file NEW,ZCT,

B:A,U = B:B,V,A:C.W,D.X cr Concatenate file B,V from drive B

with C.W from drive A and D.X.
from the logged disk; create
the file A.U on drive B.

For more convenient use, PIP allows abbreviated commands for transferring
files between disk drives, The abbreviated forms are

19

PIP x:=afn cr
PIP x:=y:afn cr
PIP ufn = y: cr
PIP x:ufn = y: cr

The first form copies all files from the currently logged disk which satisfy
the afn to the same file names on drive x (x = A,..Z). The second form is
equivalent to the first, where the source for the copy is drive v (y = A...
7). 'The third form is eguivalent to the command "PIP ufn=y:ufn cr” which
copies the file given by ufn from drive y to the file ufn on drive X. The
fourth form is equivalent to the third, where the source disk is explicitly
given by v,

Note that the source and destination disks must be different in all of
these cases, If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied, If a file exists by the same name as the
destination file, it is removed upon successful completion of the copy, and
replaced by the copied file,

The following PIP commands give examples of valid disk-to—disk copy
operations:

B:=*,(0M cr Copy all files which have the
secondary name "COM“ to drive B
from the current drive,

A:=B:2AP.* cr Copy all files which have the
primary name “ZAP" to drive A
from drive B.

ZAP.,ASM=B: cr Equivalent to ZAP,ASM=B:ZAP,ASM
B:ZOT,QOM=A: cr Eguivalent to B:ZOT,COM=A:Z0T.QOM
B:=GAMMA_BAS cr Same as B:GAMMA,BAS=GAMMA,BAS
B:=A:GAMMA,BAS cr Same as B:GAMMA,BAS=A:GAMMA,BAS

PIP also allows reference to vphysical and logical devices which are
attached to the CP/M system. The device names are the same as given under the
STAT command, along with a number of specially named devices, The logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)

while the physical devices are

20

TTY: (console, reader, punch, or list)

CRT: (console, or list), UCl: (console)
PTR: (reader)}, URl: (reader), UR2: (reader)
PTP: (punch), UPl: (punch), UP2: (punch)
LPT: (list), ULl: (list)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and LST: devices are to be used for
console imput/output,)

The RDR, IST, PUN, and COON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mapping is defined by IOBYTE; see the "CP/M
Interface Guide" for a discussion of this function). The destination device
must be capable of receiving data (i.e,, data cannot be sent to the punch),
and the source devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL: Send 4@ "nulls" (ASCII @°s) to the device
{this can be issued at the end of punched output).

EOQF s Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent. automatically at the
end of all ASCII data transfers through PIP),

INP; Special PIP input source which can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLing location
183H, with data returned in location 109H (parity
bit must be zero).

QuUT: Special PIP output destination which can be
patched “into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit, Note that locations 109H through
1FFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DOT (see the DDT operator s manual).

PRN: Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands, In each.
case, the specific device is read until end-of-file (ctl-2Z for ASCII files,
and a real end of file for non-ASCII disk files), Data from each device or
file is concatenated from left to right until the last data source has been

21

read, The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files, Note if the destination is a disk file, then a temporary
file is created (5 secondary name) which is changed to the actual file name
only upon successful campletion of the copy. Files with the extension "COM"
are always assumed to be non~-ASCII,

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the message "ARORTED"
to indicate that the operation was not completed, Note that if any operation
is aborted, or if an error occurs during processing, PIP removes any pending
commands which were set up while using the SUBMIT command.

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader, In this case, the PIP program checks to ensure that the source
file contains a properly formed hex file, with legal hexadecimal values and
checksum records., When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 24 inches)., When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read. If the
tape position cannot be properly read, simply continue the read (by tyring a
return following the error message), arnd enter the record manually with the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a FRDR:
device. In this case, the PIP program reads the device and monitors the
keyboard, 1If ctl-Z is typed at the keyboard, then the read operation is
terminated normally,

Valid PIP commands are shown below.

PIP IST: = X,PRN cr Copy X.PRN to the LST device and
terminate the PIP proaram.

PIP cr Start PIP for a seguence of
commands (PIP prompts with "*"),

*(ON:=X,ASM,Y ASM,Z ,ASM cr Concatenate three ASM files and
copy to the CON device.

*¥ HEX=CON:,Y.HEX,PTR: Ccr Create a HEX file by reading the
(ON {(until a ctl-Z is typed), fol-
lowed by data from Y. HEX, followed
by data from PTR until a ctl-Z is
encountered,

*cr Single carriage return stops PIP.

22

PIP PUN:=NUL:,X,.ASM,EOF: , NUL: cr Send 40 nulls to the punch device:
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 4@ more null charac-
ters,

The user can also specify one or more PIP parameters, enclosed in left
and right square brackets, separated by zero or more blanks, Each parameter
affects the copy operation, and the enclosed 1list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an optional decimal integer value (the § and O parameters are
exceptions), The valid PIP parameters are listed below,

B Block mode transfer: data is buffered by PIP until an ASCII
x—off character (ctl=S) is received from the source device.
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader, Upon receipt of
the x—off, PIP clears the disk buffers and returns for more
imput data, The amount of data which can be buffered is de-
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow),

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source, This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device,

E Echo all transfer operations to the console as they are being
performed,
F Filter form feeds from the file, All imbedded form feeds are

removed. The P parameter can be used simultaneously to
insert new form feeds,

H Hex data transfer: all data is checked for proper Intel hex
file format., Non-essential characters between hex records
are removed during the copy overation, The console will be
prompted for corrective action in case errors occur,

I Ignore ":00" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case,

N Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is specified, then leading zeroes are included, and a tab is
inserted following the number., The tab-is expanded if T is

23

set,

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored,

Pn Include page ejects at every n lines (with an initial page
eject)., If n=1 or is excluded altogether, page ejects
occur every 6@ lines, If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

Qstz Quit copying from the source device or file when the
string s (terminated by ctl-2) is encountered.

Ss?z Start copying from the source device when the string s is
encountered (terminated by ctl-Z), The S and Q parameters
can be used to “abstract" a particular section of a file
(such as a subroutine), The start and auit strings are al-
ways included in the copy operation,

NOTE - the strings following the s and g parameters are
translated to upper case by the CCP if form (2} of the
PIP canmand is used, Form (1} of the PIP invocation, how-
ever, does not perform the automatic upper case translation,
(1) PIP cr
(2) PIP "commard line" cr

Tn Expand tabs (ctl-I characters) to every nth colum during the
transfer of characters to the destination from the source,

U Translate lower case alphabetics to upper case during the
the copy operation,

v verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file),

Z Zero the parity bit on input for each ASCII character,

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.ASM=B:[v] cr Copy X.ASM from drive B to the current drive
and verify that the data was properly copied,

PIP LPT:=X.ASM[nt8u] cr Copy X.ASM to the LPT: device; number each
line, exvand tabs to every eighth column, and
translate lower case alphabetics to upper
case,

24

PIP PWN:=X,HEX[i],Y.ZOT[h} cr First copy X.HEX to the PUN: device ard
: ignore the trailing ":08" record in X,HEX;
then continue the transfer of data by reading
Y,20T, which contains hex records, including
any ":08" records which it contains,

PIP X,LIB = Y.ASM [sSUBRl:Tz qJMP L3%z) cr Copy from the file Y, ASM
into the file X.LIB, Start the copy when the
string "SUBR1:" has been found, and quit copy-
ing after the string "JMP L3" is encountered.

PIP PRN:=X,ASM[p54] Send X,ASM to the LST: device, with line num-
bers, tabs expanded to every eighth column,
and page ejects at every 5@th line, Note that
nt8p6d is the assumed parameter list for a PRN
file; p5@ overrides the default value.

6.5. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment, Complete details of
operation are given the ED user’s manual, "ED: a Context Editor for the CP/M
Disk System.” 1In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the working memory), which is instead defined by the number of characters
typed between cr’s. The ED program has a number of commands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M, Although the CP/M has a
limited memory work space area (approximately 5008 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area,

Upon initiation, ED creates the specified source file, if it does not
exist, and opens the file for access, The programmer then "appends" data from
the source file into the work area, if the source file already exists (see the
A command), for editing, The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file,

Given that the operator has typed

ED ¥X,ASM cr

25

the ED program creates an intermediate work file with the name

X.$58

to hold the edited data during the ED run, Upon completion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM. Thus, the X.BAK file contains the oriainal (unedited) file, and the
X.ASM file contains the newly edited file, The operator can always return to
the previous version of a file by removing the most recent version, and
renaming the previous version, Suppose, for example, that the current X.ASM
file was improperly edited; the sequence of CCP command shown below would
reclaim the backup file,

DIR X.* Check to see that BAK file
is available,

ERA X, ASM Erase most recent version,

REN X,ASM=X,BAK Rename the BAK file to ASM,

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or O command) without destroying the original file, 1In this case, the
BAK file is not created, and the original file is always intact,

The ED program also allows the user to "ping-pong” the source and create
backup files between two disks, The form of the ED command in this case is

ED ufn Aa:

where ufn is the name of a file to edit on the currently logged disk, and 4 is
the name of an alternate drive, The ED program reads and processes the source
file, and writes the new file to drive d, using the name ufn, Upon campletion
of processing, the original file becomes the backup file, Thus, if the
operator is addressing disk A, the following cammand is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X,$$$ on drive
B. Upon campletion of a successful edit, A:X.,ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X,ASM, For user convenience, the currently logged
disk becomes drive B at the end of the edit., Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS
is printed at the conscle as a precaution against accidently destroying a

source file, In this case, the operator must first ERAse the existing file
and then restart the edit operation,

26

Similar to other transient cammands, editing can take place on a drive
different fram the currently logged disk by preceding the source file name by
a drive name, Examples of valid edit reguests are shown below

ED A:X,ASM Edit the file X_ASM on drive A, with
new file and backup on drive A,

ED B:X.ASM A: Edit the file X.,ASM on drive B to the
temporary file X.$$$ on drive A, On
termination of editing, change X,ASM
on drive B to X,BAK, and change X,$$S
on drive A to X,ASM,.

6.6, SYSGEN cr

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system. The SYSGEN program prompts the console
for cammands, with interaction as shown below.

SYSGEN cr Initiate the SYSGEN program.
SYSGEN VERSION m.m SYSGEN sign~on message.

SOURCE IRIVE NAME (OR RETURN TO SKIP)

Respond with the drive name (one
of the letters A, B, C, or D} of
the disk containing a CP/M sys-
tem; usually A, If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only, Typing a drive name

x will cause the response:

SOURCE ON x THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
X (x is one of A, B, C, or D},
Answer with cr when ready.

FUNCTION COMPLETE System is copied to memery.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOCT)

If a diskette is being ini-
tialized, place the new disk
into a drive and answer with
the drive name, Otherwise, type
a cr and the system will reboot
from drive A, Typing drive name
X will cause SYSGEN to prompt

27

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready.

FUNCTION (OMPLETE New diskette is initialized
in drive x.

The "DESTINATION" prompt will be repeated until a single carriage return is

typed at the console, so that more than one disk can be initialized,

Upon campletion of a successful system generation, the new diskette
contains the operating system, and only the built-in commands are available,
A factory-fresh IBM=carpatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate COM files
fram an existing CP/M diskette to the newly constructed diskette using the PIP
transient,

The user can copy all files from an existing diskette by typing the PIP
command

PIP B: = A: * *[v] cr

vhich copies all files from disk drive A to disk drive B, and verifies that
each file has been copied correctly, The name of each file is displayed at
the console as the copy operation proceeds,

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system, Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place, In fact, a new diskette needs absolutely no initialization to
be used with CP/M,

6.7. SUBMIT ufn parm#l ... parm#n cr

The SUBMIT command allows CP/M commands to be batched together for
automatic processing. The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of "SUB," The SUB file contains CP/M prototype cammards, with
possible parameter substitution, The actual parameters parm#l ... parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted cammands are processed seguentially by CP/M,

28

The prototype cammand file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ... Sn

correspording to the number of actual parameters which will be included when
the file is swmitted for execution, When the SUBMIT transient is executed,
the actual parameters parm#l ,.,. parmén are paired with the formal parameters
31 ... Sn in the prototype cammands, If the number of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console, The SUBMIT function creates a file of
substituted cammands with the name

5.SUB

on the logged disk, When the system reboots (at the termination of the
SUBMIT), this cammand file is read by the CCP as a source of input, rather
than the console., If the SUBMIT function is verformed on any disk other than
drive A, the commands are not processed until the disk is inserted into drive
A and the system reboots, Further, the user can abort cammand processing at
any time by typima a rubout when the command is read and echoed, In this
case, the $85.SUB file is removed, and the subsequent commands come from the
console, Command processing is also aborted if the CCP detects an error in
any of the commands. Programs which execute under CP/M can abort processing of
command files when error conditions occur by simply erasing any existing
$$$.8UB file,

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" within the command file, Further, an
up-arrow symbol "*" may precede an alphabetic character x, which oroduces a
single ctl-x character within the file,

The last cammand in a SUB file can initiate another SUB file, thus
allowing chained batch commands,

Suppose the file ASMBL.SUB exists on disk and contains the prototype
commands
ASM $1
DIR §1.*
ERA * BAK
PIP $2:=$1,PRN
ERA $1.PRN

and the cammand
SUBMIT ASMBL X PRN cr

is issued by the operator, The SUBMIT program reads the ASMBL.SUB file,

substituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

AM X

DIR X,*

ERA *,BAK

PIP PEN:=X,PRN
ERA X.PRN

which are executed in sequence by the CCP,

The SUBMIT function can access a SUB file which is on an alternate drive
by preceding the file name by a drive name, Submitted files are only acted
upon, however, when they appear on drive A, Thus, it is possible to create a
submitted file on drive B which is executed at a later time when it is
inserted in drive A,

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form, The file contents are listed sixteen bytes at a time,
with the absolute byte address listed to the 1left of each 1line in
hexadecimal., Long typeouts can be aborted by pushing the rubout key during
printout, (The source listing of the DUMP program is given in the *“CP/M
Interface Guide" as an example of a program written for the CP/M enviromment.)

6.9, MOVCPM cr

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size, Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disposition of the new system
at program termination, If the first parameter is amitted or a "*" is given,
the MOVCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contiguous RAM in the host system (starting aat 0000H). If
the second parameter is amitted, the system is executed, but not permanently
. recorded; if “** is given, the system is left in memory, ready for a SYSGEN
operation, The MOVCPM txrogram relocates a memory image of CP/M and rplaces
this image in memory in preparation for a system generation operation., The
command forms are:

MOVCPM cr Relocate and execute CP/M for manage-
ment of the current memory configura-
tion (memory is examined for contiqu-
ous RAM, starting at 100H). Upon com~
pletion of the relocation, the new
system is executed but not permanently
recorded on the diskette, The system
which is constructed contains a BIOS
for the Intel MDS 800.

30

MOVCPM n cr Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above,

MOVCPM * * cr Construct a relocated memory image for
the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation,

MOVCPM n * cr Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation,

The cammand
MOVCPM * *

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation, The message

READY FOR "SYSGEN" OR
"SAVE 32 CPMxx,COM"

is printed at the console upon completion, where xx is the current memory size
in kilobytes, The operator can then type

SYSGEN cr Start the system generation,

SOURCE IRIVE NAME (OR RETURN TO SKIP) Respond with a c¢r to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation,

DESTINATION [RIVE NAME {OR RETURN T@ REBOOT)
Respond with B to write new system
to the diskette in drive B, SYSGEN
will prompt with:

DESTINATION ON B, THEN TYPE RETURN
Ready the fresh diskette on drive
B and type a return when ready,

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B. SYSGEN will continue to type the prompt:

DESTINATION [RIVE NAME (OR RETURN TO REBOOT) |

until the operator responds with a single carriage return, which stops the

31

SYSGEN program with a system reboot,

The user can then go through the reboot process with the old or new
diskette. 1Instead of performing the SYSGEN operation, the user could have

typed
SAVE 32 CPMxx.,O0OM

at the campletion of the MOVCPM function, which would place the CP/M memory
image on the currently logged disk in a form which can be “patched." This is
necessary when operating in a non-standard environment where the BIOS must be
altered for a particular perivheral device configuration, as described in
the"CP/M System Alteration Guide,”

Valid MOVCPM commands are given below:

MOVCPM 48 or Construct a 48K verskon of CP/M and start
execution,
MOVCPM 48 * cr Construct a 48K version of CP/M in prepara-

tion for permanent recordina; response is

READY FOR "SYSGEN® OR
"SAVE 32CPM48,COM"

MOVCPM * * cr Construct a maximum memory version of CBP/M
and start execution,

It is important to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Agreement,

32

7e BDOS ERROR MESSAGES,

There are three error situations which the Basic Disk Operating System
intercepts during file processsing. When one of these conditions is detected,
the BDOS prints the message:

BDOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The "BAD SECTOR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette, This
condition 1is generally due to a malfunctioning disk controller, or an
extremely worn diskette, If vou find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media, You may also encounter this condition in
reading files generated by a controller produced by a different manufacturer,
Even though controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats, The MDS-86@ controller, for example,
requires two bytes of one’s following the data CRC byte, which is not reguired
in the IBM format., As a result, diskettes generated by the Intel MDS can be
read by almost all other IBM-compatible systems, while disk files generated on
other manufacturer’s equipment will produce the “BAD SECTOR" message when read
by the MIS, In any case, recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation, Note, however, that typing a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adeuuate backups in this case,

The "SELECT" error occurs when there is an attempt to address a drive
beyond the A through D range, In this case, the value of x in the error
message gives the selected drive, The system reboots following any input from
the console,

The "READ ONLY" message occurs when there is an attempt to write to a
diskette which has been designated as read-only in a STAT command, or has been
set to read-only by the BDOS, In general, the operator should rebocot CP/M
either by using the warm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed, If a changed diskette is to be read but
not written, BDOS allows the diskette to be changed without the warm or cold
start, but internally marks the drive as read-only, The status of the drive
is subseguently charged to read/write if a warm or cold start occurs., Upon
issuing this message, CP/M waits for imput from the console, An automatic
warm start takes place following any input,

33

8. OPERATION OF CP/M ON THE MDS.

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system, A basic knowledge of the MDS hardware and
software systems is assumed,

CP/M is initiated in essentially the same manner as Intel’s ISIS
operating system, The disk drives are labelled @ through 3 on the MIS,
correspording to CP/M drives A through D, respectively, The CP/M system
diskette is inserted into drive €, and the BOOT and RESET switches are
depressed in seguence. The interrupt 2 light should go on at this point. The
space bar is then depressed on the device which is to be taken as the system
console, and the light should go out (if it does not, then check connections
and baud rates). The BOOT switch is then turned off, and the CP/M signon
message should appear at the selected console device, followed by the “A>"
system prompt, The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT 9 switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operating under DDT, in which case the DDT program gets control instead,

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity, Note,
however, that the user must not remove a diskette and replace it with another
without rebooting the system (cold or warm start), unless the inserted
diskette is "read only.”

Due to hardware hang-ups or malfunctions, CP/M may type the message
BDOS ERR ON x: BAD SECTOR

where x is the drive which has a permanent error, This error may occur when
drive doors are opened and closed randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure, The user can
optionally elect to ignore the error by typing a single return at the
console. The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data, The operator can reboot the CP/M system and try
the operation again.

Termination of a CP/M session requires no special action, except that it
is necessary to remove the diskettes before turning the power off, to avoid
random transients which often make their way to the drive electronics.

It should be noted that factory-fresh IBM-compatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version, In particular, the ISIS “FORMAT" operation produces non-standard
sector numbering throughout the diskette, This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version, If it becomes necessary to reformat a diskette
(which should not be the case for standard diskettes), a program can be
written under CP/M which causes the MDS 808 controller to reformat with
sequential sector numbering (1-26) on each track.

Note: "MDS 804" and "ISIS" are registered trademarks of Intel Corporation,

35

A0

DIGITAL RESEARCKH’

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2 USER'S GUIDE

COPYRIGHT {c) 1979

DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. Al rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
anv language or computer language, in any form or by anv
means, electronie, mechanical, magnetie, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any partl-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research,

CP/M 2

Cooyright
Digital

USER'S GUIDE

Researcn,

Pacific Grove,

(c) 1973

An Overview or C2/% 2.8 rFacilities . . .

Jser

Console Commana Processor

STAT

Interface . . .

gnhancements .

gIp &nnancements , .

g Enhancements « .

i

53205
cp/4

3125

he X3U3 Function .

Interface Conventions

(CC2)

2.4 “emory Organization .

Diftferences . .

Interface

30K 579
Calitornia

-

1. AN OVERVIBW OF CP/4 Z.9 FACILITFIES.

CP/4 2.9 1s a high-performance single-console operating system
which uses table driven tecnnigues to allow field recontigquration to
match a wide variety of disk cavacities., All of the fundamental file
restrictions are ramoved, wnile maintaining upward compatioility from
previous versions of release.l. Features of CP/M 2.0 includge field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reacn the full drive size
witn the capaoility to exvand to thirty-two megabytes in tuture
releases. The directory sizz can be field contigured to contain any
reasonable numper of entries, and eacnh ftile is optionally tadgged witn
read/only and system attributes. Users of Cp/¥ 2.J are physically
separated oy user numpers, witn facilities for file copy operations
from one user area to another., ~rowerful relative-record random access
functions are present in CP/M 2.3 wnich provide direct access to any
of the 3536 records of an eight megaoyte file,

All disk-devendent portions ot <Cp/¥ 2.9 are placed into a
BIOS-resident "disk parameter block™ whicn is either nand coded or
produced automatically wusing the disk definition macro library
orovidea with CP/M 2.d0. The end user need only soecifty the maximum
nusioer of active Jdisks, the starting and ending sector numpers, the
data allocation size, the maximum extent of the 1logical disk,
directory size information, and reserved track values. The macros use
this intormaticn c¢o gJgenerate ths appropriate taocles and tanle
reterences for use during CP/M 2.d oseration. Deblocking information
i3 also provided wnich aids in assembly or aisassembly ©of sector sizes
wnich are multivles of tne tundamental 128 oyte data wunit, and tne
system alteration manual incliudes general-purvose suoroutines which
use the tnis deplocking information to take advantage of larger sector
sizes. Use of these subroutines, togetner witn the taole driven aata
access algoritnms, make CP/M 2.¢ truly a universal data managenent
system,

rile exvansion is achieved vy »rovidini up to 512 logical tile
extents, where eacn logical extent contains 16X bytes of data. CP/"
2.0 is structured, nowever, so that as much as 123K pytes of adata 1is
addressed by a single ohysical extent (corresponding to a single
directory entry), thus wmaintaining compatipility witn worevious
versions while taking full auvantage ot directory space,

Random access facilities are mresent in CP/M 2.4 whicn allow
immediate reference to any record of an eignt megapyte file. UJsing
CP/i's unigue data organization, data plocks are only allocated wnen
actually raguired and inovement to a recora position reguires little
searcn time. Seguential file access is uoward compatiole from earlier
versions to tne full eight megaoytes, wnile random access
compatibility stops at 512K byte files. Due to CP/M 2.0's simpler and
faster random access, avuplication programmers are encouraged to alter
their proarams to take full aavantage of the 2,y facilities,

Several CP/4 2.9 modules ana utilities have improvements whicnhn
corresoond to the ennanced file system. STAT ana pPIP both account for
file attributes and wuser areas, while the CCp orovides a "login”

(All Information Contained Herein is Proprietary to Didital Research.)

1

function to change from one user area to anotner. ne CCP also
formats directory displays in a more convenient manner and accounts
for potn CRT and hnarda-copy devices in its ennanced line editing
functions.,

The sections pelow point out the inaividual differences between
ce/#1 1.4 ano CP/M 2.4, witn the understanding that the reader is
eitner familiar witn CP/M 1.4, or nas access to the 1.4 manuals.
Additional information dealing with CP/M 2.8 I/0 system alteration is
oresented in the vigital Researcn manual “CP/M 2.3 Alteration Guide.™

.

(All Information Contained derein is Proprietary to Digital Research.)

2

L

2. USER INTERFACE,

‘ Console line vrocessing takes CRT-type devices into account with
| three new control characters, shown with an asterisk in the list below
(the symool “ctl*" bpelow 1indicates tnat tne control key is
simultaneously depressed):

rub/del removes and ecnoes last character

ctl-C reboot when at beginning of line

ctl-£ physical end of line

ctl-d ©packspace one caaracter position*

ctl=J (line feed) terminates current input*
ctl-M (carriage return) terminates inout
ctl-R retyve current line after new line
ctl-Jy remove current line after new line
ctl-X bpackspace to beginning of current line¥*

In varticular, note tnat ctl-H produces tne proper backspace overwrite
function (ctl-H can be cnanged internally to anotner character, such
as delete, through a simple single byte change}). Furtner, the line
aditor keeps track ot the current prompt column position so that the
operator can vproperly align data input following a ctl-U, ctl-R, or
ctl-X command,

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAND PROCESSOR (CCP) IJTERFACE.

There are four functional ditferences between CP/M 1.4 anda CP/M
2.6 at the console command processor ({(CCP) level, The CCP now
displays directory information across the screen (four elements ver
line), tne USER command is oresent to allow maintenance or separate
files in the same directory, and the actions of +the “ERA *.,*" and
"SAVE® commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range # to 15. Jpon cold start,
tne operator is automatically "logged" into user area number ¥, which
is compatible witnh standard CP/# 1.4 directories, The operator way
issue the USER command at any time to move to anotner logical area
within the same directory. Drives which are logged-in wnile
addressing one user number are automatically active when the operator
moves to another user numper since a user number is simply a prefix
which accesses particular directory entries on the active aisks.

The active wuser number 1s maintained until changed by a
subsaguent USER command, or until a cold start operation when user U
is again assumed.

Due to the fact that user numbers now tag 1individual directory
entries, the £RA *,* command has a different etfect, In version 1.4,
this commana can pe used to erase a directory wnicn has "garbage™
information, wvperhaps resulting from use of a diskette under another
operating system (heaven foroial). In 2.0, however, the ERA *._,*
command affects only the current user numoer. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the vprogram simply
writes the hexadecimal pattern E5 tnroughout the disk),.

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory overations following extent boundary changes. Version 2.9,
nowever, does not verform directory operations 1in user data areas
after disk writes, and thus the 3AVE operation can pe used any number
of times without altering tne memory inmage.

(All Intormation Contained Herein is pProorietary to Digital Research.)

4

4, STAT pNdANCEMENTS.

Tne STAI program nas a number of additional functions which
allow disk parameter display, user numoer diselay, and file indicator
manipulation. 1The command:

STAT VAL:

nroduces a summary of the availaple status commands, resulting in the
outnut:

femp R/0 Disks d:=R/0

Set Indicator: d:filename.typ 3R/0 SR/W $5YS 3DIR
Disk Status : DBK: Jd:DSK:

User status : USR:

Iobyte Assign:

(list of possible assignments)

whicn gives an instant summary of the possidble STAT commands. The
command form:
STAT d:filename.tvo 53

wnere "d:"” is an optional drive name, and “"filename.typ" 1is an
unambiguous or ambiguous file name, ©oproduces the output disolay
format:

31ze Recs 3ytes EXt Acc

44 43 ok 1 R/O A:ED,COM
55 55 12k 1 R/O (A:2IP.COM)
05530 123 2k 2 R/wW A:X.DAT
where tne 35 parameter causes the "Size" field to bpe disolayed

(without the 33, tne Size field is skipped, but the remaining tields
are displayed). The Size field lists the wvirtual file size in
records, while the "Recs" field sums the number of virtual records in
eacn extent, FfFor files constructed sequentially, the §5Size and Recs
tields are identical. The "Bytes" field lists the actual number of
bytes allocated to tne corresponding file, The minimum allocation
unit is determined at contiguration time, and thus tne numper of bytes
corresponds to the record count nlus tne remaining unused space in the
last allocated plock for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. 1In tne case of random access, the
35ize fiela gives the logical end-of-ftile record position ana the Recs
field counts cthe logical records o©f each extent ({each of these
extents, nowever, may contain unzailocatea "noles” even though they are
added into the record count). The "Ext" fiela counts the number of
logical 16X extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since tnere can pe up to 128K pytes (8
logical extents) directly addressed oy a single directory entry,
devending upon allocation size (in a svecial case, there are actually
256K bytes which can be directly addressed by a vhysical extent).

Tne "Acc" tield gives the R/0 or R/W access mode, which 1is
cnanged using the commands shown pelow. Similarly, the parentheses
(All Intormation Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it has the "system"
indicator set, so that it will not be listed in DIR commands., The
four command forms

STAT d:filename.,typ $R/0
STAT d:filename.typ 3R/W
STAT d:filename.typ 35YS
STAT d:filename.typ SDIR

set or reset various permanent file indicators, The R/0 indicator
places the file (or set of files) in a read-only status until cnanged
py a subseguent STAT command. The R/J0 status 1is recorded 1in the
directory with tne file so that it remains R/0 through intervening
cold start operations, The R/W indicator places the file in a
permanent read/write status. The 3YS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. fThe "filename.type" may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs, The drive name denotea by "d:" is
optional,

when a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

Bddos irr on d: File R/O

The BDOS then waits for a console inout before performing a subseguent
warm start (a "return” is sufficient to continue). The command form

S3TAT d:DSK:

lists the drive characteristics of tne disk named by "d:" which is 1in
the range A:, B:, ..., P:. The drive characteristics are listed in
tne format:

d: Drive Characteristics
65536: 128 Byte record Capacity
8192: Kilopyte Drive Capacity
128: 32 8yte Directory Entries
d: Checked Directory Entries
1024: Records/ Extent
128: Records/ 8lock
58: Sectors/ Track
2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilooytes, The directory size 1is 1listed next,
followed by the "checked" entries, The number of checked entries is
usually identical to the directory size for removable media, since
this mecnanism is used to detect changed media during CP/M operation
without an intervening warm start., For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start., The number of records per extent determines the
addressing capacity of eacn directory entry (1924 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

1238 in the example avove). The number of records ver block shows the
pasic allocation size (in the example, 128 records/plock times 128
bytes per racord, or 16K pytes mner block). The listing is then
followed by the number of physical sectors ver track and the number of
reserved tracks., For logical drives wnicn share the same physical
disk, the number of reserved tracks may be guite large, since this
mechanism is used to skip lower-numpered disk areas allocated to otner
logical aisks, The command form

STAT DSK:

nroduces a drive cnaracteristics taole for all currently active
drives. The final 3TAT command form is

STAT USR:

whicn produces a list of the user numbers whicn have files on the
currently addressed disk. The display format is:

Active User :
Active Files: & 1 3

where tne first line lists tne currently addressed user number, as set
by the last CCp USER command, followed by a 1list of wuser numbers
scanned from the current airectory. In the above case, tnhe active
user numoper is ¥ (default at cold start), witn three user numbers
whicn have active files on the current disk,. The operator can
subseguently examine the directories of the otner wuser numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCpP level.

(211 Information Contained Herein is Proprietary to Digital Research.)

7

el

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of Cp/4 2.4. All three functions take the form of file parameters
which are enclosed in square orackets following the appropriate file
names, The commands are:

Gn Get File from User number n
{n in the range v - 15)

W Write over R/D files without
console interrogation

R Read system files

The G command allows one user area to receive data files from ancother,
Assuming the operator has issued the U5S5ER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X,Y from user number 2 into user area number 4. The
command

PIP A:=A:* *[G2]

covies all of the ftiles from the A drive directory for user number 2
into the A drive directory of the currently loggea user number, Hote
that to ensure file security, one cannot copy tiles into a different
area than the one which is currently addressed by the USER command,

Note also that the PIP program itself is initially cooied to a
user area (so that subsequent files can be copied} using the SAVE
command, The sequsence ot operations shown below effectively moves ?2IP
from one user area to the next.

USER ¥ login user 3

DDT pPIP.COM load PIP to memory
(note PIP size s)

Gy return to CCP
USER 3 login user 3

SAVE s PIP.COM

where s is the integral number of memory “"pages"” (256 byte segments)
occupied by PIP,. The number s can be determined when PIP.COM 1is
loaded under ODT, by referring to the value under the "NEXT" disvlay.
If for example, the next available address is 1D@¥, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 23 pages), and
thus the value of s is 28 in the subseguent save., Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which 1is
set to a permanent R/0 status. If attempt is made to overwrite a R/O
file, the prompt

{all Information Contained Herein is Proprietary to Digital Research,)

3

NESTINATION FILE IS R/O, DELETE (Y/H)?

is issued, If the operator responds with the character "y" then the
file is overwritten., Otnerwise, the response

** NOT DELETED **

is issued, the file transfer is skipoped, and PIP continues with the
next operation in sequence, In order to avoid the prom»t and resvonse
in the case of R/D file overwrite, tne command line can include the W
parameter, as shown below

PIrP A:=83:*_ COM[W]

which copies all non-system files to.the A drive from the B8 drive, and
overwrites any R/D files in the process. If the operation involves
several concatenated files, the W parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B,DAIl,F:NEW.DAT,G:0OLD.DAT[w]

Files with the system attribute can be included in PIP transfers
if the R parameter 1is included, otherwise system files are not
recognized. The command line

PIP ED.CUM = B:ED,CuUMI{R]

for example, reads the ED.COM file from tne 3 drive, even 1if it has
oeen marked as a R/0 ana system file, The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M 1is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
b, If compatibility 1is reguired with non-standard (e.g., "double
density"”) versions of 1.4, it may be necessary to select 1.4
compatipility mode when constructing the internal disk parameter bplock
(see the “CP/M 2.0 Alteration Guide," and refer to Section 1@ which
descripes BIOS differences).

(All Information Contained Herein is Proorietary to Digital Research.)

9

6. LD ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities
in the 2.U release, E£xperience has shown that most operators use the
relative line nuuwpering feature of ED, and thus the editor has the "v~
{verify Line) omntion set as an initial value., The operator can, of
course, Jalsaple line numpering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
tne Appendix 1in the gD wuser's gquide, whnere the “v" command 1is
described,

ED also takes file attributes into account, It the operator
attempts to edit a reaafonly file, the message

** PFILE IS READ/ONLY **
appears at the console, The file can bpbe loaded and examined, but
cannot oe altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to cnange the file attrivbute to R/W. If
tne edited tile nas the "system"” attribute set, the message
"SYSTEM" FILE NOT ACCESSIBLE
is disolayed at the console, and the edit session is aborted. Again,
tne STAT wvprogram can be used to change the system attribute, if

desired.

Pinally, the insert mode ("i")} command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

19

TS

7. THE XSUB FUNCTION.

| An additional utility program is supplied with version 2.8 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor, The XSUB command 1s included as the first line of your
submit file and, when executed, self-relocates directly below the CCP,
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 16) receive
their input directly from the submit file, For example, the file
SAVER.SUB could contain the submit lines:

XsUB

DDT

I$1.4EX

R

GO

SAVE 1 $2.COM

with a subsequent SUBMIT command:
SUBMIT-SAVER X ¥
which substitutes X for $1 and Y for $2 in the command stream. The
X580UB program 1loads, followed by DDT which is sent the command lines
“IX.HEX" “R" and “GO" thus returning to the CCP,. The final command
“SAVE 1 Y.COM" is processed by the CCP.
The XSUB program remains in memory, and prints the message
(xsub active)

on each warm start operation to indicate 1its presence, Subsequent
submit command streams do not reduire the XSUB, unless an intervening

cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneocusly,

(All Information Contained Herein is Proprietary to Digital Research.)

11

g. BDOS INTERFACE CONVENTIONE,

CP/¥M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 0@9@5dH, function number in
register C, and information address in register wair DE. Single byte
values are returned in register A, with double byte values returned in
4L (for reasons of compatibility, register & = L and register B = H
uoon return in all cases). A list ot CP/M 2.4 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Hote that a zero wvalue 1is returnea for
out-of range function numbers.

¢ System Reset 19* Delete File

1 Console Inobut 20 Read Seguential

2 (Console Jutout 21 Write Seguential

3 Reader Input 22* Make File

4 Puncn Jutput 23* Rename File

5 List Outout 24* Return Login Vector

6* Direct Console I/0 25 Return Current Disk

7 Get I/0 3yte 26 S5et DMA Address

d Set I/O Byte 27 Get Addr(Alloc)

9 Print 3tring 28* Write Protect Disk
18* Read Console Buffer 29* Get Addr(R/0 Vector)
11 Get Console Status 30* Set File Attriputes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Oisk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15* Oven File 34* Write Random
16 Close File 35*% Comoute File Size
17* Search for First 36* Set Eandom Record

18* Searcn for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below,

Function 6: Direct Console I/0,.

Direct Console I/0 1is supvorted under Co/4 2.4 for those
applications wnere it is necessary to avoid the 8D0S console I/0
operations, #fPrograms which currently perform girect I/0 tnrough the
3I05 should be cnanged to use direct I/0 under 3D0OS so that they can
be tully supported under future releases of MP/M and CP/M,

Upon entry to function 6, register E eitner contains hexadecimal
FP, denoting a console input reguest, or register £ contains an ASCII
character, If the input value is FF, then function 6 returns A = 49
if no character is ready, otherwise A contains the next console input
character.

If the inout value in E is not FF, then function 6 assumes that
E contains a valida ASCII character which is sent to the console.
(All Information Contained Herein is Proprietary to Digital Research.)
12

Function 1J: Read Console Buffer.

The console puffer read overation remains uncnanged except that
console 1line editing 1is supported, as descripea in Section 2, Note
alsc that certain functions which return the carriage to the leftmost
cosition (e.g., ctl=-X) do =so only to tne column position wnere the
promot ended (vreviously, the carriags returned to the extreme left
margin). This new convention makes operator data input and line
correcticsn more legible.

Function 12: Return vVersion Number.

function 12 has been redefined to worovide information wnich
allows version-indevendent orogramming (this was previously the "lift
head”" function whica returned HL=8099 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = g8 for the CP/M release (H = 01 for Mp/M), and L = ¢3 for all
releases orevious to 2.0. CP/M 2.8 returns a hexadecimal 24 in
register L, with subseguent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for examele, you can
write anplication programs which provide both seguential and random
access functions, with random access disabled when operating under
early releases of Cp/M.

In the file onerations described below, DE addresses a file
control oslock (FCB). Further, all directory operations take pnlace in
a reserved area which does not affect write puffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is reguired.

The File Control 3lock (FCB) data area consists ot a seguence of 33
oytes for sequential access, and a series of 36 bytes 1in the case that
tne file 1s accessea randomly. The default file control block
normally located at Jv5CH can be usea for random access tiles, since
pytes v@70i, $¥78d, and $07Fd are available for this purpose. For
notational »urposes, the FC3 format is shown with the following
fields:

(All Information Contained Herein is Proorietary to Digital Research.)

13

—— e ————— i — W S S b Sl S ol T Sk P SN SN SR S S e — WON S —

— T — S —— A S T S S S S e S S S S A —

Yo 01 62 ... ¥8 09 16 11 12 13 14 15 16 ,.. 31 32 33 34 35
where

dr drive code (¢ =~ 16)
¥ => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive 8,

16=> auto disk select drive p,.

£l...c8 contain the file name in ASCII
uoper case, with high bit = §

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = §
tl’, t2', and t3' denote the
bit of these positions,

tl'* = 1 => Read/Only file,
t2' =1 => 5YS file, no DIR list
ex contains the current extent number,

normally set to #0 by the user, but
in range ¥ - 31 during file I/0

sl reserved for internal system use

52 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from § - 128

dd...dn filled~in by CP/M, reserved for
system use

cr current record to read or write in
a seguential file overation, normally
set to zero by user

rd,rl,r2 optional random record number in the
range #-65535, with overflow to r2,
rd,rl constitute a lé6-bit value with
low byte r@, and high byte rl

Function 15: Open File,

I'ne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed, Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

O

cnecks to assure compliance, Thus, the byte is cleared to ensure
upward compatipility witn the latest version, where it is required.

Function 17: Searcn for First,

Searcn First scans the directory for a matcn with the file given

oy tne FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 4,
1, 2, or 3 is returned indicating the file is oresent, In the case

tnat the file 1is found, tne current DMA address is filled with the
record containing tne directory entry, and the relative starting
position is A * 32 (i,e,, rotate the A register left 5 bits, or ADD A
five times). Altnough not normally required for application programs,
the cdirectory information can be extracted from the obuffer at this
nosition,

An ASCII guestion mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding tield of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function 1is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function 1is not normally used by
application nrograms, out does allow complete flexioility to scan all
current directory values, If the dr field is not a guestion mark, the
$2 byte is automatically zeroed,

Function 18: Search for Next.

The Searcn dext function is similar to the Search Ffirst
function, except that the directory scan continues from the last
matcned entry., Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range @ to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File,

The Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed uvpon entry to the 3DOS,

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename <c¢ould not be found),
otherwise a value in the range ¥ to 3 is returned,

Function 24: Return Login Vector,

The login vector value returned by CP/M 2.8 is a l6-bit value in
iL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, lapelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return,

Function 28: Write Protect Current Disk.

The disk write oprotect function provides temvorary write
protection for the currently selected disk. Any attemot to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/DQ Vector,

Function 29 returns a bit wvector in register ovair HL which
indicates drives which have the temporary read/only pit set. Similar
to function 24, the least significant bpit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/D bit is
set either by an exolicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks,

Function 3d: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent 1indicators attached to files, In
particular, the R/0 and System attributes (tl' and t2' above) can be
set or reset, The DE pair addresses an unambiguous file name with the
avpropriate attributes set or reset, Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research,)

16

match, and changes the matched directory entry to contain the selected
inaicators, Indicators fl1' through f4' are not oresently used, but
may be useful for applications programs, since they are not involved
in the matching orocess during file open and close operations.
Indicators f£5' tnrough fd' and t3' are reserved for future system
exvansion.

Function 31: Get Disk Parameter 3lock Address.

The address of the BIOS resident disk parameter block 1is
returned in AL as a result of this function call, This address can be
used for either of two purposes., First, the disk parameter values can
be extracted for display and space computation nurposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required., nNormally, application
orograms will not reguire this facility,

Function 32: Se2t or Get User Code,

An apnlication program can change or interrogate the currently
active user number py calling function 32, If register E = FF
nexadecimal, tnen tne value of the current user number 1s returned in
register A, where the value is in the range § to 31, If register E is
not ¢F, then the «c¢urrent user number is changed to the value of E
(modulo 32).

Function 33: Read Random.

The Read Random function is similar to the segquential file read
operation of ©oprevious releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three opyte fiela following the FCB (oyte
cositions r¥ at 33, rl at 34, and r2 at 35). DNote that the seguence
of 24 bpits 1is stored with least significant oyte first (rY), middle
pyte next {rl), and high byte last (r2). CP/M release 2.8 does not
teference byte rZ2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value 1ndicates
overflow past the end of file.

fhus, in version 2,9, the ré,rl byte pair 1s treated as a
double-pbyte, or "word"” value, which contains the record to read. This
value ranges from ¢ to 65535, vproviaing access to any particular
record of the 8 megabyte file. In order to orocess a file wusing
random access, the base extent (extent) mnmust first pe opened.
Altnough the pase extent may or may not contain any allocated data,
this ensures that the file is oroperly recorded 1in the directory, and
is visible in DIR reguests., The selected record number is then stored
into the random record field (rd,rl), and the BDOS is callea to read
the record. Upnon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to vigital Research.)

17

error code, as listed below, or the value 39 indicating the overation
was successful, 1In the latter case, the current DMA address contains
tne randomly accessed record. HNote that contrary to the sequential
reaa operation, the record number is not advanced. Tnus, subsequent
random read operations continue to read the same record.

doon each random read cperation, the logical extent and current

record values are automatically set, Thus, the £file can be
sequentially read or written, starting from the current randomly
accessed vosition, Note, however, that 1in this case, the last

randomly read record will be re-read as you switch from random mode to
seguential read, and the last record will be re-written as you switch
to & seguential write cowneration. You can, of course, simply advance
tne random record position following eacn rancom read or write to
optain the effect of a seguential I/0 overation.

Error codes returned in register A following a random read are
listed pelow.

¥l reading unwritten data

@42 (not returned in randaom mode)
43 cannot close current extent

J4 seek to unwritten extent

43 (not returned in read mode)

75 seek past ohysical end of disk

Lrror code »l ana ¢4 occur when a random reaa operation accesses a
data Dblock whicn has not pbeen previously written, or an extent which
nas not been created, which are equivalent condaitions., Error 3 does
not normally occur under prover system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as tne disk is
not physically write protected. Error code 46 occurs whenever byte r2
is non-zero under the current 2.9 release, Normally, non-zero return
codes can be treated as missing data, witn zero return codes
indicating operation comnlete,

Function 34: Write Random,

The Wwrite Random opveration is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address, Further, if the disk extent or data block which is the
target of the write has not vet been allocated, the allocation is
performed pefore the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the
write, The logical extent number and current record vositions of the
file control plock are set to corresvond to the random record which is
being written. Again, seguential read or write operations can
commence following a random write, with the notation that the
currently addressed record is eitner read or rewritten again as the
sequential operation begins, You can also simply advance the random
record position following each write to get the effect of a sequential
write operation, «Note that in varticular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

{(All Information Contained Herein is Proprietary to Digital Research.)

18

L

switch as 1t does 1in seguential mode under either CP/M 1.4 or CP/M
2.9,

The error codes returned by a random write are identical to the
random read operation with the addition of error code v¥5, wnich
indicates that a new extent cannot be created due to directory
overflow,

Function 35: Compute File Size,

when computing the size of a file, the DE register pair
addresses an FC3 in random mode format {(bytes r6, rl, and r2 are
oresent), The FCB contains an unambiguous file name wnich is used 1in
the directory scan. Uvon return, the random record bytes c¢ontain the
"virtual” file size which is, in effect, the record address of the
record following the end of the file, if, following a call to
function 35, the high record byte r2 is 31, then the file contains the
maximum record count 65536 in version 2.4. Otherwise, bytes rd and rl
constitute a 16-bit value (rd 1is the 1least significant byte, as
oefore) which is the file size,

Data can be apvended to the end of an existing file by simoly
calling function 35 to set the random record position to the end of
file, tnen performing a seguence of random writes starting at the
preset record aadress,

The virtual size of a file corresponds to the physical size when
the file is written seguentially. 1If, instead, the file was created
in random mode and “"holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates, If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size 1is
05536 records, although only one block of data is actually allocated.

Function 36: Set Random. Record,

The Set Random Record function causes the 8D0S to automatically
produce the random record position from a file which nas been read or
written sequentially to a particular point, The function can be
useful in two ways.

First, it i1s often necessary to 1initially read and scan a
sequential file to extract the positions of various "key" fields., As
each key 1s encountered, function 36 is called to compute the random
record position for the data corresponding to this key, 1If the data
unit size is 128 pytes, the resulting record nosition is placed into a
table with the key for later retrieval, After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when wvariable record 1lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the prdgram need only store the buffer~relative byte
position along with the key and recorda number in order to find the
exact starting position of the keyed data at a later time,

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write, A file is
sequentially accessed to a particular point in the file, function 36
is called whicn sets the record number, and subseguent random read and
write operations continue from the selectead point in the file,

This section is concluded with a rather extensive, but complete
example of random access overation, Tne program listed below performs
the simple function of reading or writing random records uvon command
from the terminal, Given that the program has bpeen created,
assembled, ana placed into a file labelled RANDOM.CUM, the CC¢ level
Cun e nds

RANDOM X.DAT

starts the test program. The program looks for a file Dby the name
X.DAT (in this particular case) and, if found, proceeds to orompt the
console for input. If not founda, the file 1is created bpefore the
orompt is given. Each prompt takes the fora

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nd nR Q

where n is an integer value in the range d to 655335, and W, R, and Q
are simple command characters corresponding to random write, random
read, and guit orocessing, resoectively. If the W command is issued,
the RAMNDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return, RANDOM then writes the character string into the
X.DAT file at record n,. If the R command is issued, RANDOM reads
record number n and displays the string value at the console, If the
Q command is issued, the X,DAT file is closed, and the program returns
to the console command processor, In the interest of brevity (ok, s0O
the program's not so brief), the only error message 1is

error, try again

The brogram begins with an initialization section where the
input file is opened or createda, followed by a continuous loop at the
lapel “"ready" where the individual commands are interpreted. The
default file control block at ¥25CH and the default buffer at #0884
are used in all disk operations, The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

29

which contain the orincipal inout 1line processor,
This wparticular oprogram shows the elements of
processing, and can be used as the basis for
development,

called "readc."
randaom access
further orogram

;*****t*******************‘x*********‘****************

« ® *
;* samnle random access vrogram for cp/m 2.9 *
% *
;*******'k********************t#*********************

J1gad org 13dh rbase of toa

d8d8 = reboot eau p098h ;system reboot

2345 = bdos egu JdB¥5h ;bdos entry point
H

ol = coninp equ 1 ;console innut function

do2 = conout equ 2 ;console output function

Qoés = pstring equ 9 :sprint string until 'S’

Joa = rstring egu 19 ;read console puffer

dddc = version equ 12 sreturn version number

496t = ovenf equ 15 ;file open function

ddld = closef equ 16 :close function

¥Rle = make f egu 22 smake file function

Jull = reaar equ 33 sread random

a2 = writer edgu 34 :write random

ddbe = fco eau #d45ch ;default file control block

ggid = ranrec eqgu fcb+33 ;random record vosition

ddi7f = ranovf equ fco+35 ;high order (overflow) byte

084 = buff 2qu dd86h :buffer address

goda = cr egu #dh icarriage return

d@da = 1f equ Yah ;line feed

-e

x
*
* load SP, set-up file for random access
*
x

- wE ™ we

LR SRR RS SR SRR RS EEEE R EEE R R R L R L R L]

x
*
*

LES S S EEE S S EES SRS RS SR SRR EEEEEER S EE SR Y I

J18d 3lbcd 1xi sp,stack
: version 2,67
d103 deldc mvi c,version
9195 cdipsy call bdos
108 f£eld cpi 2dh ;version 2.4 or better?
dlva da2lo0 jnc versok
: baa version, message and go back
glda 111bd Ixi d,badver
#1139 cdda¥ call orint
2113 c3490 jmo reboot
versok:
: correct version for random access

(All Information Contained Herein is Proorietary to Digital Research.)

21

911l6 dedt mvi c,onvenf :;oven default fcb

wlls 115c¢9 1xi d,fcb
dgllo cdd5i call pdos
9lle 3¢ inr a ;err 255 becomes zero
W11if c237¢ jnz reaay
; cannot open file, so create it
$4122 delo mvi c,makef
dl24 115¢d 1xi d,fep
d127 cdidbi call bdos
bl2a 3c inr a ;err 255 becomes zero
4120 ¢2379 jnz ready
: cannot create file, directory full
d12e 113ad 1xi d,nospace
¥131 caday call nrint
9134 3399 jmp reboot ;back to ccp

RS S S SRS SR EEEEEREREEEEEEEEEREE R EREEEREREEEEEEEEEEE TS

* *
* loop back to “ready" after each command *
* x

EAKAKKKRRNKN KA RNRA RN R AR A Ak hhkhhhhhkkhkhhhhhhkhkkhkhkhkkx

I e we s e we s wa

eady:
H file is ready for processing

0137 cdesy call readcom ;read next command

d13a 227dd snld ranrec ;store input record#

v1l3d 217f8 1xi h,ranovi

d1l4v 3odi mvi m,d ;clear high byte if set

4142 fe51 coi o ;quit?

4144 c2564 jnz notg
: quit processing, close file

3147 deld Tavi ¢c,closef

6149 1l5cu 1xi d,fco

dldc cddbe call bdos

vlaf 3c inr a serr 255 becomes @

4158 cabyd jz error ;error message, retry

4153 ¢c3949 jmp reboot ;back to cce
;***
- " ®
;* end of guit command, orocess write *
- X *
:.**************************x************************
notg:
; not the auit command, random write?

4156 fe37 cpi WY

0158 c2890 jnz notw
/
; this is a random write, fill buffer until cr

d15b 114cG8 1xi d,datmsg

d15e cddad call print ;data prompt

(All Information Contained Herein is Proprietary to Digital Research.)

22

4161 de7f nvi c,127 ;up to 127 characters
Bloe3d 21300 1xi n,pbutf ;destination
rloop: :read next character to buff
¥léo cb push b ;save counter
4167 e5 push h :next destination
Y168 cac2p call getchr j;character to a
d16o el pop h ;restore counter
Jdléc cl Don b ;restore next to fill
@led fewd cpi cr rend of line?
dlot ca784 jz erloop
: not end, store character
4172 77 mowv m,a
9173 23 inx h snext to fill
34174 9d acr c ;jcounter goes down
Bl75 c2660 jnz rloop ;end of puffer?
erloop:
H end of read loop, store 4§00
al73 3008 mvi m,d
: write the record to selected record number
d17a vell mvi c,writer
d17¢ 115c¢d 1xi d, fecb
417t cdB5d@ call bhdos
#l82 b7 ora a rerror code zero?
vle3d c2bSd inz error ;message if not
dlsts c3370 jop ready ; for ancther record
;*t**************1¢*******************'k**************
X *
!
;* end of write command, nrocess read *
« K x
;***********r*******x*******************************
notw:
H not a write command, read record?
2189 fes2 cpi ‘R
d18b c2b9d jnz error ;skip if not
: read random record
dlde de2l mvi c,readr
4198 115cd 1xi d,fchb
@193 caddsa call bdos
8196 b7 ora a sreturn code §47?
9197 c2byd jnz error
r
: read was successful, write to console
d19a cdcfe call crlf ;new line
919d deBd mvi c,128 ;max 123 characters
W1l3f 21899 1xi h,buff ;next to get
wloop:
dla2 Je mov a,m inhext character
@la3 23 inx h ;next to get
0lad e67f ani 7fh imask parity
9la6 ca379 jz ready ;for another command if @@
@lad c5 push b ;Save counter
flaa e5 push h ;save next to get

{All Information Contained Herein

is Proprietary to Digital Research.)

23

dlab fe2d cpi sgraphic?

dlaa d4c89 cnc putchr ;skip output if not
flbd el pop h

d1bl cl pop o]

#lb2 84 dcr c scount=count-1

¢1b3 c2a2@ jnz wloop

dlpbe c3378 jmp ready

-

H

;**x********
* *

'

1* end of read command, all errors end-uv here *
« K *
;***
H
error:

glb9 11599 1xi d,errmsg

#lbc cddad call print

d1lbf ¢3378 jmo ready

-

REEEEEEE SRR ES R AR R R Rt i bR RS
*

utility subroutines for console i/fo *
*

:************************************#**************

™ ME mE W
* * *

getchr:
sread next console character to a
dic2 devl mvi ¢,coninp
dlcd cdise call bdos
dlc? c9 ret

'
putchr:
;write character from a to console

¥lcd tevl mvi c,conout
‘ blca 5f mov e,a :character to send
‘ dlchb cddbd call pdos :send character
dlce c9 ret
crlf:
;send carriage return line feed
dlcf 3edd mvi a,cr scarriage return
#1dl cdcdp call putchr
d1d4 3eda mvi a,lf :line feed
‘ ¢1d6 cdcBd call putchr
@1a9 c9 ret
print:
‘ ;print the buffer addressed by de until $
@1lda 45 push g
#1db cdcfd call crlf
dlde dl poP d snew line
d1df peb9 mvi c,pstring
2lel cdese call bdos sprint the string
dled c9 ret
readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

;read the next command line to the conbuf

¢le5 116by 1xi d,prompt
@led cddad call print rcommand?
Wleb deda mvi c,rstring
dgled 117a¥ 1xi d,conbuf
81fd cdO5y call bdos ;read command line
: command line is present, scan it
W1E£3 21040 1xi h,o ;start with 93948
1fe 117ca 1xi d,conlin;command line
J1f9 1la readac: ldax d rnext command character
41fa 13 inx d 1to next command wosition
d1fb b7 ora a ;cannot pe end of command
d1lfc c8 rz
: not zero, numeric?
@1fd dé63¥ sui ‘i
91tf feda cpi 149 ;jcarry if numeric
d261 42139 jnc endrd
; add-in next digit
@204 29 dadg n ;%2
B2U5 4d mov c,1
@2ve 44 mov b,h ;be = value * 2
34287 29 dad h %4
D268 29 dad h 1 *3
d299 @9 dad b s*2 + *g = %19
P2da 85 add 1 s+digit
V2490 br MoV 1,a
d26c a2t9¢ jnc readc ; for another char
Jd2dt 24 inr h :overilow
d2lg c3f99 jmn readc ;for another char
endra:
: end of read, restore value in a
0213 c63y¢ adi ' ;jcommand
9215 febl coil 'a® ;translate case?
3217 da rc
H lower case, mask lower case bits
8218 eSSt ani 131511110
$2la cYy ret

LR RS RS EEREREESEEEREEREEEEEEEEEEEE R R IR IR I I I I I
* x

* string data area for console messages *
x *
P AR E R T A A A AR A RN AR R AR A A AN T RAR AR AR ARA A RKARNRXRR KRR R KRR X &
padver
J2ilo 536£73 db 'sorry, you need co/m version 25°'
nospace: !
¥23a 4e6£29 do 'no directory space$’
datmsg:
¥24d 5479748 db ‘type data: §$°
errmsq:
4259 457272 db 'error, try again,s'
Drompt:

A26p0 4e6578 db 'next command? 5'

r

(All Information Contained Herein is Proprietary to Digital Research.)

25

:**W******************#*****************************

« K *
L
1* fixed and variable data area *
. K x
;*x*xw*w**********t***x*t***************************
@27a 21 conbuf: db conlen ;length of console buffer
¥27b consiz: ds 1 s;resulting size after read
gz27c conlin: ds 32 :length 32 buffer
dd2l = conlen equ $-consiz
H
d29c¢ ds 32 :+16 level stack
stack:
d2oc end

(All Information Contained Herein is Proprietary to Digital Research.)

26

9, CP/M 2.0 MEMORY ORGANIZATIOW.

Similar to earlier versions, CP/M 2.9 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration, Typical base addresses for popular memory sizes are
shown in the taple below,

Module 28k 24k 32K 438k 04k
cCp 340994 449921 649ddd A400H E400H
BDOS 3CodH 4CoaH 6Caay ACYdd ECEA4
BIOS 42404 5A04dH 72094 SAQGH FADdH

Too of Ram 4FFFH 5FFFH IFFFH BFEFFH FFEFH

The distribution disk contains a CP/# 2.0 system configured for a 24K
Intel MDS-893 with standard 1I3M 4" floppy disk drives. The disk
layout is shown below:

Sector Track 99 Module Track 41 Module
1 {Bootstrap Loader) 4089H BDOS + 483H
2 3494 CCP + B0dH 413¥H BHOS + 5@8H
3 343ud CCP + d8u¥H 4184d BDOS + 5834
4 35dad CCP + 1940H 42098 BDOS + 6404
5 35844 CCPp + 18dH 4239vH B8D0S + 6804
6 36dud CCe + 29di 439pkd BDOS + 7840
7 3684 CCp + 2884 438¢vH BDOS + 78d8
) 3jduid CCP + 3944 4494 BD0OS + 6084
J 37siyd CCP + 384dd 443pd BDOS + 88u¥d

1y 38wud CCp + 4406H 459UH BDOS + 99@d
11 338wH CCP + 43uH 4580H BDOS5 + 984RH
12 39duH CCP + 50dH 46dY4H BDOS + AJOH
13 39384d CCp + 58¢H 408¢6H BDOS + A89H
14 3AQ00H CCe + b6@dg 4709H 3DOS + BPIH
15 3A804d CCP + 68a8 47368 BDOS + B4#H
16 3BYSH CCp + 7994 4409¥H BDOS + CO8H
17 3838@H CCp + 7894 48804 BDOS + C8¢H
13 3CYéH BDOS + Q0BH 49994 BDOS + DOOH
19 3C8@0H BDOS + @988H 4486H BDOS + D3gd
28 3Dd0H BDOS + 194H 4A0RQH BIOS + VOQH
21 3D86H BDOS + 18@H 4A80H BIOS + 98014
22 3EABH BDOS + 29@H 43008 BIOS + 199H
23 JEB@H BDOS + 280H 48804 BIOS + 180H
24 3F9dH BDOS + 390d 4CQ9%H BIOS + 280H
25 3FB@H BDOS + 38@H 4C80H 3I0S + 280H
26 49600 BDOS + 408H 4P¥OH BIOS + 392H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4, The BDOS portion,
however, occupies one more 256~byte page and the BIOS portion extends
through the remainder of track 1. Thus, the CCP is 8J0H (2048
decimal} bytes in length, the BDOS is E@@H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. 1In
version 2.4, the BIOS portion contains the standard subroutines of
l.4, along with some initialized table space, as described in the
following section,

(All Information Contained Herein is Proprietary to Digital Research,)

27

19, BIOS DIFFERENCES.

The CP/M 2.0 Basic I/0 System differs only slightly in concept
from its predecesssors. Two new jumo vector entry points are defined,
a new sector translation subroutine 1is included, and a disk
characteristics tapble must be defined, The skeletal form of these
changes are found in the program shown below.

1l: org 4690h

2: maclic diskdef

3: jmo boot

4: ; .o

5: jmp listst ;list status

6: imp sectran ;sector translate

7: disks 4

8: ; large capacity drive

9: bpb a2gu 16*1624 :bvtes per block

lé: rpo egu bpb/123 ;records per block

1l: maxb eqgu 65535/rpo ;max block number
12: aiskdef ©,1,58,3,bpb,maxb+l1,128,9,2
13; diskdef 1,1,58, ,bpb,maxb+l,128,08,2

14: diskdef 2,0
15: diskdef 3,1

16: ;

17: boot: ret ;hop
lags ;
19; listst: xra a s nOP
24z ret

21:

22: seldsk:

23: ;drive number in c

24: 1xi h,# : 3908 in hl oroduces select error
25: mov a,c ra is disk number 4 ... ndisks-1
262 cri ndisks :less than ndisks?

27: rnc sreturn with HL = 8349 if not
28: ; proper disk number, return dpb element address
29: mov i,c

3d: dad h 172

31: dad h 1 %4

32: daa h 1 %8

33: dad h ;%16

34: lxi d,dpbase

35: dad d ;HL=,dpb

36: ret
37:

38: selsec:

39: ;sector number in ¢

483 1xi h,sector

41: mov m,c

42 ret

43:

44: sectran:

45: stranslate sector BC using table at DE
46: xchg :HL = .tran

47: dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: ; dad b again if double precision tran

49 mov l,m ;only low byte necessary here
5d: ; fill botn H ana L if double vrecision tran
51: ret sHL = 27ss

52: ;

53: sector: ds 1

54: endef

55: end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jumo
vector elements), The 1last two elements ovprovide access to the
"LISTST* (List Status) entry voint for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different than the previous 1.4 release. It should be noted that
the 1.4 DESPOOL wprogram will not operate under version 2.8, pbut an
update version will be availaocle from pigital Research in the near
future,

The “SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a 3I0S-resident sector translation
suproutine. This mechanism allows the user to specify the sector skew
factor and translation for a varticular disk system, and is described
below.

A macro library 1is shown in the listing, called DISKDEF,
included on line 2, and referenced 1in 12-15. Although it is not
necessary to use the macro liprary, it greatly simplifies the disk
definition process., You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library 1is
included with all CP/M 2.9 distribution disks. {See the CP/M 2,0
Alteration Guide for formulas which vyou can use to hand-code the
taples produced by the DISKDEF liprary).

A BIOS disk definition consists of the following seguence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF @,...
DISKDEF 1,...
DISKDEF n-1

ENDEF

where the MACLI3 statement loads the DISKDEF.LIB file (on the same
disk as vyour BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, # through n-1 (corresvonding to logical drives A
through P). HNote that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable portion
of your B8I05, typically directly following the BIOS jump vector.

The remaining portion of your BIOS 1is defined following the
DISKDEF macros, with tnhe ENDEF macro call immediately preceding the
END statement, The ENDEF (BEnd of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the ODISKDEF macro call is

DISKDEF dn,fsc,lsc,{skf],bls,dks,dir,cks,ofs, [8]

where
dn is the logical disk number, ¥ to n-1
fsc is the first physical sector number (¥ or 1)
lsc is the last sector number
sk is the optional sector skew factor
pls is the data allocation block size
dir is the number of directory entries
cks is the number of “checked" directory entries
ots is the track offset to logical track 440
(0] is an ovotional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
macro invocation, The "fsc" varameter accounts for differing sector
numoering systems, and is usually 4 or 1. The "lsc" 1s the last
numoered sector on a track. #hen present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes, No translation table is created if the
skf wparameter is omitted (or egual to 9). The “bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 19d24, 2048, 4896, 81%2, or 163384, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk., Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The “dks"
specifies the total disk size in "bls"” units., That is, if the bls =
2048 and dks = 106d, tnen the total disk capacity is 2,248,000 bytes,
If dks is greater than 255, then the block size parameter bls must be
greater than 1424, The wvalue of "dir" 1s the total number of
directory entries which may exceed 255, if desired. The “cks”
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem, If the disk is permanently
mounted, then the value of cks is typically #, since the probability
of cnanging disks without a restart is guite low. The "ofs" value
determines the number of tracks to skip when this particular drive is
addressed, which c¢an be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research,)

38

-

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [@] parameter 1is included when " file
compatibility 1is required with versions of 1.4 which have been
modified for nigher density disks, This parameter ensures that only
16K 1is allocated for each directory record, as was the case for
previous versions. wNormally, this oarameter is not included,

For convenience and economy of taocle svace, the special form
DISKDEF i,g

gives disk i1 tne same characteristics as a previously defined drive jJ.
A standard four-drive single density system, which is compatible with
version 1.4, is defineda using the following macro invocations:

DISKS 4
DISKDEF]
DISKDEFR 1
DISKDEF 2
DISKDEF 3

,26,6,1024,243,64,64,2

ENDEF

with all disks having the same vparameter values of 26 sectors per
track (numbered 1 thnrough 26), with 6 sectors skipped petween each
access, 1l¥24 pytes per data block, 243 data plocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks,

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.8, All disks have identical parameters, except that drives & and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves {there may, however, be a
transvarent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks,” starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. 1In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE EQU 3

DPE#: DW XLT®,92000H,00060H,0800H,DIRBUF ,DP3J,CSVE ,ALVE
DPELl: oW XLT9,0000H,009004,0399H,DIRBUF ,DPBD,CSV] ,ALV1
DPE2: DW XLTQ,4000H,0000H,6099H,DIRBUF,DPBA,CSV2,ALV2
DPE3: DW XLTO ,0000H,00090H,00060H,DIRBUF ,DPBA,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive @
through 3, The values contained within the disk parameter header are
described in detail in the CP/M 2,0 Alteration Guide, but Dbasically
address the translation vector for the drive (all reference XLT#O,
which is the translation vector for drive # in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed by three 16-bit “scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
adaress, and allocation vector address. The «c¢heck anda allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.8, In
particular, the selected disk numoer is passed to the BIOS in register
C, as before, and the SELDSK subroutine verforms the appropriate
software or hardware actions to select the disk. Version 2.4,
nowever, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE®, DPEl, DPE2, or DPE3, in the
above example) 1in register HL, If SELDSK returns the value HL =
d@dv8, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CpP/M 2.0 SELDSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included 1in wversion 2.9 which
verforms the actual 1logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read. Due
aiffering rotational speeds of various disks, the translation function
has become a wvart of the BIOS in version 2.¥d. +Thus, the BDOS sends
sequential sector numbers to SECTRAN, starting at sector number d.
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the 8DUS. The BDOS
supseaquently sends the translated sector number to SELSEC before the
actual read or write is verformed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. 1In this case, the "skf" varameter
is omitted in the macro call, and SECTRAN simply returns the same
value which it receives, The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLTd: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN 1s required to translate a sector, then the following
process takes place, Tne sector to translate is received in register
pair BC, Only the C register is significant if the sector value does
not exceed 255 (B = 04 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XLT¥ in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to tne base of the translate tavle, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L, Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL.

Following the ENDEF macro call, a number of uninitialized data
areas are defined, These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)}

32

which 1s loaded upon cold start, but must be available between the
8I0S ana the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by tne ENDEF macro. For a
standard four-drive system, the ENDEF macro might oroduce

4Ci2 = BEGDAT EQU 3
(data areas)
4pBy = ENDODAT EQU 3
g1l3C = DAT3IZ EQU 3-BEGDAT

which indicates that uninitialized RAS begins at location 4C728, ends
at 40BYH-1, and occupies ¥13Cd pytes. You must ensure that these
aadresses are free for use after the system is loaded,

CP/¥% 2,4 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes, Information is orovided by the BDOS
on sector write operations wnhicn eliminates the need for pre-read
operations, thus allowing plocking and deblocking to take place at the
3I0S level,

See the "CP/M 2.4 Alteration Guide® for additional details
concerning tailoring your CP/M system to vour varticular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

]
00) DIGITAL RESEARCKH

Post Otfice Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (e¢) 1979
DIGITAL RESEARCH

Copyright

Copyright (¢) 1979 by Digital Research. All rights reserved.
No part of this publication mav be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in any form or bv anv
means, electronie, mechanical, magnetie, optieal, chemieal,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Diseclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify anv person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.2 ALTERATION GUIDE

Copyright (c) 1979
bigital Research, Box 579
Pacific Grove, California

1. Introduction e e e e e
2., First Level System Regeneration ,
3. Second Level System Generation
4, Sample Getsys and Putsys Programs . ., . . .
5. Diskette Organization . . . ¢ ¢ « & « o« &
6. The BIOS Entry Points . . ,

7. A Sample BIOS . . . &« ¢ v 4 & o o o « o » =
8. A Sample Cold Start Loader ., ., . . +« + . .
9. Reserved Locations in Page Zero
14, Disk Parameter Tables « v « « .

11. The DISKDEF Macro Library . . .

12, Sector Blocking and

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Mmoo wr

Deblocking

.

- . e . . L] L]
LI I L] L]
* * w & * L]
e ® w » @ * .
«a o & * . .

LI N A . .

* & ¥ = .

« s w o = .

*. = ® u . »

e s ® & LI}

. s * 4 + »

19
12
14
21
22
23
25
39
34
36
39
50
56
59

6l
66

| 1., INTRODUCTION

Tne standard CP/M system assumes operation on an Intel MDS-3L6

| microcomputer develooment system, but is designed so that the user can

| alter a specific set of subroutines which define the hardware

| operating environment, In this way, the user can produce a diskette
whicn operates with any IBM-3741 format compvatible drive controller
and other peripheral devices,

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
“nard aisk" systems, In order to simplify the following adaptation
orocess, we assume that CP/M 2.9 will first be configured for single
density floppy disks wnere minimal editing and debugging tools are
available, If an earlier version of CP/¥4 1is available, the
customizing process is eased considerably. In this latter case, vyou
may wisn to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M 1is separated into
three distinct modules:

BIOS - pasic I/0 system which is environdaent dependent

B800S - pasic disk operating system which is not dependent
upon the hardware configuration

CCP - the console command processor which uses the BDOS

Of these modules, only the 8I05 is dependent upon the particular
nardware, That is, the user can “"patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/# modules and the user's own hardware systen,
The purpose of this document is to provide a step-by-step procedure
for patchning your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal

version of the BIOS 1is given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, whicn brings the
operating system into memory. 1In order to patch the new 8I0S into
Ce/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands, Sample skeletal GETSYS and PUTSYS programs are
describea in Section 3, and listed in Apvendix D, In order to make
the CP/M system work automatically, the user must also supply a cold
start loader, similar to the one oprovided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2. FIRST LEVEL SYSTEM REGENERATION

I'ne procedure to follow to patcn tne CP/4 system is given below in
several steps. Address references in eacn step are shown witn a
followina "H" which denotes the hexadecimal radix, and are given for a
29K CP/¥M system, For 1larger (CP/M systems, add a "bias" to each
adaress whicn is shown with a "+b" tollowing it, where b is egual to
tne memory size - 29K. Values for b in various standard memory siges
are

24K: b = 24Kk - 29K = 4K = 19404
32K: 0 = 32K = 26K = 12K = 30694
49K D = 44K — 20K = 20K = 5090H
48K b = 48K - 24K = 28K = 70¢0H
56K : b = 56K - 28K = 36K = 94034
62K: D = 62K - 20K = 42K = A80¢d
04K: b = 64K ~ 20K = 44K = B33ddH

Jote: The standard distribution version of CP/M 1is set for
operation within a 20K memory system. Therefore, you must first bring
uo the 2¢K CpP/¥ system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory. The data from the diskette
must begin at location 3338uH. Code GETSYS so that it starts at
location l¥¥H (pase of the TPA), as shown in the first vart of
Appendix d.

(2) Test the GETSYS program by reaaing a blank diskette into
memory, and check to see that the data has been read vproperly, and
that tne diskette has not been altered in any way by the GETSYS
program,

(3} Run the GET3YS program using an initialized CP/M diskette to
see 1f GETSYS loads CP/M4 starting at 338dH (tne operating system
actually starts 128 bytes later at 34ddd).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 3384d back onto the first two tracks of the
diskette. The PUTSYS program should be located at 208H, as shown in
the second part of Appendix D,

(5) Test the PUTSYS program using a plank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOQOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase,

(All Information Contained Herein is Proprietary to Digital Researcn,)

2

(7) Test CBIOS completely to ensure that it wnroperly verforms
console character I/0 and disk reads and writes, Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes, Failure to make these checks
may cause destruction of the initialized CP/# system after it is
patched.

(d) Referring to Figure 1 in Section 5, note tnat the BIOS is
prlaced between locations 4AUdH and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). This replacement is done in the memory of
the macnine, and will be olaced on the diskette in the next step.

(9) Use PUISYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing,

{16) Use GETSYS to bring tne copied memory image <from the test
diskette bpack into memory at 338@H, and check to ensure that it has
loaded back properly (clear memory, if vossible, before the load).
Upon successful load, branca to the cola start code at location 4AgPd.
The cold start routine will initialize vage zero, then jumo to the CCP
at location 3400H which will call the 8D0S, which will call the CB3IO0S.
The CBIOS will be asked by the CCP to reaa sixteen sectors on track 2,
and if successful, C2/M will type "A>", the system prompt,

Wwhen you make it tnis far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
oreakpoint your CBI0S.

(11} Upon completion of step (18), CP/4 has prompted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (after several disk accesses):
A>
If it does not, depug your disk write functions and retry,.
(12) Then test the directory command by typing
DIR
CP/M should respond with
A: X COoM
(13) Test thne erase command by typing

ERA X,COM

(All Information Contained Herein is Proprietary to Digital Research,)

3

CP/M should respond with the A promot, When vou make it this far,- you
should have an operational system wnich will only require a bootstrap
loader to fuhction completely.

(14) write a bootstrap loader which is similar to GETSYS, ana
vlace it on track ¥, sector 1 using PUTSYS (again using the test
diskette, not the distrioution diskette)., See Sections 5 and 8 for
nmore information on the pootstrap operation,

(15) Retest the new test diskette witn the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). Tne
system should then execute a "warm start” which repoots the system,
and types the A promot,

(lo) At this point, you probably have a good version of vyour
customized CP/M system on your test diskette. Use GETSYS to load CP/H
trom your test aiskette, Remove the test diskette, place the
distribution diskette {(or a legal copy) into the drive, and use PUTSYS
to replace the aistribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load vour modified CP/M system and test it oy typing
DIR
CP/4A should respond with a list of files wnicn are provided on the
initialized aiskette, One such file should be the memory image for
the debugger, called DDT.COM.
NOIE: from now on, it is important tnat you always repoot the CP/M
system (ctl-C is suificient) when the diskette is removed and replaced

by anotner diskette, unless the new diskette is to be read only,

(lb} Load and test the debugger by tvping

oDT
(see tne document "CP/M Dynamic Debugging Tool (DDI)* for operating
sroceaqures, You should take tne time to become familiar with DDT, it

will pe your pest friend in later steps.

(1v) 3efore making further CBIOS modifications, practice wusing
the editor (see the ED wuser's guide), and assembler {see the ASHM
user's guide). ‘fhen recode and test the GETSYS, PUT3Y5, and CBIOS
programs using ED, AS!, and DDT. Code and test a COPY program which
does a sector-to-sector copy from one diskette to another to obtain
pack-up copies of the original dJiskette (NOTE: read your CP/M
Licensing Agreement; it specifies vyour legal responsibilities when
copying the CP/M system)., Place the copyright notice

Copvyright (c), 1979
Oigital Research

(All Information Contained Herein is Proporietary to Digital Researcn.)

4

on eacn copy which is made witn your COPY program,

(20) Modify vyour CBIOS to include the extra functions for
ouncnes, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
tnese changes with the GETSYS3 and PUTSYS programs which you have
developed, or vyou can refer to the following section, which outlines
Cp/M facilities which will aid you in the regeneration process,

You now nave a good copy of tne customized CpP/M system., Note that
although tne CBIOS portion of CP/M which you have develooed belongs to
you, tne modifiead version of CP/M which you have created can oe copied
tor vour wuse only (again, reaa your Licensing Agreement), and cannot
pe legally copied for anyone else's use,

It should be noted that your system remains file-compatible with all

otner C(p/M systems, (assuming media compatiblity, of course) which
allows transfer of non-vroprietary software between users of CP/M.

(All Information Contained Herein is Proorietary to Digital Research.)

3. SECOND LEVEL SYSTEM GENERATIOW

Now that you have the (P/M system running, vyou will want to
configure CP/M for your memory size., In general, you will first get a
memory 1image of CP/M witn the "MOVCPM" program (system relocator) and
vlace this memory image into a named aisk file, The disk file can then
be loaded, examined, patcned, and replaced using the depnugger, and
system dgeneration oprogram. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities”
manual.

Your CBIOS and B00T can pe modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and 300T.dEX, whicn contain the
macnine code for CBIOS and s800T in Intel hex format,

o get the memory image of CP/M into the I'PA configured for the
desired memory size, give the command:

MOVCPM Xx ¥

where "xx" is the memory size in decimal K oytes (e.g., 32 for 32K).
The response will pe:

CONSTRUCTING xxK CP/¥1 VERS 2.4
READY FOR "SYSGEN" OR
“SAVE 34 CPMxx,COM"

At this noint, an image of a CP/M 1in the TPA configured for the
requested memory size. The memory image is at location #9dwH through
227Fd. (i.e., The BOOT is at @#90eH, the CCP 1is at 98@d, the BDOS
starts at 1149H, and the BIOS is at 1FB80H.) Note that the memory
image has the standard MDS-89W BIODS and BOOT on it. It 1s now
necessary to save the memory image in a file so that you can patcn |
your CBIOS and CB300T into it: |

SAVE 34 CPMxx,COM

The memory image created by the "MOVCPM" orogram is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the overation of CP/M in higher memory. Thnis
memory image can pe subseguently loaded under DDT and examined or
changed in preparation for a new generation of the system, DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM
image

DDT should respond with
NEXT PC
2308 01069
- (The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image petween 390¢d and 227FH., Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the Cp/M address to find the actual
address, Track 9¢, sector ¥l is loaded to location 3d¥H (you should
tind the cold start loager at Y9dwH to v¥7FH), track #¥, sector w2 is
loaded into 98%H (this is the base ot the CCP), and so=-forth througn
tne entire CP/M system loaa, In a 20K system, for example, the (CP
resides at the CP/4 address 3499H, but is vlaced into memory at 930d
oy the SYSGEN program. Thus, the negative Dbias, denoted by n,
satisfies

34¥¥YH + n = 980H, or n = Y3JH - 3400H

Assuming two's complement arithmetic, n = D58¥YH, which can be cnecked
by

34@gH + D58vYH = 1@98¢d = ¥Y8YH (ignoring nigh-orger
overflow).

Note that for larger systems, n satisfies
34pUH+b) + n = Y8¥WH, or

93¥d - (349¥H +), or
D580BH - b.

(
n
n

o

The value of n for common CP/¥M systems is given below

memory size bias b negative offset n
24K Wy oH D584Y4 - 93dyd = D53dH
24K lg¥od 05808 - 184¥dH = C53YH
32K 34944 D580H - 38404 = A58dd
40K 58404 D58¥H - 5d89¥vH = 858¢H
4 8K 790 vH D58YH - 7dvibH = 658u¥H
56K 9J9YUH D53YH - SdYWUoH = 45844
62K Agdod DS8YH - A8QuiH = 2DBGH
64K BdUOH D538H - (30Y8H = 258YH

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 284K system, First type

Bx,n Hexadecimal sum and difference
and DT will respond with the value of x+n (sum) and x-n {(difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found, The input

H348¢,D584

for example, will produce 28dH as the sum, which is where the CCP is
located in the memory image under DDT,

Use the L command to disassemple portions the BI0OS5 located at
{(4adUH+D)—n which, when vyou use the H command, oroduces an actual
address of 1F84H, The disassembly command would thus be

(A1l Information Contained derein is Proprietary to Digital Research.)

7

Lir8e
It is now necessary to vatch in your CBOOT and CBIOS routines. The
BOOT resides at location 89%98dd in the memory image. If the actual
load address is “n*", then to calculate the bias (m) use the command:

H9006,n Subtract load address from
target address,

The second number tyoed in response to the command is the desired bias
(m}, For example, if your BOOT executes at ¥@d8vH, the command:

H994,80
will reply
Y98y DBEY Sum and difference in hex,

Therefore, the bias “m” would be W88dH, To read-in the BOOT, give the
command:

ICBOOT,HEX Input file CBOOT,HEX
Then:
Rm Read CBQOOT with a bias of
m (=%dd4d-n)

You may now examine your CBOOT with:
Lodd

Wwe are now ready to replace tne CBIOS. Examine the area at 1F8@H
where the original version of the CBIOS resides. Then type

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBI0S is being integrated into a 28K CP/M system, and
thus is origined at location 4A@@¢d. In order to properly locate the
CBIOS in tne memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file, This is accomplished oy
typing

RD589 Read the file with bias D53¢H

Upon completion of the read, re-examine the area where the CBIOS has
peen loaded (use an “L1F8&" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return trom DDT using a control-C or “G@" command.

Now use SYSGEN to replace the patched memory image back onto a

diskette (use a test diskette until you are sure of your patch}, as
shown in the following interaction

{all Information Contained Herein is Proprietary to Digital Research.)

3

SYSGEN Start the SYSGEN program
SYSGEN VERSION 2.4 Sign-on message from SY3GEN

SOURCE DRIVE NAME (QOR RETURN TO SKIP)
Respond with a carriage return

to skip the CP/M read operation
since the system is already in
memory.

DESTINATION DRIVE NAME {OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.

DESTINATION ON B, THEN TYPE RETURN
Place a scratch diskette in
drive B, then type return.

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

Test the new CP/M system, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

4, SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS programs referenced in Section 2, The READSEC and WRITESEC
subroutines must be inserted by the user to read and write the

svecific sectors,

GETSY3 PROGRAM - READ TRACKS & AND 1 TO MEMORY AT 338¢H

: REGISTER USE
: A (SCRATCH REGISTER)
; B TRACK COUNT (&4, 1)
; C SECTOR COUNT (1,2,....,26)
; DE (SCRATCH REGISTER PAIR)
; HL LOAD ADDRESS
; Sp SET TO STACK ADDRESS
I
START: LXI SP,33B0H sSET STACK POINTER TCO SCRATCH AREA
LXI 4, 338wH :SET BASE LOAD ADDRESS
MVI B, © + START WITH TRACK ¥
ROTRK : +READ WEXT TRACK (IWI'TIALLY 8)
VI c,1 +READ STARTING WITH SECTOR 1
RDSEC: s READ WNEXT SECTOR
CALL READSEC s USER~SUPPLIED SUBRQUTINE
LXI D,1238 ; MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
OAD D +HL = HL + 128
IdrR C :SECTOR = SECTOR + 1
A0V a,c ;CHECK FOR END OF TRACK
CPI 27
JC RDSEC : CARRY GENERATED IF SECTOR < 27
: ARRIVE HERE AT END OF TRACK, MOVE TO NEXT [TRACK
INR 3
MOV A,B :TEST FOR LAST TRACK
cpI 2 '
JC RDTRK :CARRY GENERATED IF TRACK < 2

ARRIVE HERE AT

HLT

END OF LOAD,

HALT FOR NOW

USER-3UPPLIED SUBROUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

x"- -

e mp e e

PUSH
pPUSH

B
d

;SAVE 3 AND C REGISTERS
;SAVE HL REGISTERS

[e A B A A A B I B A L

perform disk read

lapel START 1f an

at this ooint, branch to

error occurs

B e % e AN S EESEEREEEE N

poP H ; RECOVER HL

POP B ;RECOVER B AND C REGISTERS
RET :+BACK TO MAIN PROGRAM

END START

(A1l Information Contained Herein is Proprietary to Digital Research,)

19

Note that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 1JdH. The hexadecimal
operation codes wnich are listed on the left may be wuseful if the
program nas to be entered through your machine's front panel switcnes,

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given apbove, as shown in
Appendix D. Tne register pair HL oecome the dump address (next
address to write), and operations upon these registers do not change
within the program, The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opvosite function: data from address HL
1s written to the track given Dy register B and sector given Dby
register C, It is often usetful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix,

(All Information Contained Herein is Proprietary to Digital Research.)

11

5, DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
Ce/M 1is given here for reference purposes, The first sector (see
table on the following page) contains an optional software boot
section, Disk controllers are often set uv to bring track 4, sector 1
into memory at a specific location (often location U9®@BH). The
program in this sector, called BOOI, has the resoonsibilitv of
bringing the remaining sectors into memory starting at location
340di3+b, If your controller does not have a built-in sector loaa, you
can ignore the program in track ¢, sector 1, and begin the load trom
track ¥4 sector 2 to location 3499H+b.

As an example, the Intel MD5-809 hardware cold start loader brings
track ¥, sector 1 into apsolute address 3¢dwbH, Uoon loading this
sector, control transfers to locaticn 39694, where the bootstrap
operation commences by loading the remainder of tracks 4, and all of
track 1 into memory, starting at 34vwH+b. Tne user should note that
tnis bootstrap loader is of 1little wuse 1in a non-MDS environment,
althougn it is wuseful to examine it since some of the boot actions
will have to pe duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Track§ 3Sectors Page# Memory Address CP/M Module name

49 21 {boot agddress) Cold Start Loader
o 32 @d 3494H+D CCp
" 23 " 348@H+b "

" 4 91 35499H+5 "
" W5 " 353vl+0 "
" do j2 3600H+D "
g7 - 368BYH+D
28 93 370vd+Dp
" 99 " 3788d+b "
" 13 Ua 38dva+D "
" 11 " 388¢H+D 4
12 35 399¢H+Db ”
13 " 393gd+b "
" 14 o 3A0QH+Db "
* 15 " 3A8¢H+Db y
" 1o J7 33ddd+p i
Y 17 " 3B88dH+Db CCP
dd 13 R} 3CY8H+b BDOS
N 19 " 3C3804+b "
" 24 349 3D@YH+Db "
21 " 3D§@H+0
22 19 JEZFHA+D
23 " 3834H+b "
" 24 11 IFYOA+DL N
" 25 " 3F8¥H+D "
" 26 12 4398H+p "
g1 G1 " 4980H+b "
" a2 13 413dd+b "
a3 " 418Q0H+b "
" d4 14 4298H+b "
. 45 " 4286d+D0 "
" d6 15 43GgH+Db "
g7 " 4389H+Dp !
08 16 4403d+b -
" @9 " 4484H+b "
" 19 17 4563H+b "
" 11 g 4589H+Db "
" 12 18 4600H+b "
" 13 " 4682H+Db "
i 14 19 470@H+b "
N 15 " 47883H+b "
" 16 28 4800H+b "
i 17 " 4B80H+b "
" 18 21 49G0H+b "
g1 139 " 438AH+b BDOS
a1 28 22 4A0G0H+Db BIOS
- 21 " 4ABQH+D "
" 23 23 4BQPH+b "
" 24 ” 4BB@H+Db "
" 25 24 4CO0QH+Db "
g1 26 " 4C8@H+b BIOS
d2=-76 B1-26 (directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

e g:zaigtgybzgégts ég;gvt?e ?IOSBiéom the cold start locader and 8DOSs

2o be - O the S 1is through " "
lOCaFed at 4AgdH+b, as shown below (see Aopendicgs Baandngpasngfif.
I'he jump vector is a sequence of 17 jump instructions which send
program control to the individual BIOS subroutines, The BIOS
subroutines may be emnty for certain functions (i.e., they may contain
a single RET operation) during regeneration of CP/M, but the entries
must be vresent in the jump vector.

The jump vector at 4AU@H+b takes the form shown below, where the
individual jump addresses are given to the left:

4ADUH+D JMP BOOT
4AY3d+0 JHP WBOOT
4AY6d+b JMp CONST
4AB9H+b JMP CONIN
4A9CH+D Jelp CONOUT
4AYFH+D JMP LIST

ARRIVE HERE FROM COLD START LOAD
ARRIVE HERE FOR WARM START

CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN

WRITE CONSOLE CHARACTER QUT
WRITE LISTING CHARACTER OUT

431 2H+b JMP PUNCH WRITE CHARACTER TO PUNCH DEVICE
4A15H+0 JMP READER READ READER DEVICE

4Algd+b JHP HOME MOVE TO TRACK 9@ ON SELECTED DISK
4A154+5 JiHp SELDSK SELECT DISK oRIVE

4AlEH+0 JiP SETTRK SET TRACK WUMBER

4p218+0 JMP SETSEC SEl SECTOR NUMBER

4A241+D JMP SETDMA SET DMA ADDRESS

4n27d+b JMpP READ READ SELECTED SECTOR

4AZAH+D JMP WRITE WRITE SELECTED SECTOR

RETURN LISTt S5TATUS
SECTOR TRANSLATE SUBROUTINE

4A2DH+D JMP LISTST
4A3QH+D JMP SCECTRAN

ma My WE ME WE ME WA WE WS g M A e e W W W

Each jumo address corresponds to a particular subroutine which
performs tne specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character 1/0
pertformed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST, and diskette I/0 overformed by calls on HOME, SELDSK, SETTRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN,

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an 1input device is given by an ASCII
control-z (1AH). Peripneral devices are seen by CP/M as “logical”
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines {(LIST, PUNCH, and READER may be used by PIP, but
not the BDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained flerein is Proprietary to Digital Research,)

14

(All

Tne characteristics of each device are

CUNSOLE

LIST

PUNCH

READER

IOBYTE AT

The princival interactive console wnich communicates
with the operator, accessed through CONST, CONIN, ana
CONOUT, Tyoically, tne CONSOLE is a device such as a
CRT or Teletype,

The principal listing device, if it exists on vyour
system, which is usually a hard-copy device, such as a
printer or ‘Yeletype,

The princival tape punching device, if it exists, which
is normally a high-speed vaper tave punch or Teletype,

The principal tape reading device, sucn as a simple
optical reader or Teletype.

iote that a single peripheral can be assigned as
the LIST, pPUNCH, anc READER device simultaneously., IE
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created pv the user may give
an appropriate error message soO that the system does
not "hang” if the device is accessed by PIP or some
other user worogram, Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1AH (ctl-2) in reg A to indicate
immediate end-of-file,

For added flexipbility, the user can ontionally
implement the “IQBYTE" function which allows
reassignment of ohysical and leogical devices, The
IOBYTE function creates a mapping of logical to
ohysical devices wnicn can be altered during <P/
processing (see the STAT commanc). The definition of
the IOBYTE function corresoonds to the Intel standard
as follows: a single location in memory {(currently
location wéd3H) is maintainea, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a wparticular time. The mapping is
verformed by splitting the IOBYTE into four distinct
tields ot two bits eacn, callea the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

96034 | LIST | PUNCH | READER | COWNSOLE |

pits 6,7 bits 4,5 bits 2,3 oits #,1

The value in each field can be in the range -3,
defining the assigned source or destination of each
logical device, The values which can be assigned to
each field are given below

Information Contained Herein is Proprietary to Digital Researcn,)

15

CONSOLE field (bits 0,1)

console is assigned to the console printer device (TTY:)
console is assigned to the CRT device (CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CUONSOLE output (BAT:)

user defined console device (UC1:)

R field (bits 2,3)

READER is the Teletype device (TTY:)

READER is the high-sveed reader device (RDR:)
user defined reader # 1 (UR1l:)

user defined reader # 2 (URZ:)

PUNCH field (bits 4,5)

g -
1 -
2 -
3 -

READE
-
1 -
2 -
3 -
g -
1 -
2 -
3 -

PUNCH is the Teletype device (TTY:)

PUNCH is the nhigh speed punch device (PUN:)
user defined ounch # 1 (UP1l:)

user defined vunch 2 (UP2:)

LIST field (bits 6,7)

]
1 -
2
3

LIST is the Teletype device (TTY:)
LIST is the CRT device (CRT:)

LIST is the line printer device (LPT:)
user defined list device (ULl:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of vyour
CBIOS, Ho CP/M systems use the IOBYTE (althougn they
tolerate the existence of the IOBYTE at location
d0d3d), except for PIP which allows access to the

physical devices, and STAT which allows
logical-pnysical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Facilities Guiae"). In any <¢ase, the IOBYTE

implementation should be omitted until your basic CBIOS
is fully implemented and tested; tnen add the IOBYTE to
increase your facilities,

Disk I/0 is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation, After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK ¢to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations, Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selectea DMA address before the DMA address is changed.
‘fhe track and sector supbroutines are always called
before the READ or WRITE operations are performed,

(All Information Contained Herein is Proprietary to Digital Research.)

16

-]

Wote that the READ and WRITE routines should
perform several retries (1@ 1is standard) pefore
reporting the error condition to the BDOS., 1If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 06 seek, depending upon
your controller characteristics;:; the important point is
that track 0@ has been selectea for the next operation,
and is often treated in exactly the same manner as
SETTRK with a parameter of ¢4,

The exact responsipilites of eacn entry point
subroutine are given below:

BCOT The BOOT entry point gets control from the cold start
loader and 1is responsipble for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point, 'The various system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing, Note that reg C must be set to zero to
select drive A,

WBOOT The WBOOT entry point gets control when a warm start
occurs. A warm start 1is vperformed whenever a user
program branches to location #889¢H, or when the CPU is
reset from the front panel., The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or (CBI0S, if vyou have
completed your patch). System parameters must be ini-
tialized as shown below:

location 4,1,2 set to JMP WBOOT for warm starts
{000 bH: IJMP 4A03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JMP BDOS, which 1is the
primary entry point to CP/M for
transient programs, (B@@5H: JMP
3CH6H+D)

(see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 349¢H+b to (re)start
the system, Upon entry to the CCP, register C 1is set
to the drive to select after system initialization.

CONST Sample the status of the currently assigned console
device and return @FFH in register A if a character is
ready to read, and @#H in register A if no console
characters are reaay.

CONIN Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONCUT

LIST

puaCH

READER

HOME

SELDS3K

set the mparity oit (nigh order pit}) to zero. If no
console character is.ready, wait until a character 1is
typred pefore returning.

Send the character from register C to the console
output device, The character is in ASCII, with nigh
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if vyour
conscle device requires scome time interval at the end
of the line (such as a TI Silent 768 terminal). You
can, 1if you wisn, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to c¢lear
the screen, for examole),

Send the character from register C to the currently
assigned listing device, The character is in ASCII
with zero parity,

Send the character from register C to the currently
assigned punch device, The character is in ASCII with
Zero parity.

Read the next cnaracter from the currently assignedq
reader device into register A with zero pvarity (high
order pit must pe zero), an end of file condition is
reported by returning an ASCII control-z (lAH).

Return the disk heada of the currently selected disk
(initially disk A) to the track 9% oosition., If your
controller allows access to the track ¥ flag from the
drive, step the heaa until the track # flag is
detecteda. If your controller aoes not support this
feature, vyou can translate the HOME call into a call
on SETTRK with a parameter of 4,

Select the disk drive given by register C for further
operations, wnere register C contains @ for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CP/#M distribution version supports four
drives)., On each disk select, SELDSK must return in
HL the base address of a l6-byte area, called the Disk
Parameter Header, described in the Section 14, For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=P88?%H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisapnle to postpone the actual pnysical disk select
operation until an I/0 function (seek, read or write)
is actually pertormed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.}

18

SETTRK

SETSEC

SETDMA

READ

WRITE

before selecting the new drive, This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for subseauent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs, Register BC can take on values in the range
¥-76 corresmonding to valid track numpers for standard
floopy disk drives, and ¥-65535 for non-standara disk
subsystems.

Register BC contains the sector number {1 through 26)
for subseguent disk accesses on the currently selected
drive, You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write overation occurs.

Register 3C contains the DMA (disk memory access)
address for subseguent reaa or write operations., For
examole, if B = pdd and C = 89H when SETDMA is calleqd,
then all subseguent read operations read their data
into 8@d through ¢fFH, and all subsequent write
operations get their data from 66 through B8FFH, until

tne next call to SEPDMA occurs. The initial DMA
address is assumed to be do¢H. Hote that the
controller need not actually support direct memory
access, If, for example, all data is received and

sent through I/0 ports, the CBIOS which you construct
will wuse the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write overations,

Assuming the drive has been selectea, the track has
been set, the sector has been set, and the DMA adadress
has bDeen specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

s} no errors occurred
1 non-recoveranle error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as tne return coae, That is, if the value in
register A is ¥ then CP/M assumes that the disk
operation completea properly. If an error occurs,
however, the CBIOS should attempt at least 14 retries
to see if tne error is recoverable, When an error is
reported the BDOS will print the message "BDOS ERR ON
Xx: BAD SECTOR"., The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort,

Write the data from the currently selected DMA address
to the currently selected drive, track, and sector.
The data should be marked as "non deleted data" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

LISTST

SECTRAN

maintain compatibility with othner CP/H systems, The
error codes given in the READ command are returned in
register A, with error recovery attemots as descriped
above,

Return the ready status of the list device. Used by
tne DESPOOL program to improve console response during
its operation, The value ¥¥ is returned in & if the
list aevice is not reaay to acceot a character, and
@rFH if a character can be sent to the vrinter. Note
that a 0¥ value always suffices,

Pertorms sector logical to physical sector translation
in order to improve the overall response of Cp/M.
S5tandard CP/M systems are shioped with a "skew factor”
of 6, where six physical sectors are skipped between
each logical reaa operation, This skew factor allows
enough time petween sectors for most programs to loaa
their buffers witnout missing the next sector, In
particular computer systems which use fast processors,
memory, and disk subsvstems, the skew factor may be
changed to imorove overall response, Note, however,
that vyou should maintain a single density IBM
comcatible wversion of Cp/M for information transfer
into and out of your computer system, wusing a Sskew
factor of 6. 1In general, SECTRAN receives a logical
sector numbper in BC, and a translate table address 1in

DE, The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL, For stanaaru systems, the taoles and

indexing code is orovided in the (CB8I0S and need not be
changed,

(All Information Contained Herein is Proprietary to bDigital Researcnh.)

29

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for vyour
first B3I05., The simolest functions are assumed in this BIOS, so that
you can enter it through the front wvanel, if absolutely necessary.
Note that the user must alter and insert code into the subrcoutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions, The scratch area
reserved in page zero (see Section 9) for the BIOS 1is used 1in this
program, SO that it could be implemented in ROM, if desired,

Once operational, this skeletal version can be enhanceda to print
the initial sign-on message and periorm better error recovery. The

subroutines for LIST, PUNCH, and READER can be filled-cut, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8, A SAMPLE COLOD START LOADER

The program shown in Appendix o can serve as a basis for your cold
start loader., The disk read function must be suppliea by the user,
ana ‘the program must be loaded somehow starting at location wdivo,
Note tnat svace is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes, Eventually,
you will ©orobably want to get this loader onto the first disk sector
(track w, sector 1), and cause your controller to load it into memory
automatically wupon system start-up, Alternatively, you may wish to
place tne cold start loader into ROM, anu place it above the CP/M
system, In this case, it will pe necessary to originate the program
at a nigner address, and key=-in a jump instruction at system start-up
which prancnes to the loader, Subseguent warm starts will not require
tnis key-in overation, since the entry point 'WBOOT' gets control,
thus pbringing the system in from disk automatically., Note also that
the skeletal «c¢ola start loader has minimal error recovery, which may
pe enhanced on later versions,

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCATIOWNS IN PAGE ZERO

Main memory page zero, between locations GéH ana UWPFFH, contains
several segments of code ana data which are used during Cp/#
processing. The code and data areas are given below for reference
purposes,

Locations Contents
from to
Govod - V@24 Contains a jump instruction to the warm start

entry vpoint at location 4AU3H+b. This allows a
simole programmed restart (JHP d084H) or manual
restart from the front pnanel,

90834

20934 Contains the Intel standara IOBYTE, wnich is
ootionally included in tne wuser’s (3I0S5, as
described in Section 6,

d¥ad WO o4d Current default drive number (¥=a,....15=pP).

¢ d5H

Bea74d Contains a Jjump instruction to the BDOS,and
serves two purposes: JiiP 8905H proviaes the
primary entry point to the B20S, as described in
the manual "CP/M Interface Guide,” and LHLD
fdv6rd brings the address field of tne
instruction to the HL register nair. This value
is the lowest aadress in memory used by CP/H
(assuming the CCP 1s being overlaved). Note
tnhat the DDT program will cnange the address
field to reflect the reduced memory size in
debug mode,

d383H

0d27d (interrunt locations 1 through 5 not used)

0@ 3904

vwe378 {interrupt location 6, not currently used -
reserved)

P9 38H

603Aad Restart 7 - Contains a jumo instruction into the
DDT or SID program when running in depbug mode
for programmed breakwoints, but is not otherwise
used by Cp/M.

2938H bd3FH (not currently used - reserved)

¥40d

U9 4FrH lé byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version ot Ce/M

@58t Wd5BH (not currently used - reserved)

Wi5CH

d07CH default file control block oproduced ror a
transient program by the Console Command
Processor,

@B70d. - GQ7FH Optional default random record position

(All Information Contained Herein is Proorietary to Digital Research.)

23

DoBYE - dIFFH default 1268 byte disk buffer (also filled with
the command line wnen a transient is loaaced
under the CCP).

Note that this intormation is set-un for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BDOS tacilities are not reguired py the transient,

It, for example, a particular program periorms only simple I/0 and
must pegin execution at location ¥, it can be first loacea into the
IpA, wusing normal CpP/M facilities, witn a small memory move program
whicir gets control when loaded (the memory move program Tmust get
control rfrom 1location ©le¥ii, which is the assumed beginning of all
transient programs). <lhe move program can then proceed to move the
entire memory image down to location ¥, ana pass control Lo the
startiny address of the memory loaa, wote that 1f the B3I0S 1is
overwritten, or if location ¥ (containing the warm start entry ooint)
is overwritten, then the programmer must bring the Cp/M system Dback
into memory witn a cold start seguence,

(All Intformation Contained Herein is Proprietary to Digital Research,)

24

%‘%

19, DISK PARAMETER TABLES,

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M, These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations, The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 9040 | 600Q | 9600 |DIRBUF| DPB | CSV | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (l6-bit) value. The meaning of each Disk
Parameter Header (DPH) element is
XLT Address of the logical to physical translation vector,
if used for this particular drive, or the value G@0PH
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same), Disk drives
with identical sector skew factors share the same
translate tables,

20020 Scratchpad values for wuse within the BDOS (initial
value is unimportant).

DIRBUF Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same

scratchpad area,

DEB Address of a disk parameter block for this drive,
Drives with identical disk characteristics address the
same disk parameter block.

Ccsv Address of a scratchpad area used for software check
for changed disks., This address is different for each
DPH,

ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information. This address is
different for each DPH,

Given n disk drives, the DPBE's are arranged in a table whose first row

of 16 bytes corresponds to drive @, with the last row corresponding to
drive n-1, The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

P8 IXLT £0| V008 | G000 | 0002 |DIRBUF|DBP 04ICSV 00|ALV 60|

n=1]XLTn-1| 4609 | 0963 | 0008 |DIRBUFIDBPn-1|CSVvn-1|ALVn-1]|

————— T ———— —————————————— " — . . . b il wil il o V. A A S N U A e =

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a @0#80H returned 1if the
selected drive does not exist,

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK :
;SELECT DISK GIVEN BY BC
LXI H,B000H ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC :RET IF ERROR
:NO ERROR, CONTINUE
MOV L,C ; LOW (DISK)
MOV H,B :HIGH(DISK)
DAD H ;%2
DAD H ;%4
DAD H ;%8
DAD H ;%16
LXI D,DPBASE ;FIRST DPH
DAD D ; DPH (DISK)
RET

The translation vectors (XLT @@ through XLTn-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1, The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general form

- " ————— ——— A T T S gy S —— —————— ———— - - ———————— . T T . — ————

where each is a byte or word value, as shown by the "8b" or “16b"
indicator below the field.

SPT is the total number of sectors per track
BSH is the data allocation block shift factor, determined

by the data block allocation size,

(A1l Information Contained Herein is Proprietary to Digital Research.)

26

EXM is the extent mask, determined by the data block
aliocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive AL@,AL1 determine reserved
directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which 1is not an entry in the disk parameter block., Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS BSH BLM
1,824 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

where all values are in decimal, The value of EXM depends upon Dboth
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,824 7 N/A
2,048 1 @
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units, The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of course,
must be within the capacity of the ohysical disk, not c¢ounting the
reserved operating system tracks,

The DRM entry is the one less than the total number of directory
entries, which can take on a 16-bit value. The values of AL® and ALl,
however, are determined by DRM. The two values AL@ and ALl can
together be considered a string of 16-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

7

T R D S R S Sl e S N W W AP Y e Y T — ———— . o AL b —————

@0 21 02 93 04 @5 06 87 068 69 124 11 12 13 14 15

where position 88 corresponds to the high order bit of the byte
labelled AL@#, and 15 corresponds to the low order bit of the byte
labelled ALl1. FEach bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 68 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,824 32 times # Dbits
2,048 64 times # Dbits
4,096 128 times # bits
8,192 256 times # bits

16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1824, then there
are 32 directory entries per block, reguiring 4 reserved blocks. In
this case, the 4 high order bits of AL® are set, resulting in the
values AL = @BFOH and ALl = @GH.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number. If the media is fixed, then set CKS = 0 {(no directory
records are checked in this case).

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk, This wvalue 1is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked,

Returning back to the DPH for a particular drive, note that the
two address values CS8SV and ALV remain, Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unigue for each drive, and the size of each area is determined by the
values in the DPB,

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive, If CKS = (DRM+1l)/4, then you must reserve (DRM+1)/4 bytes for
directory check use, If CKS = @, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1.

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to

examine this program, and compare the tabular values with the
definitions given above,

(All Information Contained Herein is Proprietary to Digital Research.)

29

11, THE DISKDEF MACRO LIBRARY,

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process., You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro 1library 1is included with all CP/M 2.0
distribution disks,

A BIOS disk definition consists of the following seguence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0,...
DISKDEF 1

DISKDEF n-1

ENDEF

Fews

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16, A series of
DISKDEF macro calls then follow which define the <characteristics of
each logical disk, @ through n-l1 (corresponding to logical drives A
through P), Note that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector, -

The remaining portion of your BIOS 1is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,([skf],bls,dks,dir,cks,ofs, [0]

where
dn is the logical disk number, 8 to n-1
fsc is the first physical sector number (# or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of “checked" directory entries
ofs is the track offset to logical track @0
[B) is an optional 1,4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF

(A1l Information Contained Herein is Proprietary to Digital Research.)

39

macro invocation, The "fsc" parameter accounts for differing sector
numbering systems, and is usually 6 or 1, The "lsc" 1is the last
numbered sector on a track, When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew, If the number of sectors is 1less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes, No translation table is created if the
skf parameter is omitted (or egual to @), The “bls" parameter
gspecifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4896, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks*
specifies the total disk size in "bls" units, That is, if the bls =
2948 and dks = 1666, then the total disk capacity is 2,648,900 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1624. The wvalue of "dir" 1is the total number of
directory entries which may exceed 255, 1if desired, The “cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem, If
the disk is permanently mounted, then the value of cks is typically @,
since the probability of changing disks without a restart is oauite
low, The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [#]
parameter is included when file compatibility is reguired with -
versions of 1.4 which have been modified for higher density disks,.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions, Normally, this
parameter is not included.

For convenience and economy of table space, the special form
DISKDEF i,3
gives disk i the same characteristics as a previously defined drive j,

A standard four-drive single density system, which is compatible with
version 1,4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS 4
DISKDEF 9,1,26,6,1024,243,64,64,2
DISKDEF 1

DISKDEF 2
DISKDEF 3

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks,

The DISKS macro generates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro, Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives, In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU $§

DPE@: DW XLTV,d000H,0000H,2000H,DIRBUF ,DPBG,CSVE,ALVD
DPEl: DW XLT@,0000H,0006H,000690H,DIRBUF,DPB®,CSV],ALV]
DPE2: DwW XLTd ,0000H,0000H,0030H,DIRBUF ,DPBY,CSV2,ALV2
DPE3: DwW XLTO ,0000H,0000H,0900H,DIRBUF,DPBJ,CSV3,ALV3

where the DPH labpels are included for reference purposes to show the
beginning table addresses for each drive @ through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BRIOS code
and tables,

Note that if the “skf" (skew factor) parameter is omitted (or
equal to @), the translation table is omitted, and a #666H value is
inserted in the XLT position of the disk parameter header for the
disk,. In a subseqguent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
@900H, and simply returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's., The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT@: DB 1,7,13,19,25,5,112,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.,)

32

4C72

H

BEGDAT EQU §
(data areas)
ENDDAT EQU §
DATSIZ EQU S-BEGDAT

4DB@
@1l3C

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB#H-1, and occupies 013CH bytes., You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive 4 (d=A,...,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
¢: Checked Directory Entries
e: Records/ Extent

b: Records/ Block

s: Sectors/ Track

t: Reserved Tracks

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full
8-megabyte system),

DISKDEF 6,1,58,,20486,256,128,128,2
r=4¢96, k=512, 4=128, ¢=128, e=256, b=16, s=58, t

2

DISKDEF @,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=308, c=0, e=128, b=16, s=58, t=2

DISKDEF #,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c¢=128, e=1024, b=128, s=58, t=2

(All Information Contained Herein is Proprietary to Digital Research.)

33

12, SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsysiem has a sector size which is a
multiple of the basic 128-byte unit, The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically,

Upon each c¢all to WRITE, the BDOS provides the following
information in register C:

normal sector write
write to directory sector
write to the first sector
of a new data block

]
1
2

Condition # occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write 1s to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written, In most cases, application programs read or write multiple
128 byte sectors in seguence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records,

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file 1is included on vyour CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which 1is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by “"hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved,

The entry points BOOT and WBOOT must contain the initialization
code starting on 1line 57, while the SELDSK entry point must be
augmented by the code starting on line 65, Note that althocugh the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk'at this point
(it is selected later at READHST or WRITEHST), PFurther, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
119 and 125, respectively. These subroutines take the pvlace of vyour
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

({All Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may regquire translation to a physical sector

number), You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz, All other mapping functions are performed by the
algorithms,

This particular algorithm was tested using an 8¢ megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storade increased to 57
megabytes, with a corresponding 4@80% improvement in overall response,
In this situation, there is no apprarent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors, This 1is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research,)

35

APPENDIX A: THE MDS COLD START LOADER
MDS-880 Cold Start Loader for CP/M 2.0

Version 2.8 August, 1979

* we mp we

[

0309 = false egu @
ffff = true egu not false
gogo = testing equ false
if testing
bias equ #3400h
endif
if not testing
0aon = bias equ 08@0h
endif
padag = cpmb equ bias ;base of dos load
g806 = bdos equ 8@6h+bias sentry to dos for calls
1880 = bdose eqgu 1888h+bias send of dos load
1660 = boot egu l60Bh+bias ;cold start entry point
1663 = rboot egu boot+3 ;warm start entry point
3060 org 3068h ;loaded here by hardware
1888 = bdosl equ bdose-cpmb
ggdz = ntrks equ 2 :tracks to read
2031 = bdoss equ bdosl/128 :# sectors in bdos
p@Blo = bdos@ egu 25 :# on track @
pa1g = bdosl egu bdoss~bdos# ;# on track 1
f89@ = mon8@ equ 6f8A@h ;intel monitor base
ffaf = rmon80® equ Bff@fh ;restart location for mon8@d
pe78 = base equ @78h ; 'base' used by controller
Ba79 = rtype equ bagse+l ;result type
P87b = rbyte equ base+3 ;result byte
BR7£ = reset egu base+7 ;reset controller
pa78 = dstat equ base ;disk status port
gR79 = ilow eqgu base+l ;low iopb address
g@7a = ihigh equ base+2 :high iopb address
BOff = bsw equ BEfh ;boot switch
4983 = recal egu 3h :recalibrate selected drive
2ed4 = readf equ 4h ;disk read function
6100 = stack equ 1¢@h ;use end of boot for stack
rstart:
3900 3106001 1xi sp,stack;in case of call to mon84@
: clear disk status
3003 db79 in rtype
3985 db7b in rbyte
: check if boot switcl is off
coldstart:
3807 dbff in bsw
3682 89730 384 838 g tar iSWiten on?

36

3dde

3019
3612

3815
3016
3618
30619
3elb

101¢

3622

3024
3826

3028

302b

3024
382e
3031
3832

3834

3837
363a
363b
363c

303f

d37f

6602
214230

74
d379
1c
a37a
db78
880234

db79
603
feg2

d20039

db7b

17
dcldfff
1f
eble

c20038

116760
19
g5
c21530

c30d16

-

-y ‘me

start:

-

-~

waith:

- we

LY}

-

LIER Y] ~e -

e wme wa

- wa

clear the controller

out reset ;logic cleared
mvi b,ntrks ;number of tracks to read
1xi h,iopb#d

read first/next track into cpmb

mov a,l
out ilow
mov a,h
out ihigh
in dstat
32t waito

check disk status

in rtype

ani 11b

cpi 2

if testing

cne rmon8@ ;go to monitor if 11 or 19
endif

if not testing

jnc rstart ;retry the load

endif

in rbyte ;i/0 complete, check status
if not ready, then go to mon8@

ral

cc rmon8® ;not ready bit set

rar ;jrestore

ani 11110b ;overrun/addr err/seek/crc
if testing

cnz rmon8@ ;go to monitor

endif

if not testing

jnz rstart ;retry the load

endif

1xi d,iopbl ;length of iopb

dad d ;addressing next iopb

dcr b ;count down tracks

jnz start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3842
3943
3044
3045
3046
3047
6oe7

3049
Jd4a
304b
364c
3044
304e
3050

iopbd:

iopbl
iopbl:

db
db
db
db
db
aw
equ

¢b
éb
db
ab
ab
dw
end

80h
readf
bdos@
B

2
cpmb

$-iopbd

80h
readf
bdosl
1

1

;iocw, no update

;read function

1% sectors to read trk 0
strack 9

;start with sector 2, trk #@
;start at base of bdos

ssectors to read on track 1
strack 1
;sector 1

cpmb+bdos@*128 ;base of second rd

38

Pols

dagp
3400
3c@6
1600
d82c
6062
g004
pose
poda

4a0@
4a@3
4daBdé
4309
dabc

W w nunn

¢3b34a
¢c3c34da
c361l4b
c3644b
c36adb

APPENDIX B: THE MDS BASIC I/0O SYSTEM (BIOS)

<} = e we we s

mE e MR wE mp we

cpmb
bdoecs
cpml
nsects
of fset
cdisk
buff
retry

!

W WE mA RS WA md N e RS ME WS WA WA WA g g wmE mE Wy me R4 WA WM WS ws wme

wboocte:

mds-8986 i/o drivers for cp/m 2.0
(four drive single density version)

version 2.8 august, 1979

equ 20 ;version 2.8
copyright (c) 1979

digital research

box 579, vacific grove
california, 939540

org 4a@@h ;base of bios in 208k system

egu 34A28h ;base of com cceo

equ 3c@éh ;base of bdos in 20k system

egu $-comb ;length (in bytes) of cpm system

equ cpmi/128;number of sectors to load

equ 2 ;number of disk tracks used by cp
equ pad4h ;address of last logged disk

equ g880h ;default buffer address

equ 18 ;max retries on disk i/o before e

perform following functions
boot cold start
wbhoot warm start (save i/o byte)
(boot and wboot are the same for mds)
const conscle status
reg-a = @@ if no character ready
reg—a = ff if character ready
conin console character in (result in reg-a)
conout console character out {(char in reg-c)
list list out ({(char in reg-c)
punch punch out {(char in reg-c¢)
reader paper tape reader in (result to reg-a)
home move to track @@

(the following calls set-up the io parameter bloc
mds, which is used to perform subseqguent reads an
seldsk select disk given by reg-c (6,1,2...)
settrk set track address (8,,..76) for sub r/w
setsec set sector address (1,...,26)

setdma set subsequent dma address (initially 8@h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines

jmp boot

jmp wboot
jmp const
jmp conin
jmp conout

39

4aBf c36d4b jmp list

4al2 c¢c3724b jmp punch
4al5 c3754b jmp reader
4al8 c¢3784b jmp home
4alb c37d4b jmp seldsk
4ale c3a74b jmp settrk
4a21 c3acédb jmp setsec
4a24 c3bbdb jmp setdma
4a27 c3cldb jmp read
4aZa c3cadb jmp write
4a2d c3764b jmp listst ;list status
4a30@ c3bl4db jmp sectran
maclib diskdef ;load the disk definition library
disks 4 : four disks
4a33+= dpbase equ $:base of disk parameter blocks
4a33+824ad0 dped: dw xlto,0620h :translate table
4a37+000060 dw 30B0h,0060h sscratch area
4a3b+6edc73 dw dirbuf,dpb8 ;dir buff,parm block
4a3f+bdddee dw csvid,alvd ;jcheck, alloc vectors
4243+824200 dpel: aw x1tl,06800h ;translate table
4a47+600080 aw QE0Gh,00060 :scratch area
4adb+6edci3 dw dirbuf,dpbl :dir buff,parm block
434 f+3cddld dw csvl,alvl :check, alloc vectors
4353+824a00 dpel2: dw x1t2,0006h :translate table
4a57+0600008 dw ¢d@0h,00006h :scratch area
4a5b+6edc?3 dw dirbuf,dpb2 :dir buff,parm block
dabf+6bdddc dw csva.,alv2 :check, alloc vectors
4a63+824a08@ dpel: aw x1t3,088&h :translate table
4a267+0060000 dw pegeh,0000h0 ;scratch area
4abbtbedc?3 dw dirbuf,dpb3 :dir buff,parm block
4a6f+9add7b aw csv3,alv3 :check, alloc vectors
diskdef 6,1,26,6,1024,243,64,64,0ffset
4a73+= dpb@ equ $;disk parm block
4a73+1ab® dw 26 ;sec per track
4275403 ab 3 ;block shift
4a76+67 db 7 :block mask
4a377+60 db 7] ;extnt mask
4a78+£2080 dw 242 :disk size-l
4a7a+3f4dd dw 63 ;directory max
dalc+ch ab 192 ralloch
4374d+00 db @ sallocl
4a7e+1000 dw le ;check size
4a80+8 206 dw 2 ;offset
4ag 2+= x1t0 egu $;translate table
4a82+061 db 1
4a83+67 db 7
4aB84+uda db 13
4a85+13 ab 19
4a86+19 db 25
4a87+05 db 5
4a88+ib db 11
4a89+11 db 17
4aB8a+l7 db 23
4a8b+03 db 3

409

4a8c+09
4a83+3f
4aB8e+l5
4aB8f+p2
4a9p+28
4a9l+0e
4a392+14
4a93+1a
4a94+06
4395+4c
4596+12
4a97+18
4a398+64
4a399+0a
4a%a+l10
4a9b+16

4a73+=
B@lf+=
Agla+=
4a82+=

4a73+=
gR1f+=
PBlo+=
4aB2+=

4a73+=
PALE+=
gdlo+=
4a82+=

@afqd
gdfc
Aaf3
Bl7e

£f800
finf
f863
£886
£8089
f88c
f8ef
f812

(I S T T (I I ||

dpbl
alsl
cssl
x1ltl

dpb2
als2
css?
x1t2

dpb3
als3
css3
x1t3

B WME ME W4 WS M Wme W wa

r
revrt
intc
icon
inte

r

r
mon8a@
rmongg
ci

ri

co

po

lo
csts

db
Gab
db
db
ab
db
db
db
db
db
ab
db
db
db
db
db
diskdef
eqgu
egu
equ
egu
diskdef
egu
equ
equ
egu
diskdef
egu
equ
egu
egu

endef occurs at

9

15
21

2

8

14
20
26

6

12
18
24

4

18
16
22
1,0
dpb#d
als@
cssh
x1t9g
2,0
dpb#d
als#®d
cssh
x1t@
3,0
dpb8
als®
¢css@
Xx1td

sequivalent parameters

:same allocation vector size
;same checksum vector size
:same translate table

seqguivalent parameters

:same allocation vector size
;Same checksum vector size
:same translate table

;equivalent parameters

;same allocation vector size
;same checksum vector size
;same translate table

end of assembly

end of controller - independent code, the remaini
are tailored to the particular operating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also assume the mds system has four disk drive

equ
equ
equ
equ

mds
equ
equ
equ
egu
equ
equ
eqgu
equ

pfdh
@fch
@f3h

;sinterrupt revert port
;interrupt mask port
;interrupt control port

$111$1110@b;enable rst @ (warm boot),rst 7

g£8deh
gffdfth
p£8083h
pf8M6h
8£889h
pf8dch
Pf8Ofh
8£812h

41

monitor equates

;mds monitor

;restart mon86 (boot error)
;jconsole character to reg-a
s;reader in to reg-a

sconsole char from ¢ to console o
;punch char from ¢ to punch devic
;list from ¢-to list device
;conscole status P8/ff to register

0o78
go78
8079
¥07b

pa79
807a

Doe4
poo6
6603
0B04
peed
pBoa

4a9c¢
4a9f
4daal
4aad
4abl

4ab3
4abb
4ab9
4abc
4abhd
dach

4ac3

dacé
4acs

4acH
dacc
dact
4adl
4ad4
4ado
4ad9
4adb

4ade
4adf

o nun

@dpada
3238
6b2043f
322e340
3d0adgd

31001
219c4da
cdd34b
af

320400
cl@f4b

318008

Debtia
c5

016634
cdbb4db
Bedd
cd7d4b
fed
cda74b
Pep2
cdacédb

cl
@62c

base
dstat
rtype
rbyte
ilow
ihigh

readf
writf
recal
iordy
cr
1f

.
!

signon:

’
poot:
H

e~ we F we e
len
O
o
o

-~

wbootf:

~e s

disk ports and commands

egu
eqgu
egu
equ

egu
equ

egu
egu
equ
egu
equ
egu

78h
base
base+l
base+3

base+l
base+2

4h
6h
3h
4h
8dh
Bah

:base of disk command io ports
;disk status (input)
;jresult type {(input)
;result byte (input)

;iopb low address (output)
;iopb high address (output)

sread function
;write function
:recalibrate drive
:i/0 finished mask
;carriage return
:line feed

;signon message: xxk cp/m vers y.y

db
db
db
db
dab

cr,1f,1f
.2ﬂ'

'k cp/m vers

vers/lo+
cr,1£,8

;sample memory size

‘6','."'",vers mod 1@9+'d’

;print signon message and go to ccp
(note: mds boot initialized iobyte at 6063h)

1xi
1xi
call
Xra
sta

Jjmp

sp,buff+
h,signon
prmsg

a

cdisk
gocpm

80h

:print message

;clear accumulator

;set initially to disk a
;go to cp/m

loader on track 6, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt

start.

1xi

mvi
push

sp,buff

c,retry
b

;using dma - thus 8@ thru ff ok £

:max retries

:enter here on error retries

1xi
call
mvi
call
mvi
call
mvi
call

read sectors,

pop
mvi

b,cpmb
setdma
c,d
seldsk
c,b
settrk
c,2
setsec

b
b,nsects

42

:set dma address to start of disk

:boot from drive @&

;start with track #
;start reading sector 2

count nsects to zero

:1@-error count

rdsec: ;:;read next sector

4ael c5 push b ; save sector count
4ae?2 cdcldb call read
4ae5 c2494b jnz booterr ;retry if errors occur
43e8 2a6c4c lhld iod rincrement dma address
4aeb 118d@00 1xi d,128 ;sector size
4aee 19 aad d tincremented dma address in hl
4daef 44 mov b,h
4af@ 4d mov c,1 ;ready for call to set dma
4afl cdbb4b call setdma
4af4 3abbic lda ios 1sector number just read
4af7 fela cpi 26 ;jread last sector?
4af9 dags54b jc rdl
: must be sector 26, zero and go to next track
4afc 3abadc lda iot rget track to register a
4aff 3c inr a
4b@0 4f mov c,a ;ready for call
4bP1l cda74b call settrk
4b#4 af Xxra a iclear sector number
4b@5 3c rdl: inre a ;to next sector
4bP6 4f mov c,a ;ready for call
4b@7 cdacdb call setsec
4bida cl poD b ;recall sector count
4bdb @5 dcr b ;done?
4bdc c2elda inz rdsec
: done with the load, reset default buffer address
gocpm: ; (enter here from cold start boot)
: enable rst@ and rst7?
4bgf £3 di
4bl1d 3el?2 mvi a,lzh ;initialize command
4bl2 d3fd out revrt
4bl4 af Xra a
4bl5 d3fc out intc scleared
4bl7 3ele mvi a,inte ;rst® and rst? bits on
4bl9 d3fc out intc
4blb af Xxra a
4blc d3f3 out icon ;interrupt control
: set default buffer address to 88h
4ble 618008 1xi b,buff
4b21 cdbb4b call setdma
3 reset monitor entry points
4b24 3ec3 mvi a,jmp
4b26 320008 sta 4]
4b29 21834a 1xi h,wboote
4b2c 220100 shld 1 ;jmp wboot at location 240
4b2f 328500 sta 5
4b32 210@63c 1xi h,bdos
4b35 220600 shld 6 ;imp bdos at location 5
4b38 323800 sta T*g ;Jmo to mon8@ (may have been chan
4b3b 21606£8 1xi h,mon8d
4b3e 223924 shld T*8+1

leave iobyte set

-

43

4b41l
4b44
4b45
4b4é6

4b49
4bda
4b4b

4bde
db4f

4b52
4b55
4b58

4b5b

4be6l

4bo 4

4b67

4b69

4b6a

4béd

4b70
4b71

4b72

4b75

3a0400
Af
tb
c36p034

cl
ad
cab24b

c5
c3c94a

215bédb
cdad34b
c36fff

3f626i4

c312£8

cdB 3fs
eb 7t
c9
c309f8

c30ff8

af
c9

c3@cft8

c3b6£8

previously selected disk was b, send varameter to

-e

1da cdisk ;last logged disk number
mov c,a ;send to ccp to log it in
ei

jimp cpmb

H
H “error condition occurred, print message and retry
booterr:

pop b ;recall counts
dcr C
jz booterd
; try again
push b
jmp wbhootl
booter@:
: otherwise too many retries
1xi h,bootmsg
call prmsqg
jmp rmon8@ ;mds hardware monitor
bootmsg:
db '?boot’,8

;
;
const: ;console status to reg-a

; {exactly the same as mds call)
jmp Ccsts
?
conin: j;console character to reg-a
call ci
ani 7fh ;remove parity bit
ret

h
conout: ;console character from ¢ to console out

jmp co
list: ;list device out
H (exactly the same as mds call)
jme lo
listst:
;return list status
Xra a
ret ;always not ready

punch: ;punch device out

H (exactly the same as mds call)
jmp po

I

reader: ;reader character in to reg-a

: (exactly the same as mds call)
jmp ri

H

home: ;move to home position

44 i

treat as track 86 seek

4b78 bedO mvi c,8
4b7a c3a74b jmp settrk
seldsk: ;select disk given by register ¢
4b74 210090 1xi h,8080h ;return #0488 if error
4b8@ 79 mov a,c .
4pb8l fedd cpi ndisks ;too large? |
4b83 dé rnc tleave hl = 0268 |
4b84 e62 ani 1gb : 08 08 for drive 9,1 and 10 19 fo
4bB86 32664cC sta dbank :to select drive bank
4b89 79 mov a,c 98, 61, 10, 11
4b8a e60l ani 1b smds has ©,1 at 78, 2,3 at 88
4b8c b7 ora a tresult 86?
4b8d ca924b jz setdrive
4b90 3e3d mvi a,?d0116068b :selects drive 1 in bank
setdrive: e
4h92 47 mov b,a :save the function
4b93 21684c 1xi h,iof ;io function
4b96 Te mov a,m
4b97 ebef ani 11961111b :mask out disk number
4h%9 b ora b ;mask in new disk number
4b%a 77 mov m,a ;save it in iopb
283% Egﬂﬁ ey %:S :hl=disk number
4bY%e 29 dad h 1 %2
4b9f 29 dad h ;¥4
4bad 29 dad h : %8
4bal 29 dad h +*16
4ba2 11334a 1xi d,dpbase
4ba5 19 dad a ;hl=disk header table address
4bat c9 ret
settrk: ;set track address given by c
4ba?7 216adc 1xi h,iot
4baa 71 mov m,C
4hab c9 ret
setsec: ;set sector number given by c
4dbac 21é6bdc 1xi h,io0s
4baf 71 mov m,<c
4bbih c9 ret
sectran:
;translate sector bc using table at de
4bbl 0600 mvi b,0@ ;double precision sector number i
4bb3 eb xchg ;translate table address to hl
4bb4 B9 dad b stranslate(sector) address
4bb5 Te mowv a,m :translated sector number to a
4bb6 326bdc sta ios
2BB3 g ?8 1l,a rreturn sector number in 1

setdma: ;set dma address given by regs b,c

45

4bbb
4bbc
4bbd
4bch

4bcl
4bc3
4bcb
4bcH

4bca
4bcc
4bct
4baz2

4bd3
4bd4
4bd5s

4bdé
4bd?
4bds
4bdb

4bdc

4bdd

dbeld
4be3
4bed
4beb
4be?

4be8
4bea
4bed
4bee
4bef

4bfo

4bf2

4bf5
4bf8

69
60
226cdc
c9

Bebd
cde@db
cdf@4b
c8

Bedb
cded4b
cdf@dab
c9

TJe
b7
c8

eb
4f
cdéadb
el
23
c3d34b

21684c
Te
e6f8
bl

77

eb2P
216bdc
bé

77

c9

feba

cd3fdc

cddcédc

3ab64c

- wa

write:

T ~e = e

rmsqg:

-

setfunc:

e we

r
waitio:

rewait:

-

mov 1
mov h
shld i
ret

O~ =
0,00

sread next disk record (assuming disk/trk/sec/dma

mvi c,readf ;set to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

:disk write function

mvi c,writf

call setfunc ;set to write function
call waitio

ret ;may have error set

utility subroutines
;print message at h,1 to @

mov a,m

ora a 1zero?
rz

more to print

push h

mov c,a

call conout

pop h

inx h

Jmp prmsg

set function for next i/o (command in reg-c)

1xi h,iof :i0 function address

mov a,m ;jget it to accumulator for maskin
ani 11111088b :remove previous command
ora c :set to new command

mov m,a :;replaced in iopb

the mds-8068 controller reg's disk bank bit in sec
mask the bit from the current i/o function

ani g8l40068b :mask the disk select bit
1xi h,ios ;address the sector selec
ora m :select proper disk bank
mov m,a :sset disk select bit on/o
ret

mvi c,retry ;max retries before perm error

start the i/o function and wait for completion

call intype ;in rtype
call inbyte j;clears the controller
1lda dbank :set bank flags

46

4bfb
4bfc
4bfe
4ci8
4¢@3
4cB5
4clib
4cP8

4cidb
4cidd
dcide

4c¢l@
4cl3
4clb

4cl8

4clb
4cla

4c26
4c21

4c24
4c27
4c28
4c2b
4c2c
dcle

4¢31

4c32
4c35

b7
3e67
d6dc
c2dbdc
d379
78
d3i7a
c3lddc

d389
78
d38a

¢ds9%4c
e6d4
caléddc

cd3fdc

fed?2
ca32dc

b7
c2384c

cddc4dc
17
da3d2dc
1f
ebfe
c2384c

c9

cddcdc
c3384c

iodrl:

’
waitf:

-s wma -y we

LR 1Y

LY}

-y nE

wready:

werror:

e ma wmE M e W wg wa we ¢

ora a ;12ero if drive 8,1 and nz
mvi a,iopb and @ffh ;low address for iopb

mvi b,iopb shr 8 t1high address for iopb
inz iodrl ;drive bank 17

out ilow :low address to controlle
mov a,b

out ihigh ;high address

jmp waitd ;to wait for complete

:drive bank 1

out ilow+1l8dh ;88 for drive bank 18
mov a,b

out ihigh+16h

call instat swait for completion
ani iordy ;ready?

iz waitd

check io completion ok

call intype ;must be io complete (00)
@@ unlinked i/o complete, @1 linked i/0 comple
19 disk status changed 11 (not used)

cpi @b ;ready status change?

iz wready

must be 80 in the accumulator
ora a
jnz werror ;some other condition, re

check 1/0 error bits

call inbyte

ral

jc wready sunit not ready
rar

ant 11111116b ;any other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

:not ready, treat as error for now

call inbyte jclear result byte

jmp trycount

sreturn hardware malfunction (crc, track, seek, e

the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
- deleted data (accepted as ok above)

- CIC error

-~ seek error

address error (hardware malfunction)

~ data over/under flow (hardware malfunct
- write protect (treated as not ready)

- write error (hardware malfunction)

- not ready

SN WN =
!

47

4c38
4c39

4c3c
4cle

4c3f
4c42
4c43
4cdé
4c48
4c49
4cdb

4c4c
decdf
4c58
4c¢53
4c55
4ch6
4cbh8

4c59
4c5¢c
4cbhd
4cop
4c6?2
4c63
4ceb

4c66

4ce’l
4c68
4c69
4chba
4cob
4céc

gd
c2f24b

3efl
c9

3a664dc
b7
c2494c¢
db79
c9Y
db89
c9

3a664c
b7
cZ2564c
db7b
c9
db8b
c9

Jab64dc
b7
c2634c
dab78
c9
dbss
cY

20

8@
04
01
g2
61
8009

(accumulator bits are numbered 7 6 5 4 3 2 1 8)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable, 1in any case, the not ready conditio
treated as a separate condition for later improve

[T ™ we N we we we

rycount:

: register ¢ contains retry count, decrement ‘'til z
dcr c
jnz rewait ;for another try

~y s

cannot recover from error
mvi " oa,l ;error code
ret

- wmp

intype, inbyte, instat read drive bank 06 or 10

intype: lda dbank
ora a
jnz intypl :skip to bank 1@
in rtype
ret
intypl: in rtype+léh ;78 for #,1 88 for 2,3
ret
inbyte: lda dbank
ora a
inz inbytl
in rbyte
ret
inbytl: in rbyte+lfh
ret
instat: lda dbank
ora a
jnz instal
in dstat
ret
instal: in dstat+l6éh
ret
H data areas (must be in ram)
dbank: db @ .;disk bank @8 if drive 0,1
H 16 if drive 2,3
iopb: ;10 parameter block
db 86h snormal i/o operation
iof: db readf +i0 function, initial read
ion: db 1 snumber of sectors to read
iot: db offset :track number
ios: db 1 :sector number
iod: dw buff ;10 address

ne me w4

define ram areas for bdos operation

48

4coe+=
4coe+
4cee+t
4d@ad+
4dlda+
4d3c+
4d4c+
4d6b+
447b+
4d%a+
4daa+=
Bl3c+=
4daa

begdat
dirbuf:
alvid:
csvi:
alvl:
csvl:
alv2:
csva:
alv3:
csv3:
enddat
datsiz

agu
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
egu
end

$
128

16
31
16
31
16

16

S-begdat

49

sdirectory access buffer

8014

go00
34400
3cB6
4aB0
0004
o003

4200
@d2c

4a60
42483
4a06
4289
4a@c
4apf
4al2
4als
4al8
4alb
4dale
4321l
4a24
4327
4daZa
4a2d
4a30

4a33
4a37
4a3b
4a3f

4a43
4a47
4adb
4adf

4a53
4a57
4a5b
4as5f

mununn

[}

c39c4da
clabda
c3ll4b
c3244b
c3374b
c3494b
c34d4b
c34f4b
c3544b
c35adb
c37d44b
c3924b
c3adidb
c3c34b
c3dedb
c34b4b
c3a74b

734a08
fO00PD
fd4c8d
ecddid

734a00
000000
fa4c8d
fc4ds8t

734a060
000009
fB4c8d
@cdeae

size

T T

bias
ccp
bdos
bios
cdisk
iobyte

nsects

- wme

wboote:

hll

APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.6 altera

equ

“bias"
than 16k

equ
equ
equ
equ
equ
equ

org
equ

jmp
jmp
Imp
jmp
jmp
imp
Imp
jmp
imp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

208 ;cp/m version memory size in kilo

is address offset from 3486h for memory sy

(referred to as "b" throughout the text)

(msize-=20)*1024

3400h+bias 1base of ccp
ccp+8d6h ;base of bdos
ccp+l6d8h ;base of bios

ged4h ;current disk number #=a,..,,15=p
gea3h ;intel i/o byte

bios sorigin of this program

($-ccp) /128 ;warm start sector count
jump vector for individual subroutines

boot :cold start

whoot jwarm start

const sconsole status

conin ;console character in

conout ;console character out

list ;list character out

punch ;punch character out

reader :reader character out

home ;move head to home positi

seldsk 1select disk

settrk ;set track number

setsec ;set sector number

setdma :set dma address

read ;read disk

write ;write disk

listst sreturn list status

sectran ;sector translate

jmp

fixed data tables for four-drive standard
ibm=compatible 8" disks
disk parameter header for disk 00

dw trans, 6800h
dw f000h,0008h
dw dirbf,dpblk
dw chkd@,allon
disk parameter header for disk 61
dw trans,28606h
dw @P86h,88606h
dw dirbf,dpblk
dw chk@l,allfl
disk parameter header for disk 92
dw trans,d0@6h
dw @8860Ph,2000n
dw dirbf,dpblk
chk@2,allé2

dw

58

4a63
4a67
4a6b
4a6f

4373
4alb
4a7f
4a83
4aB?7
4a8b

4a8d

4a8f
4a98
4a91
4a92
4a94
4a96
4a97
4298
4a9%a

4a9c
4a3d
daald
4aa3l

4za6
4aa9
4aab
4daae

4abl
4ab3
4abb

4ab7

4aba
4abb
4dabc
4abd
4abe
dacl

734ad0
000090
f84c8da
lcdecd

f48288
1703089
150208
141a86
121804
1616

la@g
g3
a?
g4
£200
3f00
cf
00
1006
0200

af

328300
3204009
clefda

318404
fed@

cd5adb
cd544b

f62c
Pedd
1602

210034

c5
ds
eb
4a
cd924b
cl

-e

T = e

rans:

épblk:

O =e wr we =

oot:

¥
wboot:

-

LI T

loadl:

disk parameter header for disk 83

dw trans,0600h

dw 0066h,00800

dw dirbf,dpblk

adw chk@3,alle3

sector translate vector

dB 3576131117 iSSCEQEE 1128134

db 23,3,9,15 ;sectors 9,16,11,12
db 21,2,8,14 ;sectors 13,14,15,16
db 29,26,6,12 ;sectors 17,18,19,20
db 18,24,4,10 ;sectors 21,22,23,24
db 16,22 :sectors 25,26

;disk parameter block, common to all disks
dw 26 ;sectors per track
db 3 :block shift factor
db 7 :block mask

db @ :null mask

dw 242 srdisk size-1

dw 63 ;directory max

db 192 :alloc @

db @ s;alloc 1

dw 16 ;check size

aw 2 strack offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just verform parameter initi

Xra
sta
sta

jmp

a ;zero in the accum
iobyte ;jclear the iobyte
cdisk ;select disk zero
gocpm ;initialize and go to cp/

;simplest case is to read the disk until all sect

1xi
mvi
call
call

mvi
mvi
mvi

sp,8dh ;use space below buffer £
c,0d ;select disk @

seldsk

home ;g0 to track 98

b,nsects :1b counts # of sectors to
c,d :C has the current track
d,2 :d has the next sector to

note that we begin by reading track @, sector 2 s
contains the cold start loader, which is skipped

;base of cp/m (initial lo

;save sector count, current track
;save next sector to read

;save dma address

;get sector address to register c

setsec ;set sector address from register

1xi h,ccp

;load one more sector
push b

push d

push h

mov c,d

call

pop b

;recall dma address to b,c

51

dacz
4dac3

dace
4acH
4ach

4dace
dact
4ad?2
4ad3
4ad4
4ad5s
4adé

4ad9
4ada
4adb
4add

4dael
4dae?

4ael
daed
4aeb
4daeb
4ae9
daea
4aeb
daec

4aef
4afl
daf4
daf?y

4afa
4afd
4bb o

4003
4bo 6

4009
4bda
4bfd
4bde

ch
cdaddb

cdc3db
fedd
cl2abda

el
118000
19
dl
cl
@5
caefda

14

Ta
felb
dabada

1601
Bc

c5
ds
es
cd7d4b
el
dl
cl
c3bada

3ec3

320600
21434a
220100

320500
21d63c
2206060

B186082
cdad4b

fb
3a0400
4f
c30034

EIERT]

-y e

- W

~e ma

1] we =

ocpm:

-

e

-

push b ;replace on stack for later recal
call setdma ;set dma address from b,c¢

drive set to @, track set, sector set, dma addres
call read

cpi 6ah ;rany errors?

jnz wboot ;retry the entire boot if an erro
no error, move to next sector

pop h ;recall dma address

1xi d,128 :dma=dma+128

dad d ;new dma address is in h,l

pop d :recall sector address

pop b ;recall number of sectors remaini
dcr b ;sectors=sectors-1

jz gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr a

mov a,d ;sector=27?, if so, change tracks
cpi 27

jc loadl ;carry generated if sector<27

end of current track, go to next track

mvi d,1 t1begin with first sector of next
inr c strack=track+l

save register state, and change tracks
push b

push d

push h

call settrk ;track address set from register
pop h

POop ad

rop b

jmp loadl ;for another sector

end of load operation, set parameters and go to c

mvi a,éc3h ;c3 is a jmp instruction

sta) ;for jmp to wboot

1xi h,wboote ;whoot entry point

shld 1 ;set address field for jmp at @
sta 5 s for jmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;address field of jump at 5 to bd
1xi b, 86h sdefault dma address is 86h

call setdma

ei ;enable the interrupt system

lda cdisk ;get current disk number

mnov c,a 1send to the ccp

jmp cecp ;g0 to cp/m for further processin

52

4bll
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b43

449
4bda

4bdb
4bdc

4bdd
4bde

db4f
4b51
4b53

4b54
4b56
4b59

4b5a
4b5d
4bbe
4b61l

onst:

3ed @
c9

e67f
c9

79

cY

79
c9

af
c9

79
c9

M we ws»

eader:
3ela

eb7f

c9

ome :

e ¥ me me me wd w4 W

gedd
cd7d4b
co

seldsk:
212060
79
32efdc
fed d

simple i/0 handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

;console status, return @ffh if character ready,

ds 12h sspace for status subroutine
mvi a,06h
ret

;console character into register a

ds 1dh ;space for input routine
ani 7fh ;strip parity bit
ret

;console character output from register c

mov a,c ;get to accumulator
ds 1éh ;space for output routine
ret

;1list character from register ¢
mov a,c ;character to register a
ret ;null subroutine

;return list status (8 if not ready, 1 if ready)
Xra a :8 is always ok to return
ret

;punch character from register c

mov a,c ;character to register a
ret :null subroutine

;read character into register a from reader devic

mvi a,lah ;enter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

smove to the track @@ position of current drive
translate this call into a settrk call with param

mvi c,d 1select track 0
call settrk
ret ;we will move to B8 on first read

;select disk given by register ¢

1xi h,8000h :;error return code

mov a,c

sta diskno

cpi 4 ;must be between @ and 3

53

4b63
4b64

4bbe
4b71
4pb72
4b74
4b75
4b76
4b77
4b78
4b7b
4blc

4b7d
4b7e
4b81
4b91

4b92
4b93
4b96
4baé

4ba’
4bal
4pba9
4baa
4bac

4bad
4bae
4baf
4bb?2
4bc2

4bc3
4bd3

4bd6

ag

3aefdc
6f
2600
29

29

29

29
11334a
19

c9

79
32e94c
c9
79
32ebdc
c9

eb
99
be
2600
c9

69
60
22ed4c

c9

c3eb4b

rnc ;no carry if 4,5,...
: disk number is in the proper range
ds 10 ;space for disk select
H compute proper disk parameter header address
lda diskno
mov 1l,a ;1=disk number 9,1,2,3
mvi h,® :high order zero
dad h ;%2
dad h 1 %4
dad h ;*8
dad h :*16 (size of each header)
1xi d,dpbase
dad d rhl=,dpbase(diskno*16)

ret

settrk: ;set track given by register ¢

mov a,c
sta track

ds 1dh ;space for track select
ret

I

setsec: ;set sector given by register ¢

mov a,c
sta sector
ds 10h ;space for sector select
ret

sectran:

stranslate the sector given by bc using the
;translate table given by de

xchg ;hl=_trans

dad b s:hl=,trans(sector)
mov l,m ;11 = trans(sector)
mvi h,? ;hl= trans(sector)
ret ;with value in hl

¥
setdma: ;set dma address given by registers b and c

mov 1l,c :low order address
mov h,b ;high order address
shld dmaad ;save the address
ds 18h ;space for setting the dma addres
ret
ead: ;perform read operation (usually this is similar

so we will allow space to set up read command, th
common code in write)

ds 16h ;set up read command

jmp waitio ;to perform the actual i/o

we we Y ws

.
I

write: ;perform a write operation
ds 1@h ;jset up write commanu

operation, return a #6h in register a if the ope

H

waitio: ;enter here from read and write to perform the ac
;

: properly, and @1lh if an error occurs during the r

54

Ewly ¥

4beb
dceb
4cel

4ce9
4ceb
4ced
4cef

4cfg
4cfi
44749
448f
4dae
4dcd
4dec
4dfc
4edc
delc

delc
d1l3c
de2c

3edl
c9

e WE WE wE =é

“p WE ME we ma ™

track:
sector
dmaad:
diskno

.
r

begdat
dirbf:
all@g:
alldi:
alléz2:
all@3:
chkdd:
chkdl:
chk@2:
chkd3:

enddat
datsiz

in this case,

ds
mvi
ret

256
a,l

we have saved the disk number in 'd

the track number in 'track' (@8-76
the sector number in ’'sector' (1-
the dma address in ‘'‘dmaad' (8-655
;space reserved for i/o drivers
;error condition

;replaced when filled-in

the remainder of the cbios is reserved uninitiali

data area,

however,

ds
ds
ds
ds

scratch
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds

equ
egu
end

Laall IR S I o]

and does not need to be a part of the
system memory image (the space must be available,
between “begdat" and "enddat").

;two bytes for expansion
;two bytes for expansion
;direct memory address
rdisk number 8-15

ram area for bdos use

$
128
31
31
31
31
16
16
16
16

$

:beginning of data area
sscratch directory area
sallocation vector
:allocation vector
;allocation vector
;allocation vector
:check vector @
:check vector 1
;check vector 2
scheck vector 3

w o=

;end of data area

$-begdat;size of data area

55

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

LTI Y'Y

0160 org gl00h

2014 = msize egu 20 ; size of cp/m in Kbytes

; "bias" is the amount to add to addresses for > 20k
: (referred to as "b" throughout the text)

000 = bias equ (msize-20)*10824
34080 = ccp equ 3408h+bias
3c@@ = bdos equ ccp+8860h
4268 = bios equ ccp+l640h

H getsys programs tracks # and 1 to memory at

; 3888h + bias

: register usage

H a (scratch register)

: b track count (6,.,.76)

; c sector count (1l...26)

: d,e (scratch register pair)

: h,1 load address

; sp set to stack address

gstart: ; start of getsys
Blod 318633 1xi sp,ccp-00880h ; convenient plac
@183 218033 1xi h,ccp-8088h ; set initial loa
3106 0600 mvi b,8 ; start with trac

rd$trk: ; read next track
2168 denl mvi c,l ; each track star

rd$sec:
@lba cdega3 call read$sec i get the next se
168 11890648 1xi d,128 ; offset by one s
plle 19 dad d : {hl=hl1+128)
g1l B¢ inr C : next sector
B112 79 mov a,c ; fetch sector nu
8113 felb cpi 27 H and see if la
2115 dadadl jc rdsec ; <, do one more

; arrive here at end of track, move to next track
6118 04 inr b ; track = track+l
0119 78 mov a,b ; check for last
Plla fe@2 cpi 2 ; track = 2 ?
Pllc da@Bal jc rds$trk ; <, do another

; arrive here at end of load, halt for lack of anything b
B11lf £fb ei
8128 76 hlt

56

0200

0200
D283
B296

0208

228a
g28a
g210
@211
8212
8213
g215

p218
0219
d2la
p2lc

p21f
0220

0300

0300
p301
p302

9342
343

318033
218033
p600

deldl

cdoad4
1188040
19

dc

79
felb
dabab2

24

78
fed?2
dad 802

fb
76

ch
eb5

el
cl

- wmE W

org ($+0166h) and Af£f86h
put$sys:
1xi sp,ccp-@8080h
1xi h,ccp-0080h
mvi b,8
wrStrk:
mvi c,l
wrSsec:
call write$sec
ixi d,128
dad d
inr c
mov a,c
cpi 27
jc wr$sec
: arrive here at end of track, move to
inr b
nov a,b
cpi 2
jc wrStrk
; done with putsys, halt for lack
el
hlt

- mE ws

.
r
-
r
.
r
-
r
.
’
»
r
»
L

putsys program, places memory image starting at
3880h + bias back to tracks # and 1
start this program at the next page boundary

convenient plac
start of Qump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
<c> = <¢c> + 1
see if

past end of t
no, do another

next track

- 4 ME wE

track = track+l
see if

last track
no, do another

of anything bette

; user supplied subroutines for sector read and write

move to next page boundary

-y

org ($+8106h) and 0£fdadh

read$sec:

read the next sector
track in ,

sector in <c>
dmzaddr in <hl>

w4 wE me we

push b
push h
; user defined read operation goes here
ds 64
pop h
pop b

37

p344
0400

0400
g4@1

0492
p4a42

3443
p444

A445

c9

c5
e5

el
cl
c9

ret
org (5+0100h) ang Offooh
writeSsec:

; same parameters as read$sec

push b
push h
: user defined write operation goes here
ds 64
pop h
pop b
ret

; end of getsys/putsys program

end

58

.
r

another page bo

0000
014

poBe
3400
4a0@
0300
4a00
1900
bo32

00ao
0e03
pB6E5

2106200
1632
210634

_ APPENDIX E: A SKELETAL COLD START LOADER

ME TME A A WS NS ME NG hE W WE BE WD WS WG WG WS W

this is a sample cold start loader which, when modified
resides on track 0@, sector 81 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro-
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system
into memory at "locadp" (3480h + “"bias"). in a 28k
memory system, the value of “"bias® is 6@0606h, with large
values for increased memory sizes (see section 2)., afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + ®"bias." the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten, the origin is assumed at @d@6906h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used,

org] : base of ram in cp/m
msize equ 28 ; min mem size in kbytes
bias egu (msize-20)*1024 ; offset from 20k system
ccp equ 34@Ph+bias ; base of the cop
bios egu ccp+16@6h ; base of the bios
biosl egu @3608h ; length of the bios
boot egu bios
size equ bios+biosl-ccp ;'size of cp/m system
sects equ size/1286 ; # of sectors to load

-

begin the load operation

coeold:

1xi b,2 : b=@, c=sector 2
mvi d,sects : d=4 sectors to locad
1xi h,ccp ; base transfer address

1sect: ; load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

branch to location "cold" if a read error occuts

59

0e08
paodb

@deb
571 Y]

de6f
0072

p673
0074
2875
bo77

gd7a
bB7c
9074
PB8E

c36b0@

15
cabdda

318080
39

bgc

79
felb
dapv8ed

pedl
g4
c308006

(222 E 2SRRI R R R RS2 R R 2 a2 R A s R R
*
* user supplied read operation goes here...
*
LS 222222 R R X R R R R 2R R 2R AR YR EYEELEEEEYEEE

we WE W W W

jmp past$patch ; remove this when patche
ds 60h
past$patch:
; go to next sector if load is incomplete
dcr d ; sects=sects-1
jz boot : head for the bios
: more sectors to load
; we aren’t using a stack, so use <sp> as scratch registe
: to hecld the load address increment
1xi sp,128 :+ 128 bytes per sector
dad sp ; <hl> = <hl> + 128
inr c ; sector = sector + 1
mov a,c
cpi 27 : last sector of track?
jc lsect ; no, go read another

: end of track, increment to next track

mvi c,1l : sector = 1

inr b 3 track = track + 1
jmp lsect ; for another group
end : of boot loader

60

APPENDIX F:_, (P/M DISK DEFINITION LIBRARY

1: ; CP/M 2.8 disk re-detftinition library

2: ;3

3: ; Copyright (c) 1979

4: ; Digital Rz:tearch

5: ; Box 57%

6: ; Pacific Grove, CA

7: ; 93950

§:

9: ; CP/M logicel disk drives are defined using the

1v: ; macros given below, where the seguence of calls
11: ; is:
12: ;
13: ; disks R
14: ; diskdef parameter-list-v

15: ; diskdef parameter-list-1

le: ; . e

17: ; diskdef parameter-list-n

18: ; endef

19:

28: ; where n is the number of logical disk drives attacned
21: : to the CP/M system, and parameter-list-i defines the
22: : characteristics of the ith drive (i=v,l,...,n-1)

23:

24: ; each parameter-list-i takes the form

25: ; dn,fsc,lsc, {skt) ,bls,Gks,dir,cks,ofs, [¥]

26: ; where

27: dn is the disk number #,1,...,n-1

28: ; fsc is tue first sector number (usually ? or 1)
29: ; lsc is tae last sector numper on a track

30: ; skf is optional "skew factor" for sector translate
31: ; bls is tne data block size (1024,2048,...,16384)
32: ; dks is tne disk size in pls increments (word)

33: ; dir is tne number of directory elements (word)
34: ; cks is tnc number ot dir elements to checksum
35: ; ofs is the numpoer of tracks to skip (word)

36: ; [@] is an optional 0 which forces l6K/directory en
37:

38: ; for convenience, the form

39: ; an,dm

4p: ; defines disk dn as having the same characteristics as
41: ; a previously defined disk dm,

42:

43: a standard four drive CP/M system is defined by

44: ; disks 4

45: ; diskderf ©,1,26,6,1024,243,64,64,2

463 ; dsk set g

47: ; rept 3 -

48: dsk set dsk+1

4G5: diskdef %dsk,@

56: ; endm

51: ; endef

52: ;

53: ; the value of "begdat"” at the end of assembly defines t

6l

3,%4 =8 e ne ma ma my W

=
T~ @
14

"

0.

e

r

disks
M
ndisks
dpbase
HH

dsknxt

asknxt

L.
r

dpbhdr
dpb&dn

dab

-
r

-).
*
£

T)

gcdm
gcdn
gcdr

gcdx
gcdr

peginning of the uninitialize ram area above the bios,
while the valve of "enddat" daefines the next location
following the end of the data area, the size of this
area is given by the value of “"datsiz" at the end of t
assembly, note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size,

macro dn
define a single disk neader list

dw xlt&sdn,d@06n ;translate table

aw BEBuvh,6006h sscratch area

dw dirbuf,dpb&dn ;jair buff,parm block
dw csv&asn,alvidn ;check, alloc¢ vectors
enanm

macro nd
define nd disks

set nd :1:for later reference

equ $;base of disk parameter blocks
generate the rd elements

set]

rept nd

askhadr %dsknxy

set dsknxc+l

endm

endm

macro dn
equ $;disk parm block
endm

macro data,comment

define a db statement

db data comment
endm

macro data,comment

define a dw statement

dw data comment
endm

macro m,n
greatest common divisor of m,n
produces value gcdn as result
{used in sector translate table generation)

set m ;;variable for m
set n ;;variable for n
set 4] ;;variable for r
rept 65535

set gcdm/gcdn

set gcdm - gcdx*gcdn

if gcdr = B

exitm

endif

62

129:
116G:
111:
112:
113:
114:
115:
1ll6:
117
113:
119:
126:
121:
122:
123:
124:
125:
126:
127:
123:
129:
13a:
131:
132:
133
134:
135:
136:
137:
138:
139:
149:
141:
142:
143:
144:
145:
146:
147:
148:
149
159
151:
152:
153:
154:
155
156:
157:
158:
159:
160:
l161l:
162:
163:

gcdm
gcdn

diskdef

..
rr

£ r

dpb&dn
als&dn
css&dn
xlt&dn

secmax
sectors
als&dn

als&dn

css&dn
blkval
blksht
blkmsk

blksht
blkmsk
blkval

1
blkval
extmsk

extmsk
blkval

HE
extmsk
Y
extmsk

..
[

dirrem

set gcdn
set gcdr
endm
endm

macro dn, fsc,lsc,skf,bls,dks,dir,cks,bfs,klé
generate the set statements for later tables
if nul lsc

current disk dn s=2me as wrevious fsc

equ dpb&fsc ;zouivalent parameters

eqgu alssfsc ;same allocation vector size
equ css&fsc ;same checksum vector size
equ xlt&fsc ;same translate table

else

set lsc-(fsc) ; ;sectors 4, ..secmax
set secmax+l; ;number of sectors

set (dks) /B ;i;size of allocation vector
if ((dks) mod &) ne @

set als&dn+l

endif

set (cks})/4 :;:;nuvmber of checksum elements
generate the block shift value

set bls/128 ::number of sectors/block
set @ ;;counts right 8's in plkval
set 1] ;;rills with 1's from right
rept le ;1:once for eacn bit position
if blkval=l

exitm

endif

otherwise, high order 1 not found vyet

set blkshtf+l

set (blkmsk shl 1} or 1

Set bikval/2

endm

generate the extent mask byte

set bls/1824 ;snumber of kilobytes/block
set] ;;fill from right with 1's
rept 16

if blkval=1

exitm

endif

otherwise more to shnift

set (extmsk shl 1) or 1

set blkval/2

endm

may be double byte allocation

if {dks) > 256

set (extmsk shr 1)

endif

may be optional {#] in last position

if not nul klé

set klé

endif

now generate directory reservation bit vector
set dir ;:1# remaining to process

63

164: dirbks set bls/32 ;;:;number of entries per block
165: dirblk set '] s:£i11 with 1's on each loop
166; rept 16

l67: if dirrem=49

le8: exitm

163 endif

178: ;; not complete, iterate once again

171: ;; shift right and add i high order bit
172: dirblk set {dirblk shr 1) or 89d6h

173: if dirrem > dirbks

174: dirrem set dirrem-diroks

175: else

176: dirrem set 8

177: endif

178 endm

179: dpbhdr dn ;;g2nerate egu $

186: ddw $sectors,<;sec per track>

181 ddo $blkshf,<;blcck shift>

182: ddb $blkmsk,<;blcck mask>

183: ddb $extmsk,<;extnt mask>

184: . ddw $(dks)-1,<;uisk size-1>

135: adw $(dir)-1,<;airectory max>

186: ddb g$dirblk shr &§,<;allocy>

187: ddb %dirblk anud #ffh,<;allocl>

183: ddw $(cks)/4,<;check size>

189: ddw 3ofs,<;offset>

19d: ;; generate the translate table, if requested
191: it nul skf

192: xlitsdn equ %] :no xlate table
163: else

194 if skf = @

195: xlts&dn equ 0 ;no xlate taole
196: else

197: ;: generate the translate tabple

198: nxtsec set 7} :saext sector to fill
199: nxtbas set ¥ ;smcves by one on overflow
200 gcd $sectors,skf

281: 3 gcdn = gcd(sectors,skew)

282: neltst set sectors/gcdn

293: 3 neltst is number of elements to generate
204: ;; before we overlap ovrevious elements

285: nelts set neltst ;;:>cunter

206: x1lt&dn equ $ stranslate table
267: rept sectors ;;once for each sector
208: if sectors < 256

289: ddb $nxtsec+(fsc)

216G: else

211: ddw gnxtsec+(fsc)

212: endif

213: nxtsec set nxtsect+{skf)

214: if nxtsec >= sectors

215: nxtsec set nxtsec-sectors

216 endif

217: nelts set nelts-1

218: if nelts = §

64

219:
220
221:
222:
223:
224:
225:
226:
227:
228
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240
241:
242;
243:
244:
245:
246:
247:
248
249:

nxtbas
nxtsec
nelts

defds
lab:

lds

’
endet

begdat
dirbuf:
dsknxt

dsknxt

enddat
datsiz

L]
rr

set
set
set
endif
endm
endif
endif
endm

macro
ds
endm
macro

defds
endm

macro

nxtbas+i
nxtbas
neltst

nd of nul fac test
nd of nul bls test

 ®

lab,space
space

1b,dn,val
lb&dn, %valsadn

generate the nec2ssary ram data areas

equ
ds
set
rept
lds
1lds
set
endm
egu
egu

$
128 ;directory access buiffer

g

ndisks ;;once for each disk
alv,%dsknxt,als
csv,%dsknxt,css

dsknxt+l

$
S-begdat

db @ at this point forces hex record

endm

65

W= U N
4 24 R SE me BE %9 ¥9 w9

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS,

;***

'S *
r
i Sector Deblocking Algorithms for CP/M 2.0 *
. ® *
;***
: utility macro to compute sector mask
smask macro hblk
! compute log2{hblk), return €x as result
- (2 ** @x = hblk on return)
ay set hblk
@x set 2
] count right shifts of @y until = 1

rept 8

if ey = 1

exitm

endif
HY @y is not 1, shift right one position
Qay set @y shr 1
@x set @x + 1

endm

endm
;***
s R *
!
P * CP/M to host disk constants *
« % *
I

;***

blksiz equ 2048 :CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 29 ;host disk sectors/trk
hstblk equ hstsiz/128 :CP/M sects/host buff
cpmspt egu hstblk * hstspt ;CP/M sectors/track
secmsk equ hstblk-1 ;sector mask

smask hstblk ;compute sector mask
secshf equ @éx ;log2 (hstblk)
;***
« R *
;% BDOS constants on entry to write *
o K »
;***
wrall equ @ iwrite to allocated
wrdir egu 1 ;jwrite to directory
wrual egu 2 ;write to unallocated

4
:********************i********************************

. Xk *
¥

;¥ The BDOS entry points given below show the *
P ® code which is relevant to deblocking only. *
. K *

-

N I ISR TSRS RS RSES RS R R R S22 2 R R R R R

r
.
r

66

épbase

[
boot:
whoot:

éeldsk:

[
: settrk:

: setsec:

’
setdma:

H
: sectran:

DISKDEF macro, or hand coded tables go here
egu $;disk param block base
;enter here on system boot to initialize

Xra a ;18 to accumulator

sta hstact shost buffer inactive
sta unacnt sclear unalloc¢ count
ret

;1select disk

mov a,c ;selected disk number
sta sekdsk :seek disk number

mov 1l,a ;disk number to HL
mvi h,8

rept 4 smultiply by 16

dad h

endm

1xi d,dpbase ;base of parm block
dad d ;hl=,dpb{curdsk)

ret

:set track given by registers BC

mov h,b

mov l,c

shld sektrk :track to seek
ret

;set sector given by register ¢

mov a,c

sta seksec 1sector to seek
ret

;set dma address given by BC

mov h,b

mov 1l,c

shld dmaadr

ret

jtranslate sector number BC

mov h,b
mov l,c
ret

67

164: ;***

185: ;* *
196: ;* The READ entry point takes the place of *
187: ;* the previous BIOS defintion for READ. *
1d8: ;% *

189: ;***

110: read:

111: ;read the selected CP/M sector

112: mvi a,l

113: sta readop ;read operation

114: sta rsflag ;must read data

115: mvi a,wrual

116 sta wrtype ;treat as unalloc

117: jmp rwoper ;1t0 perform the read
iig; ;***
120: ;* *
121: ;* The WRITE entry point takes the place of *
122: ;* the previous BIOS defintion for WRITE., *
123: ;* *

|
124 p ok kkkkaa ke kkk kA Rk kA KK I R KR I I IRk kA Rk IRk kkhdkdh ok ke ke ok k
125: write:
|

‘ 126: ;write the selected CP/M sector

| 127: Xra a ;0 to accumulator
128: sta readop ;hot a read operation
129: nov a,c iwrite type in c
138: sta wrtype
131: cpi wrual swrite unallocated?
132: jnz chkuna i;check for unalloc
133: ;
134: ; write to unallocated, set parameters
135: mvi a,blksiz/128 :next unalloc recs
136: sta unacnt
137: lda sekdsk ;disk to seek
138: sta unadsk runadsk = sekdsk
139: lhlag sektrk
14g: shld unatrk runatrk = sectrk
141: 1lda seksec
142: sta unasec ;unasec = seksec
143:
l144: chkuna:
145:; :check for write to unallocated sector
146 lda unacnt ;any unalloc remain?
147 ora a
148: jz alloc ;skio if not
149: ;
158: more uhallocated records remain
151: dcr a ;unacnt = unacnt=l
152: sta unacnt
153: 1da sekdsk :same disk?
154: 1xi h,unadsk
155: cmp m ;sekdsk = unadsk?
156; jnz alloc :skip if not
157:
158: ; disks are the same

159, 1xi h,unatrk

16@: call sektrkcmp ;sektrk = unatrk?
161: jnz alloc ;skip if not
162:
163: tracks are the same
l164: 1da seksec $same sector?
165: 1xi h,unasec
l66: cmp m ;seksec = unasec?
lée7: jnz alloc ;skip if not
l6g8: ;
169: ; match, move to next sector for future ref
178: inr m junasec¢ = unasec+l
171: rnov a,m ;end of track?
172: cpi cpmspt ;count CP/M sectors
173: je noovf ;skip if no overflow
174: ;
" 175: ; overflow to next track
176: mvi m,d runasec = {
177: ihld unatrk
178: inx h
179: shlad unatrk sunatrk = unatrk+l
18@: ;
181: noovf:
182: smatch found, mark as unnecessary read
183: Xra a 19 to accumulator
i84: sta rsflag irsflag = @
185: jmp rwoper ;to perform the write
186: ;
187: alloc:
188: ;jnot an unallocated record, requires pre-read
189: Xra a :8 to accum
196: sta unacnt junacnt = @
191: inr a ;1 to accum
192 sta rsflag ;rsflag = 1
igz; ;***
195: ,;* *
196: ;* Common code for READ and WRITE follows *
197: ;* *

-

198: ;***
199: rwoper:

200: ;enter here to perform the read/write

261: Xra a iZero to accum

262: sta erflag ;No errors (yet)
203: lda seksec ;compute host sector
264: rept secshf

285: ora a jcarry = @

206: rar ;shift right

207; endm

208: sta sekhst ;host sector to seek
209:

218: ; active host sector?

211: 1xi h,hstact shost active flag
212: mov a,m o

213: mvi m,l salways becomes 1

69

214: ora a ;was it already?

268: mvi c,128 :length of move

215: jz filhst :fill host if not
216: ;
217: ; host buffer active, same as seek buffer?
218: lda sekdsk
219: 1xi h,hstdsk :same disk?
220: cmp m ;sekdsk = hstdsk?
| 221: jnz nomatch
| 222: ;
223: ; same disk, same track?
| 224: 1xi h,hsttrk
225: call sektrkcmp ;sektrk = hsttrk?
226: jnz nomatch
227: ;
228: 3 same disk, same track, same buffer?
229: lda sekhst
230: 1xi h,hstsec :sekhst = hstsec?
231: cmp m
232: jz match ;skip if match
233:
234: nomatch: .
235: ;proper disk, but not correct sector
236: l1da hstwrt shost written?
237: ora a ‘
238: cnz writehst sclear host buff
239: ;
240: filhst:
241: ;may have to fill the host buffer
242: lda sekdsk
243: sta hstdsk
244: lhld sektrk ,
245; shld hsttrk
246: 1da sekhst
247: sta hstsec
248: lda rsflag tneed to read?
249: ora a
250: cnz readhst sves, if 1
251: Xra a ;8 to accum
252: sta hstwrt ;no pending write
253:
254: match:
255: ;copy data to or from buffer
256 lda seksec ;mask buffer number
257: ani secmsk :least signif bits
258: mov l,a ;ready to shift
259: mvi h,? ;double count
260: rept 7 ;shift left 7
261: dad h
262: endm
263: ; hl has relative host buffer address
264: 1xi d,hstbuf
265: dad a ;hl = host address
266: xchg snow in DE
267: lhld dmaadr ;get/put CP/M data
\
|

269:
278:
271:
272:
273:
274:
275:
276:
277:
278:
279:
284
281:
282:
283:

284:.

285:
286:
287:
288:
289:
298:
291:
292:
293:
294:
295:
296:
297:
298:
299:
3¢@:
301:
362:
303:
304:
305:
306:
387:
308:
369:
3106:
311:
312:
313:
314:
315;
316:
317:
318:
319:
320:

148a readop ;which way?
ora a
jnz rwmove ;skip if read

-e wmu

write operation, mark and switch direction

mvi a,l

sta hstwrt shstwrt = 1

xchg ;source/dest swap
rwmove :

;C initially 128, DE is source, HL is dest

l1dax d :source character

inx d

mov m,a :to dest

inx h

der c ;loop 128 times

jnz rwmove
I
: data has been moved to/from host buffer

1lda wrtype ;write type

cpi wrdir ;to directory?

lda erflag :in case of errors

rnz ;no further processing
r
: clear host buffer for directory write

ora a rerrors?

rngz :skip 1t so

Xra a ;@ to accum

sta hstwrt sbuffer written

call writehst

lda erflag

ret
;***
. X ®
r
P ¥* Utility subroutine for l6-bit compare *
« X x
r

;***
sektrkcmp:
;HL = ,unatrk or .hsttrk, compare with sektrk

xchg

1xi h,sektrk

ldax d ;low byte compare

cmp m rsame?

rnz sreturn if not
: low bytes egqual, test high 1ls

inx d

inx h

ldax d

cmp m ;sets flags

ret

L1}

71

321:
322:
323:
324
325:
326:
327:
328:
329:
339:
331:
332:
333:
334:
335:
336:
337:
i38:
33%:
349:
341:
342:
343:
344:
345:
346:
347:
348:
349:
359:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
36l:
362:
363:
364:
365:
366:
367:
368:
369:
376;
371:
372:
373:
374;
375:
376:

;*********************************t***t***************
. ® *
r
e WRITEHST performs the physical write to *
A the host disk, READHST reads the physical *
;* disk. ' *
:* *
*

;#****************:t************a*****************t**
writehst:

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz" bytes
:from hstbuf and return error flag in erflag.
sreturn erflag non-zero if error
ret
:
readhst:
shstdsk = host disk #, hsttrk = host track #,
shstsec = host sect #. read "hstsiz" bytes
;into hstbuf and return error flag in erflag,
ret
;*****************************t***********************
. *
r
1 ¥ Unitialized RAM data areas *
« N - *
;**********t********i*t***************.t***t**********

sekdsk: ds
sektrk: ds
seksec: ds

;seek disk number
;seek track number
;seek sector number

[4

hstdsk: ds
hsttrk: ds
hstsec: ds
sekhst: ds
hstact: ds
hstwrt: ds
unacnt: ds
unadsk: ds
unatrk: ds
unasec: ds

shost disk number
shost track number
shost sector number

:seek shr secshf
shost active flag
shost written flag

;unalloc rec c¢nt
:last unalloc disk
:last unalloc track
:last unalloc sector

N e N N

erflaag: ds 1 ;error reporting
rsflag: ds 1 sread sector flag
readop: ds 1 :1 if read operation
wrtype: ds 1 :write operation type
dmaadr: ds 2 :last dma address
hstbuf: ds nstsiz ;host buffer

:*************t**************************#**t********i
R *
’

P * The ENDEF macro invocation goes here *
. ® *

:********s**t*****************t********t*t************
end

72

A0

DIGITAL RESEARCH"

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 INTERFACE GUIDE

Copyright (e) 1979

DIGITAL RESEARCH

Copyright (e) 1979 by Digital Research. Al rights reserved.
No part of this publication may be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
anv language or computer language. in any form or by anv
means, electronie, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950,

Diselaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

CP/M 2.2 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Introduction ,

Operating System Call Conventions
A Sample File-to=-File Copy Program

-

A Sample File Dump Utility .

A Sample Random Access Program ,

System Function Summary

L 3

29
34
37
46

1. INTRODUCTION,

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points, The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/0 facilities of the system,

CP/M is logically divided into four parts, called the Basic I/0
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP}, and the Transient Program Area (TPA). The
BIOS 1is a hardware-dependent module which defines the exact low level
interface to a particular computer system which 1is necessary for
peripheral device 1I/0, Although a standard BIQOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled “"CP/M Alteration Guide").
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device, The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed, The lower portion of memory
is reserved for system information and is detailed later sections,
Memory organization of the CP/M system in shown below:

high | l
memory | |
f FDOS (BDOS+BIOS) |
FBASE: | I
| I
I Cccp I
CBASE: | |
| !
! |
| I
! TPA f
I I
TBASE: | I
I system parameters |
BOOT: | |

. ——— v ———— T o ———— . s —— T ————

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
“"CP/M Alteration Guide."” All standard CP/M versions, however, assume
BOOT = @008H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP, Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

to return control to CP/M at the command level, Further, the standard
versions assume TBASE = BOOT+£180H which is normally location 1004,
The principal entry point to the FDOS 1is at location BOOT+8@95H
(normally @0@5H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally @0%6H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows, The operator communicates with the CCP by typing command
lines following each prompt., Each command line takes one of the
forms:

command
command filel
command filel file?

where “command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program, If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command, COM

If the file jis found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory., The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area, These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section,

The transient program receives control from the CCP and begins
execution, perhaps using the I/0 facilities of the FDOS. The
transient program is “called” from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. 1In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-1 is free,

The transient program may use the CP/M 1I/C facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
»function number" and an “"information address® to CP/M through the
FDOS entry point at BOOT+0885H, In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below,

(All Information Contained Herein is Proprietary to Digital Research.)

2

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs, Many
of the functions 1listed below, however, are more simply accessed
through the I/0 macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language ‘Manual and Applications Guide,"

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device 1/0, and
disk file I/0., The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Seguential Tape Character
Write a List Device Character
Get or Set I/0 Status

Print Console Buffer

Read Console Buffer

Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Seguential Read
Random or Seguential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+8@@5H, In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases, Note that
the register passing conventions of CP/M agree with those of 1Intel's
PL/M systems programming language., The list of CP/M function numbers
is given below,

(All Information Contained Herein is Proprietary to Digital Research,)

3

System Reset 19 Delete File

1 Console Input 20 Read Segquential

2 Console Qutput 21 Write Seguential

3 Reader Input 22 Make File

4 Punch Qutput 23 Rename File

5 List Qutput 24 Return Login Vector
6 Direct Console 1/0 25 Return Current Disk
7 Get I/O Byte 26 Set DMA Address

8 Set I/0 Byte 27 Get Addr(alloc)

9 Print String 28 Write Protect Disk
14 Read Console Buffer 29 Get R/0 Vector

11 Get Console Status 39 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk ' 33 Read Random
15 Open File 34 Write Random
lé Close File 35 Compute File S5ize
17 Search for First 36 Set Random Record

18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs,
Although this stack is usually not used by a transient program {i.e.,
most transients return to the CCP though a jump to location 9@80RH), it
is sufficiently large to make CP/M system <calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuocusly
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = (0@680H):

BDOS EQU 29654 ; STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
ORG ¥1o@d ;BASE OF TPA
NEXTC: MVI C,CONIN ;s READ NEXT CHARACTER
CALL BDOS s RETURN CHARACTER IN <A>
CPI S ;END OF PROCESSING?
JNZ WEXTC ; LOCPF IF NOT
RET ; RETUORN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive, Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank

characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each

category. The file tyves listed below name a few deneric categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File

COM CCP Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each
“line” of the source file is followed by a carriage~return line-feed
sequence (8BDH followed by BAH), Thus one 128 byte CP/M record could
contain several lines of source text, The end of an ASCII file is
denoted by a control-2 character (lAH) or a real end of file, returned
by the CP/M read operation, Control-2 characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations,

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from @ through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit wvalues, Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular conseguence to the programmer since
each extent is automatically accessed in both sequential and random
access modes,

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB), Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+@@85CH (normally @85CH) for simple file operations, The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/0 is provided by CP/M
at location BOOT+0@80H (normally 008PH) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required,

The File Control Block (FCB) data area consists of a sequence of
33 bytes for sequential access and a series of 36 bytes in the case
that the file 1is accessed randomly. The default file control block
normally located at @85CH can be used for random access files, since
the three bytes starting at BOOT+@@7DH are available for this purpose.
The FCB format is shown with the following fields:

(All Information Contained Herein is Proprietary to Digital Research,)
5

P2 61 92 .., 68 99 1/ 11 12 13 14 15 16 ... 31 32 33 34 35

where
dr drive code (6 - 16)
P => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl...f8 contain the file name in ASCII
upper case, with high bit = 8

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = @
tl', t2', and t3* denote the
bit of these positions,
tl' = 1 => Read/Only file,
t2' =1 => 8YS file, no DIR list

ex contains the current extent number,
normally set to #@ by the user, but
in range # - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call t¢ OPEN, MAKE, SEARCH

rc record count for extent “ex,"
takes on values from ¢ - 128

dé...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

rd,rl,r2 optional random record number in the
range #-65535, with overflow to r2,
réd,rl constitute a 16-bit value with
low byte r@, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations, When accessing files, it 1is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr* field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research,)

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) .

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the 1line following the
transient name, denoted by “filel" and "filez" in the prototype
command line described above, with unspecified fields set to ASCII
blanks, The first FCB is constructed at location BOOT+665CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d¢ ... dn portion of the first FCB, and must be moved to another
area of memory before use, 1I1f, for example, the operator types

PROGNAME B:X,20T Y, ZAP

the file PROGNAME,COM is loaded into the TPA, and the default FCB at
BOOT+865CH is initialized to drive code 2, file name "X" and file type
"ZOoT". The second drive code takes the default value 6, which is
placed at BOOT+B@6CH, with the file name "Y" placed into location
BOOT+G@H6DH and file type "ZAP" located 8 bytes later at BOOT+B875H.
All remaining fields through “"cr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOCT+B#@5CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+@@5DH and BOOT+0@6DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions,

As an added convenience, the default buffer area at location
BOOT+@@80H is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of <c¢haracters, with the characters themselves following the
character count., Given the above command line, the area beginning at
BOOT+0b86GH is initialized as follows:

BOOT+9088H
+00 +01 +62 +03 +04 +05 +06 +07 +68 +69 +10 +11 +12 +13 +14
l 4 [1] n L1] B " " : (1] L1} X i (1] . L1} " Z LT} uoll " Tn L1] [" Y 1 1] " . L1 [1] Z L3 " A (1] [1] P L1}

where the characters -are translated to upper case ASCII with
uninitialized memory following the last valid character., Again, it is

the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed,

The individual functions are described in detail in the pages
which follow.

(All Information Contained Herein .is Proprietary to Digital Research.)
7

Kkkkkkkhhkhhhkhkhkhhhhkhhkhkhkr bk khkrkbrxx

* *
* FUNCTION #: System Reset *
* *

* Entry Parameters: *
* Register C: @#0H *

Ehkhkhkhkhkhkhkrrhkhkhkkhkhkkkkkkkkkdhkkdhkhkkhkk

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A, This function has exactly the
same effect as a jump to location BOOQT,

Tk AR K kIR A R KRNI R RARRRRAKRARARRA AR KRR AR AR

] *
* FUNCTION 1: CONSOLE INPUT *
* *
IR EESE S S FRE IR R IR TS EE S ER TR EEEE TS
* Entry Parameters: *
* Register C: 61H *
* *
* Returned Value: *
* Register A: ASCII Character *
IERE SRR R SRS E R R T ST

The console input function reads the next consocle character to
register A, Graphic characters, along with carriage return, line
feed, and backspace (ctl-il} are echoed to the console, Tab characters
(ctl-I) are expanded in columns of eight characters, A check is made
for start/stop scroll (c¢ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

LR ERE S EREE YRy R R R R R R R R R R R

* *
* FUNCTION 2: CONSOLE OUTPUT *
x *

* Entry Parameters: *
* Register C: @2H *
* Register E: ASCII Character *
* *

LEEEEE SRS FE ST EEE RS RS SRR SRS E R R

The ASCII character from register E is sent to the console
device, Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo,

(All Information Contained Herein is Proprietary to Digital Research,)

8

Thhhkkhkhkhkhkkhkhhkhkhkhkhkhkhkhkhkdkdkhhkihhkhkihkihkhiii

* *
* FUNCTION 3: READER INPUT *
* *
AKhkkhkhkhkhkhkhkhrhkArkhkkkkArhrdhhkhkhkhkhdkkhkhhkhhkhhik
* Entry Parameters: *
* Register C: 83H *
* %*
* Returned Value: *
* Register A: ASCII Character *
AhkhhkhkkXkhkhkkkkthhkrhkkkhkkhkhhhhkkhhkhkkkhkthkhkhih

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"), Control does not return until the character has
been read, '

Ahkkkhhkhkkhhkhkhhkhhhkhkhhrhkkkkhkhhhkkkhkhkkkhkkkk

* *
* FUNCTION 4: PUNCH OUTPUT *
* *
IR A SRR RS R R SRR RERERSSERERESESEES]
* Entry Parameters: *
* Register C: 04H *
* Register E: ASCII Character *
* *

khkkkhkhkkkhkhkkhkkhkkhkhhhkhdhdkdhhkikdkkhhkikdkikkkx

The Punch Output function sends the character from register E to
the logical punch device.

KhAkRAhhkAhhkhhihhhhhhhkhhkhrkkhkdhkdkhhkhkhkikkk

* *
* PUNCTION 5: LIST OUTPUT *
* *
LA S EEEEEXEEEEESERSESASEESEEEESE SRS R R
* Entry Parameters: : *
* Register C: 4#5H *
* Register E: ASCII Character *
* *

KEAkXUX A XA A KA N AR A A AR AR A AR Rk kAR Ak kA hx

The List Output function sends the ASCII character in register E
to the logical listing device,

(All Information Contained Herein is Proprietary to Digital Research,)

9

LR A RS s A RS ERS SR ESEEERERERERSETEE EEEEEEEEY

* *
* FUNCTION 6: DIRECT CONSOLE I/O *
* *

LA EEE LSS R R RS SRR PR T EYEEEEEE

* Entry Parameters:

Register C: 0@6H

Register E: @OFFH (input) or
char (output)

*

Returned Value:

Register A: char or status
(no value)
LR R EE T R R T Y A R R L]

¥ % % F ¥ o

*
*
*
*
*
*
*
*

Direct console I1/0 is supported under CP/M for those specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control=S and
control-P), Programs which perform direct I/0 through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/0 under BDOS so that they can be fully supported under future
releases of MP/M and CP/M. '

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input reguest, or register E contains an ASCII
character, If the input value is FF, then function 6 returns A = @0

if no character is ready, otherwise A contains the next console input
character,

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console,

(All Information Contained Herein is Proprietary to Digital Research.)

18

khkkkhkhkhkhkkhhkhhkhkhkdkkhhkhkhkkhkkkhkhkhkhkhkhhkdhhkkhkik

x *
* PUNCTION 7: GET I/O BYTE *
* *
'Y 2222202222222 2 R R R R R R R R EE L 0
* Entry Parameters: *
* Register C: #7H *
* *
* Returned Value: - *
* Register A: 1I/0 Byte Value *
AAXKRAKRKAAKA KA AR AR R Rk Ak kbbb hdk

The Get I/O Byte function returns the current value of IOBYTE in
register A, See the "CP/M Alteration Guide" for IOBYTE definition,

AhhkRRkEREXAX KXk kKA hkkhkhxhkhhkhkrhkhkkkhkkxakik

* *
* FUNCTION 8: SET I/0 BYTE *
] *
ARAEAEAAKRERKREA AR RARRKANNR AT AR A AR AR AR
* Entry Parameters: *
* Register C: ©8H *
* Register E: I/0C Byte Value *
* ®

L ER AR RS RS EREEEREEEELES RS RS SRR EES LS

The Set I/0 Byte function changes the svstem IOBYTE value to
that given in register E.

I E XS EETEEEEEE SRR SRR RE RS REEEERESERS]

* *
* PUNCTION 9: PRINT STRING *
* *
RS EES SR EFET AR RS R EAEE R RS RS EEREE S RN NS EE
* Entry Parameters: *
* Register C: B9H *
* Registers DE: String Address *
* *

I EE S 2SFEEEEFFSEEEELLS RS SRR S SRS LSS

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a "“§"
is encountered in the string, Tabs are expanded as in function 2, and
checks are made for start/stop scroll ana printer echo,

(All Information Contained Herein is Proprietary to Digital Research.)

11

LA SRR RS L SRS LE SRR SR ERERER SR

* *
* FUNCTION 1@: READ CONSOLE BUFFER *
* *
LR R R B R R R R R R R R R R R O R g e)
* Entry Parameters: *

Register C: BAH
Registers DE: Buffer Address

Console Characters in Buffer

*
*
*
*
*
AEKREKKKKRKKKTAKRA AR N * &k ok ok ook i & 5 % % 3 5 ok o & % % o

*
*
%*
* Returned Value:
¥*
*

The Read Buffer function reads a line of edited console input

into a buffer addressed by registers DE. Console input is terminated

when either the input buffer overflows., The Read Buffer takes the
form:

DE: +8 +1 +2 +3 +4 +5 +6 +7 +8 .« o . +n

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console., if nc
< mx, then uninitialized positions follow the last character, denoted
by “??" in the above fiqure, A number of control functions are
recognized during line editing:

rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
ctl-E causes physical end of line

ctl-H backspaces one character position

ctl-J (line feed) terminates input line

ctl-M (return) terminates input line

ctl-R retypes the current line after new line
ctl-U removes currnt line after new line
ctl-X backspaces to beginning of current line

Note also that certain functions which return the <carriage to the
leftmost position (e.g., c¢tl=X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to

the extreme left margin), This convention makes operator data input
and line correction more legible,

(All Information Contained Herein is Proprietary to Digital Research,)

12

I ES SRR E SRS A RS SRR R R AR ER SRS SN

* x
* FUNCTION 1ll: GET CONSOLE STATUS *
* *
Ahhkhkhkhkhkhkhxxdhhxkdhhhkkhkhhhkhkhkkhkkkhkdhhkhhhhkik
* Entry Parameters: *
* Register C: WBH *
* *
* Returned Value: *
* Register A: Console Status *
ARAKRKKRRRAKRKRAKRKAINARA A XAk kA kA hkhkhhk

The Console Status function checks to see if a character has
been typed at the console, If a character is ready, the value OFFH is
returned in register A, Otherwise a #@H value is returned.

(R R SRS SRR R LA SRR SRR RS RREEEEERSREEE]

* *
* PUNCTION 12: RETURN VERSION NUMBER *
* *
AhhkhkhkhkhkhkhkhkhkhkhhkkhkAAAAAA ARk hkhhkhkhkkhkkkki
* Entry Parameters: *

* Register C: @CH *
* *
* Returned Value: *
* Registers HL: Version Number *
I EZ S S EEEEEFESESSEEREEESES LS SRR SRR LSRR,
Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = @8

designating the CP/M release (H = 81 for MP/M), and L = 8@ for all
releases previous to 2.8, Cp/M 2.8 returns a hexadecimal 28 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

{All Information Contained Herein is Proprietary to Digital Research,)

13

Khkhhhkhkhkhhhhkhkhkhkhhhkhkkkkkkkhhhkr A kAR A AKX

* . *
* PUNCTION 13: RESET DISK SYSTEM *
:****************************t********:
* Entry Parameters: *
* Register C: @DH *
* *

LE R RS RS2 Y Y Y YRR R L]

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+@@88H. This function can be
used, for example, by an application program which reguires a disk
change without a system reboot.

LRSS S L EEEEEEREEEEEEEEEEEEEE T R R R RIS R

* *
* FUNCTION 14: SELECT DISK *
® *
ARXARRAAARARRT XX Tk R AT A hA ATk Ak hhkkkdkik
* Entry Parameters: *
* Register C: OEH *
* Register E: Selected Disk L
* *

¥ d ok ok ok ke k ok ok ok ok okokodk ok ok ok ok ok ok ok kk ok k& Kk ok ok o o ok ok ok ok ok

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= b for drive A, 1 for drive B, and so~forth through 15 corresponding
to drive P in a full sixteen drive system, The drive is placed in an
“on-line* status which, in particular, activates its directory until
the next «cold start, warm start, or disk system reset operation., If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB's which specify drive code zero (dr = 08H)
automatically reference the currently selected default drive, Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P,

(All Information Contained Herein is Proprietary to Digital Research,)
14

Ahkkk kR ko hkkkhkhkkkhkhkkhhkdkhhhhAhkrhkkrkkx

* *
* FUNCTION 15: OPEN FILE *
* *

hhkkkhkdhhhhhhkhkhkkkhkkhhkrrhhkhkhkkhkdkkhokkkx

* Entry Parameters: *
Register C: @FH
Reglsters DE: FCB Address

Returned Value:

Register A: Directory Code

*
*
*
*
*
khkhhkhkhkhhhkhkhkkkhkAkhkAkkkkkkkkhkkkkhhhhht ik

*
*
*
*
*
*

The Open File operation is used to activate a file which
currently exists 1in the disk directory for the currently active user
number, The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroced), where an ASCII guestion mark (3FH) matches any
directory character in any of these positions, Normally, no guestion
marks are included and, further, bytes "“ex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes 4@ through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed, Upon return, the open function
returns a “directory code" with the value A through 3 if the open was
successful, or @FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated., Note that the current record ("cr") must be zeroed by the

program if the file is to be accessed seguentially from the first
record.

(All Information Contained Herein is Proprietary to Digital Research.)

15

LR L Y Y Y YTy

* x*
* FPFUNCTION 16: CLOSE FILE *
* *
LE R R E R R R R L R TR X
* Entry Parameters: *
* Register C: 18H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LERE AT T R T Y FE R LT T TR R

The Close File function performs the inverse of the open file
function, Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory., The FCB matching process for the close 1is identical
to the open function. The directory code returned for a successful
close operation is @, 1, 2, or 3, while a @FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. 1If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information,

(All Information Contained Herein is Proprietary to Digital Research.)

lé

AERREEAEKRAARRKRRKAXAREAKRKRETRER R AR RR XK KKk XK
* *

* FUNCTION 17: SEARCH FOR FIRST :
*

khkdkhkkhhdhhhhhdhhhdhkhkhkhkhhkhkhkhkhkrkhkkkhdk

* Entry Parameters:
Register C: 11H
Registers DE: FCB Address

Returned Value:

Register A: Directory Cocde

*
*
*
*
*
LR SRS EE IR RIS EESSREE SRS S

*
*
*
*
*
*
*

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 6, 1, 2, or 3 is returned
indicating the file is present. 1In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i,e,,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position,

An ASCII guestion mark {63 decimal, 3F hexadecimal) in any
position from “f1" through "ex* matches the ccrresponding field of any
directory entry on the default or auto-selected disk drive. If the
“dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number, This 1latter function 1is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the “dr* field is not a question mark,
the "s2" byte is automatically zeroed,

RS ST EE RS RS RS R R R R RS R RS

* *
* FUNCTION 18: SEARCH FOR NEXT *
% *
kkkhkkkkhkhhhhkhkhkhkhkhkhhrrhhkhhhhhhkhhkhkkhkkkhkkii
* Entry Parameters: *

Register C: 128

*
*
* Returned Value:
*
*

Register A: Directory Code
AEKA AR AREA AR RN AR A AR AR AR R AL AN AN N

* * *%

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last

matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match,

(All Information Contained Herein is Proprietary to Digital Research,)

17

Rk khkhkhk ko hkhkkkk kR hk ko hkkkkhhdk bk dkkhk

* *
* FUNCTION 19: DELETE FILE *
* *
LA RS SR EEEREESSLEEE SRR ERETEE LSS EEEEE SRR
* Entry Parameters: *
* Register C: 13H *
* Registers DE: FCB Address *
* *
* Returned Value:) *
* Register A: Directory Code *
LER A SR EER S EEESEEE R LR R R S YRR L]

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., guestion marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the referenced file or

files cannot be found, otherwise a value 1in the range 6 to 3 is
returned,

LA RS R R R Y Y R R R ey

* *
* FUNCTION 20: READ SEQUENTIAL *
* *

LAEEEEEEEEEEERE LY S S TR R R R R R gy

* Entry Parameters: *
Register C: 1458
Registers DE: FCB Address

Register A: Directory Code

*
*
*
*
*
LEEEEESES S LSRR EE ST LR EEEEEE R R R TR R PP

*
*
*
Returned Value: *
*
®

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the “"cr” field is automatically incremented to the next
record position, If the “cr" field overflows then the next logical
extent is automatically opened and the “cr® field is reset to zero in
preparation for the next read operation, The value @@H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

18

LEEE SR EEEEREEEEEETRTEEE T IR LR P RR PR PR PR

* *
* FUNCTION 21: WRITE SEQUENTIAL *
* *

Entry Parameters: *
Register C: 15H
Registers DE: FCB Address

*

* *
* *
* x
* Returned Value: *
* *
* *x

Register A: Directory Code
AR ER A AR AR A A A AR ARA KRR R RRA KRR ARAR AR K

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Seguential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the.file, and the "cr" field is automatically incremented to the next
record position, If the "cr” field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next write operation, Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = @B@H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

* *
* FUNCTION 22: MAKE FILE %
* *
LR AR RS RS EEEEEERTEEETEEEEFEEEETEEEEELS
* Entry Parameters: *
* Register C: 16H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LR R R SRS EEES R E RS B E R R R R R R I R T I A TR G g

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "dr" code, or the default disk if "dr" is zero}), The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = @,
1, 2, or 3 if the operation was successful and @FFH (255 decimal} if
no more directory space is available, The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(A1l Information Contained Herein is Proprietary to Digital Research.)

19

LA SR AR ERE SRS EEREREEEEEEE IR R R R R R R R IR

* *
* FUNCTION 23: RENAME FILE *
* *
LR EESE SRR EE RS RIS A RRRELEER R 2 200
* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LEEE RS T AT EE RS SRR SRR YRS EE RS

_ The Rename function uses the FCB addressed by DE to change all
occurrences o0f the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr* at position # is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero, Upon return, register A
is set to a value between ® and 3 if the rename was successful, and

OFFH (255 decimal) if the first file name could not be found in the
directory scan.

Hhrkdkhkkhkhdd ko hh ke rrkkkkkkkk

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *

* Entry Parameters: *
* Register C: 188 *
* *
* Returned Value: - *
* Registers HL: Login Vector *
LESEEEEREERERR AR AR REEEER Y]

The login vector value returned by CP/M is a 16~bit value in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H <corresponds to the sixteenth drive,
labelled P. A "@" bit indicates that the drive is not on-line, while
a "1" bit marks an drive that is actively on-line due to an explicit
disk drive selection, -or an implicit drive select caused by a file
operation which specified a non-zero "dr* field, Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research,)

20

Tk khkkkhkhhdkhkhhkhhkhkhrkrkrdhhhhhhhhhhhkk

* *
* FUNCTION 25: RETURN CURRENT DISK *
* *

* Entry Parameters: *
* Register C: 194 *
* *
* Returned Value: *
* Register A: Current Disk *

Function 25 returns the currently selected default disk number

in register A. The disk numbers range from § through 15 corresponding
to drives A through P,

khhkhkkhhhkhkhkhkkhkhkhkkhkhA kAR A AR hkhhhhkdk

* *
* FUNCTION 26: SET DMA ADDRESS *
* *
*******************t*******************
* Entry Parameters: *
* Register C: 1lag A
* Registers DE: DMA Address *
* *

LA E RS RS E RS RS E R N Y P R Y

"DMA" is an acronym for Direct Memory Address, which is often
used 1in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk

subsystem. Although many computer systems use non-DMA access (iL.e.,
the data is transfered through programmed I/0 operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+0@8PH., The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside, Thus, the DMA address becomes the
value specified by DE until it is changed by a subseguent Set DMA
function, cold start, warm start, or disk system reset,

(All Information Contained Herein is Proprietary to Digital Research,)

21

RS EEE RS EEEE RS SEREER R REEEES S S S

* *
* FUNCTION 27: GET ADDR (ALLOC) *
* *
Ak hkhkhkhkhhkhhhkhkhhhhkRkkXX ARk hhkrkhhhkk
* Entry Parameters: *
* Register C: 1BH *
* *
* Returned Value: *
* Registers HL: ALLOC Address *
AhkkrhkhkkhkhkRkhkhkhhhkhhhhhkhhhkhhkkhhkhhhhkhhkhhhx

An "allocation vector" is maintained in main memory for each
on-line disk drive,. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide."

LEEEE R EEESEESEEEERERR R R R EREEREE RS,

* *
* FUNCTION 28: WRITE PROTECT DISK :
*

IR R EEEEEE T F R FFE R R RS E RS E R LY EEE X R
* Entry Parameters: *
* Register C: 1CH *
x *

RAkXhhkkkkhhkhhhhhhhhhhkhkhhkhkhkkhkhkkkhkdhdhkidkx

The disk write protect function provides temporary write
protection for the currently selected disk, Any attempt to write to
the disk, before the next cold or warm start operation produces the

message

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research,)

22

LES SRR A RS ST E SRR EEES RS SEREEERER

* *
* PFUNCTION 29: GET READ/ONLY VECTOR *
* *
A S E LRSS LR ESEEEREE BB R TR R R R PR R R L TR
* Entry Parameters: *
* Register C: 1DH *
*x *
* Returned Value: *
* Registers HL: R/O Vector Value*

Function 29 returns a bit wvector in register pair HL which
indicates drives which have the temporary read/only bit set, Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

AR S EE RS X T R D R R E R R R R R R R R R g g

* *
* FUNCTION 3¢: SET FILE ATTRIBUTES *
%* *
LR EEEE R ERERETE T LR EE R R g T U S g ag g
* Entry Parameters: \
* Register C: 1EH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *
LER R R EE R Y Y s R e XL

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl*' and t2') can be set or
reset, The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset, Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators f1' through f4' are not presently used, but

may be useful for applications programs, since they are “not involved
in the matching process during file open and close operations.,

Indicators f5' through £8' and t3' are reserved for future system
expansion,

(All Information Contained Herein is Proprietary to Digital Research.)

23

khkhkhkkkhhhhhhrkkhhkhhhhkhhkhhhkkrkhkhkhhhhhkkk

* *
* FUNCTION 31: GET ADDR(DISK PARMS) *
* *

Fhkkhkkhhknhhkkhhkhhhhkhhhhhhkrhhhhhhkhhkkhn

* Entry Parameters:
Register C: 1FH

*

Registers HL: DPB Address

* *
* *
* Returned Value: *
* *
tE R SRS R R E R Y Y R R R R R R R R R 2 K]

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call., This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required, Normally, application
programs will not require this facility,

KA AR AR AR NIRRT RR R KRR R AR AR AN R AR kAR Nk

* *
* FUNCTION 32: SET/GET USER CODE *
* *

LSRR RS EER SRR RS PR R TR EE LR T LR

* Entry Parameters: &

Register C: 20H

Register E: @FFH {get} or
User Code (set)

Returned Value:
Register A: Current Code or

{no value)

*
*
*
x
*
*
*
LRSS EEER AR EREEEEEE SRR REER SRR S 2 3 8

x
*
*
x
*
*
*
*

An application program can change or interrogate the currently

active user number by calling function 32, If register E = @FFH, then
the wvalue of the current user number is returned in register A, where

the value is in the range 8 to 31, 1If register E is not @FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

XSRS RS RS RN SAESSERESESA SRS SRR R S LB

* *
*# FUNCTICN 33: READ RANDOM :
*

LE RIS EEEEEE SRS R R R SRR SRS SR

* Entry Parameters: *
Register C: 21H
Reglsters DE: FCB Address

Register A: Return Code

*
*
*
x
*
LES A SRS SRR RS REEEE R SR ERE RS RS

*
*
*
* Returned Value:
*
*

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions rP at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits 1is stored with least significant byte first (r®), middle
byte next (rl), and high byte last (r2), CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2

must be zero, however, since a non-zero value indicates overflow past
the end of file,

Thus, the r#,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 9 to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent @) must first be opened. Although the base extent may or may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and 1is wvisible in DIR reguests. The
selected record number is then gstored into th~» random record field
(r@,rl), and the BDOS is called to read the record, Upon return from
the call, register A either contains an error code, as listed below,
or the value 0@ indicating the operation was successful,. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the seguential read operation, the
record number 1is not advanced,. Thus, subsequent random read
operations continue to read the same record,

Upon each random read operation, the logical extent and current

record values are automatically set, Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position, Note, however, that in this case, the last

randomly read record will be re-read as you switch from random mode to
segquential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a seguential 1/0 operation,

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

¢l reading unwritten data

@2 (not returned in random mode)
#3 cannot close current extent

4 seek to unwritten extent

05 (not returned in read mode)

6 seek past physical end of disk

Error code #1 and @4 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions, Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code #6 occurs whenever byte r2
is non-zero under the current 2.8 release, Normally, non-zero return
codes can be treated as missing data, with =zero return codes
indicating operation complete,

(All Information Contained Herein is Proprietary to Digital Research.)

26

LESE R LR L SR FE Y TSR E RS SRR RS RS EEE

x *
* FUNCTION 34: WRITE RANDOM *
* *
IFEEREETFES RN ESLEEES SRS EEESE SRS SR RS &R L)
* Entry Parameters: *

* Register C: 22H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* *
* *

Register A: Return Code
LA AL EEEESAELEEFERSREEE RS R RS R EE SRR ERE]

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which 1is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues, As in the Read Random
operation, the random record number is not changed as a result of the

write, The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written, Again, sequential read or write operations can

commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can alsoc simply advance the random
record position following each write to get the effect of a seguential
write operation, Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in seguential mode.

The error codes returned by a random write are identical to the
random read operation with the addition c¢f error code 85, which

indicates that a new extent cannot be c¢reated due to directory
overflow,

(All Information Contained Herein is Proprietary to Digital Research.}

217

kkkkkkhkkhkhkhhkhkhhkhhhhhkhhhhdhhhhkhkhhhhhhkkkxk

* *
* FUNCTION 35: COMPUTE FILE SIZE *
* *

IEEETETESEE SRR ERES SRR E SRS S8 0 & R R R &S

*

Entry Parameters: *

Register C: 238 *
Registers DE: FCB Address *
&
*
*
*

Random Record Field Set
AR AR AA AT A ARK A A AR A A A AR A AR A A T AT AR AN A A XK

*
*
%*
: Returned Value:
*

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r#, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan, Upon return, the random record bytes contain the
“virtual" file size which is, in effect, the record address of the
record following the end of the file, if, following a call to
function 35, the high record byte r2 is 81, then the file contains the
maximum record count 65536, Otherwise, bytes r® and rl constitute a
16-bit wvalue (r@ 1is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a seguence of random writes starting at the
preset record address,

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates, If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size 1is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

IEEEEEREEEES LSRR R RS SRE R R RS

* *
* FUNCTION 36: SET RANDOM RECORD *
% *
LR AR EEEE T PR R e s XXX X
* Entry Parameters: *
* Register C: 24H *
* Registers DE: FCB Address *
* .
* Returnead Value: *
* Random Record Field Set *
[FEFETFFYEEEESEEE S S EEEELEEE TR EETE ST

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or

written sequentially to a particular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
seguential file to extract the positions of various "key" fields., As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval, After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier,
The scheme is easily generalized when wvariable record lengths are
invelved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write., A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subseguent random read and
write operations continue from the selected point in the file,

(All Information Contained Herein is Proprietary to Digital Research.)

—

29

3. A SAMPLE FILE~TO-FILE COPY PROGRAM,

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP, The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at @@6CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at @@5CH is
properly set-up by the CCP upon entry to the COPY program, That 1is,
the first name is placed into the default fcb, with the proper fields

zeroed, including the current record field at @67CH, The program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this is

successful, the program loops at the label COPY until each record has

been read from the source file and placed into the destination file,
Upon completion of the data transfer, the destination file is closed

and the program returns to the CCP command level by jumping to BOOT,

sample file-to-file copy program
at the ccp level, the command
copy a:x.y b:u,v

copies the file named x,y from drive
a to a file named u.v on drive b,

§ mg mE WE %k wE NS e e

0600 = boot equ POB0h ; system reboot
2ees = bdos equ @005h ; bdos entry point
gég5¢c = fcbhl eqgu 885ch ; first file name
gBs5c = sfcb equ fcbl ; source fcb
dBec = fcb2 equ gp6ch ; second file name
4080 = dbuff egu 288dh ; default buffer
9104 = tpa equ 8198h ; beginning of tpa
00089 = printf equ 9 ; print buffer func#
PBRE = opent equ 15 ; open file funcé$
9a10 = closef equ 16 ; close file func#
2913 = deletef egu 19 ; delete file func#
pel4d = readf equ 20 : sequential read
pels = writef equ 21 s+ sequential write
pplée = makef equ 22 : make file funci
0100 org tpa ; beginning of tpa
@108 311ibo2 1xi sp,stack; local stack

; move second file name to dfchb
§103 Geld mvi c,16 : half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

165 116ch@ 1xi d,fch2 source of move

2128 21da@di 1xi h,dfcb ; destination fcb
#l6b la mfcb: ldax d ; source fcb
018c 13 inx d ; ready next
g1eqa 77 mov m,a : dest fcb
d1ve 23 inx h ; ready next
@1of @d der c ; count 16...0
0110 c20b@1 jnz mfcb ; loop 16 times
; name has been moved, zero cr
6113 af Xra a : a = #éph
3114 32fapl sta dfcbcr ; current rec = §

source and destination fcb's ready

- mu e

@117 115ch@ 1xi d,sfcb ; source file
Blla cdesyl call open ; error if 255
#11d 118761 1xi d,nofile; ready message
#8128 3c inr a ; 255 becomes 0@
8121 cc6l@l cz finis ; done if no file

; source file open, prep destination
$124 11dadl 1xi d,dfcb ; destination
0127 cd7361 call delete ; remove if present
$12a 11da@l 1xi d,dfcb ; destination
g12d cdgzal call make : create the file
0130 119601 1xi d,nodir ; ready message
8133 3¢ inr a : 255 becomes 0
0134 ccelil cz finis ; done if no dir space

source file open, adest file open
copy until end of file on source

) =* »s =~ we

8137 115ch@ copy: 1xi d,sfcb ; source

#13a cd7801 call read ; read next record
Bl3d b7 ora a ; end of file?
#13e 25101 jnz eofile ; skip write if so

not end of file, write the record

-8

#141 11dapl 1xi d,dfcbh ; destination
144 cd7d4e1l call write ; Write record
@147 113961 1xi d,space ; ready mescsage
£l4a b7 ora a ; B if write ck
8l4b c46191 cnz finis ; end if so
@l4e c33791 jmp copy ; loop until eof
eofile: ; end of file, close destination
8151 114apl 1xi d,dfcb ; destination
#3154 cdéedl call close : 255 if error
8157 21bbe1l 1xi h,wrprot; ready message
gl5% 3c inr a : 255 becomes @60
#15b cc6l101 cz finis ; shouldn't happen

- wa

copy operation complete, endg-

(All Information Contained Herein is Proprietary to Digital Research.)

— 31

B15 llccgl 1xi d,normal; ready messade

v
finis: ; write message given by de, reboot

0161 Ped 9 mvi c,printet
0163 cdes5ep call bdos ; write message
G166 c36100 jmp boot ; reboot system

system interface subroutines
(all return directly from bdos})

o-b. - wWE ™y

0169 de6f pen: mvi c,opent

916b c30560 jmp bdos

@l6e Peld élose: mvi c,closef

B170 c30500 jmp bdos

8173 gel3 delete: mvi c,deletef

9175 c36549 jmp bdos

178 Geld Eead: mvi c,readf

6l7a ¢c36500 jmp bdos

@174 pels Qrite: mvi c,writef

017f c38500 jmp bdos

0182 Gel6 make: mvi c,makef

0184 c30508 jmp bdos
: console messages

0187 ce6f20fnofile; db ‘'no source file$'

9196 6e6£299nodir: db ‘no directory space$'

¥la9 6f7574fspace: db ‘out of data spaces$'

@1lbb 7772695wrprot: db 'write protected?$’

dlcc 636f7@8normal: db ‘copy completeS$’
; data areas

@ 1lda dfcb: ds 33 ; destination fcb

dlfa = dfcbcr eqgu dfcb+32 ; current record
;

@lfb as 32 ; 16 level stack
stack:

B21lb end

Note that there are several simplifications in this particular
program, First, there are no checks for invalid file names which
could, for example, contain ambiguous references, This situation

could be detected by scanning the 32 byte default area-starting at
location @@5CH for ASCII guestion marks. A check should also be made

to ensure that the file names have, in fact, been included (check
locations 9@5DH and 0%6DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation, One could, for example, determine

(All information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location @806H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file,

{All Information Contained Herein is Proprietary to Digital Research.)

33

4., A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than
the simple copy program given 1in the previous section. The dump
program reads an input file, specified in the CCP command 1line, ana
displays the content of each record 1in hexadecimal format at the
console, Note that the dump program saves the CCP's stack upon entry,
resets the stack to a local area, and restores the CCP's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the ena of processing.

; DUMP program reads input file and disvlays hex data

-
’

0129 ordg 18 6h
W@gs = bdos eqgu @9 B5Sh ;dos entry point
peol = cons egu 1 :read console
Geez2 = typef eqgu 2 stype function
0GEo9 = printf equ 9 ;buffer print entry
goBb = brkf egu 11 ;break key function (true if char
geoPt = openf eau i5 ;file open
pple = readf egu 20 ;read function
885¢c = %cb equ 5ch sfile control block address
gp8e = buff eau 80h ;input disk buffer aadress
: non graphic characters
096a = cr equ @ah ;jcarriage return
boda = 1t egu Gah :1line feed
: file control block definitions
PLsSc = fcbdn egu fch+i ;disk name
ges5d = fcbin equ fcbhb+l :file name
po65 = fchft egu fchb+9 - ;disk file type (3 characters)
go68 = fcbrl egu fcb+l2 ;file's current reel number
ga6b = fcbrc egqu fchb+l5 ;file's record count (% to 128)
geic = fcbher egu fcb+32 jcurrent {(next}) record number (@
pg7d = fcbln egu fcb+33 ;fcb length
; set up stack
#1800 210000 Ixi h,d
G103 39 dad sSp
: entry stack pointer in hl from the ccp
P104 221502 shld oldsp
; set sp to local stack area (restored at finis)
0187 315762 1xi sp,stktop
z read and print successive buffers
@lda cdcl@l call setup ;set up input file
104 feff cpi 255 :255 if file not present
210f c21bol jnz openock ;skip if open is ok
H file not there, give error message and return
¥112 11£381 1xi d,opnmsg
2115 cd9cél call err
@118 c35121 jmp finis ;0 return

(A1l Information Contained Herein is Proprietary to Digital Research.)

34

#11b 3e80

g1lld

@129

8123
0124
B127
2128
212b

g12c
@l24d
f12f

g132

@135

2138
139

d13c
#1234

0149
P141

p144
0145
0147
014a
014b

d1l4e

@151
9154
9157

2158

3159
215c
d15e
Blel

(All Information Contained Herein is Proprietary to Digital Research.)

321362

210000

e5
cdaz2@l
el

das51@1
47

7d
e6df
c24491

cd7201

cds5991

gf
da5121

7c
cdBfigl
7d
cd8fpl

23
3e2p
cd6501
78
cd8fgl
c32301

cd7291
2a1582
f9

c9

e5d45cS
Bedb

cd@560
cldlel

openok:

*
L

gloop:

- we

e - wa

-

nonum:

H
finis:

.
’

-~

O~ =s a0~

=
m
[+7]
-~

;open operation ok, set buffer index to end
mvi a,8¢h

sta ibp :set buffer pointer to 8@h
hl contains next address to print

1xi h,? ;start with 90009

push h ;save line position

call gnb

pop h ;recall line position

jc finis ;carry set by gnb if end file
mov b,a

print hex values
check for line fold

mov a,l

ani @fh ;check low 4 bits
jnz nonum

print line number

call crlf

check for break key
call break
accum lsb = 1 if character ready

rrc ;into carry

jc finis ;don’t print any more
mov a,h

call phex

mov a,l

call phex

inx h ;to next line number
mvi a,' "’

call pchar

mov a,b

call phex

jmp gloop

end of dump, return to ccp

(note that a jmp to 0008h reboots)
call crlf

lhld oldsp

sphl

stack pointer contains ccp's stack location
ret ;0 the ccep

subroutines

;check break key (actually any key will do)

push h! push 4! push b; enviromment saved
mvi c,brkf
call bdos

pop b! pop da! pop h; enviromment restored

35

2164

@165
2168
gleéa
@1l6éb
Blee
d171

172
D174
d177
@179
@dl17c

g17d
817t
9181

0184
9186

$189
¥18b
#l8e

J18t
0190
P19l
0192
@193
0194
0197
198
?19b

@19¢
@19%e
8lal

dlaz
glas
gla7

c9

e5d5¢5
bed?2
5f
cddsae
cldlel
c9

Jebd
cdb501
3ePa
cd6501
c9

eoff
fefa
d28981

c636
c38bil

c637
cd6501
c9

£5
gf
pf
of
9t
cd7d01
f£fi
cd7del
c9Y

Gel 9
cd@s6gd
c9

3al3gz2
fe80
c2b361

échar:

-

crlif:

nib:

3 ~e =s

plé:
prn:

’
phex:

ret

;print a character

push h! push d! push b; saved
mvi c,typef

mov e,a

call bdos

pop b! pop d! pop h; restored

ret

mvi a,cr
call pchar
mvi a,lf
call pchar
ret

;print nibble in reg a

ani gfh ;low 4 bits
cpi 16

jnc plo

less than or egual to 9

adi ‘g’

jmp prn

greater or equal to 140

adi 'a' - 18

call pchar

ret

;print hex char in regqg a

push pSwW

rec

rrc

rrc

rrc

call pnib ;print nibble
pop psSw

call pnib

ret

;print error message
d,e addresses message ending with “$"

mvi c,printf ;print buffer function
call bdos
ret

;get next byte

lda ibp
cpi 80h
jnz o]%)

read another buffer

(All Information Contained Herein is Proprietary to Digital Research.)

36

]

#laa cdcefl call diskr

#lad b7 ora a
glae cab3gl jz gd _
: end of data, ret
g1bl 37 stc
g1b2 c9 ret
g :read the byte a
P1b3 S5f mov e,a
glbd 1600 mvi 4a,o
#1bé6 3¢ ing a
#1b7 321302 sta ibp

- wmé

;zero value if read ok
;1 for another byte
urn with carry set for eof

t buff+reg a

:11s byte of buffer index
;double precision index to de
;index=1index+l

:back to memory

pointer is incremented
save the current file address

#lba 218600 1xi h,buff
Blbd 19 dad d
: absolute character address is in hl
@lbe 7e mov a,m
F byte is in the accumulator
@1bf b7 ora a ;reset carry bit
#lch c9 ret
setup: ;set up file
; open the file for input
#lcl af Xxra a 1zero to accum
@lc2 327cHo sta fcbher ;clear current record
Blc5 115cH0 1xi d,fch
flc8 Bedf mvi c,openf
flca cdBs566 call bdos
3 255 in accum if open error
@lcd c9 ret
diskr: ;read disk file record
#lce e5d45¢5 push h! push 4! push b
#141 115c@p 1xi d,fcb
#1d4 Bel4 mvi c,readf
@146 cdgs5e88e call bdos
8149 cldlel pop b! pop 4! pop h
#ldc ¢9 ret
; fixed message area
#1dd 46494c@signon: db ‘file dump version 2,88
P1f3 ddpadedopnmsg: db cr,lf,'no input file present on disk$'
: variable area
9213 ibp: das 2 ;input buffer pointer
0215 oldsp: ds 2 ;entry sp value from ccp
H stack area
g217 ds 64 sreserve 32 level stack
stktop:
8257 end

{aAll Information Contained Herein is

37

Proprietary to Digital Research,)

5. A SAMPLE RANDOM ACCESS PROGRAM,

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,

assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a £file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input, If not found, the file 1is created before the

prompt is given, Each prompt takes the form -
next command?

and is followed by operator input, terminated by a carriage return,
The input commands take the form

nwW nR Q

where n is an integer value in the range # to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and guit processing, respectively, If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X,DAT file at record n, If the R command is issued, RANDOM reads
record number n and displays the string value at the console, If the
Q command is issued, the X.,DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an 1initialization section where the
input file is opened or created, followed by a continuous loop at the
label “"ready" where the individual commands are interpreted. The
default file control block at @05CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,

which contain the principal input line processor, called "readc."
This particular program shows the elements of random access

processing, and can be used as the basis for further program
development.

(A1l Information Contained Herein is Proprietary to Digital Research.)

38

glpo

0008
goas

0091
gpo2
@399
g08a
goéc
goaf
6alo
gEle
@821
gp22

B85c
0e74
g0t
2089

apod
G pda

8100

2103
3105
6108
g1oa

B14d
8110
8113

£116
2118
@11b
blle
p11f

(All Information Contained Herein is Proprietary to Digital Research.)

[LI T O AN O (N

o

mu wn

31lbcP

Bedc
cdgsa
fe2g
d2168

111b6
cddad
c3d09

bebf
115c@
cdbs50
3c
c2378

LR SRR S EREEEEELSETTEEEERESES RS TR X EE TR R R TR SRR R G R
x
sample random access program for cp/m 2.0 *
*
AR RS SRS E RS SRR E R SRR E BT TR R R R R R R R S e

. eE ma we w4
% ¥ % * %

org 133h ;base of tpa
H
reboot eqgu g8é0oh ;system reboot
bdos egu g205h ;bdos entry point
H
coninp egu 1 ;console input function
conout egu 2 sconsole output function
pstring eqgu 9 ;print string until 'S’
rstring egu 18 :sread console buffer
version egu 12 sreturn version number
openf egu 15 ;file open function
closef equ le6 ;close function
makef equ 22 ;make file function
readr eqgu 33 ;read random
writer equ 34 ;write random
fcb egu @@s5ch ;default file control block
ranrec egu fcb+33 ;random record position
ranovf equ fcb+35 ;high order (overtlow) byte
buff equ G@80h sbutfer address
cr equ Gdh ;jcarriage return
1f eqgu @ah :line feed
;***
Kk *
I’
;* load SP, set-up file for random access *
« Kk *
:***

-

1xi sp,stack

e e#

version 2.07?

mvi c,version
call bdeos
cpi 26h ;version 2.8 or better?
jnc versok
: bad version, message and go back
1xi d,badver
call print
jmp reboot
I
versok:
: correct version for random access
mvi c,opent ;open default fcb
1xi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready
’
H cannot open file, so create it

39

@122 dels mvi c,makef

2124 115ch 1xi d,fch
8127 cd@sa call bdos
Pl2a 3c inr a serr 255 becomes zero
@12b c237¢ jnz ready
H cannot create file, directory full
@l2e 113a@ 1xi d,nospace
P131 cddad call print
G134 c3600 jrp reboot ;back to ccp

X EEEERZTEE SRS RS RS ESEE R RS R 2SR SRR R R RS R D RS R
*
* Jloop back to “"ready" after each command *
*
R Y L R 2R AR XXX S22 22 2 222 2 2 22 Rt o

»

¥+

e % [P wme ms N mE ws NI W

eady:
file is ready for processing

0137 cdebl call readcom ;read next command

913a 22744 shld ranrec ;store input record#

9138 217£0 1xi h,ranovf

0149 3609 mvi m,d ;clear high byte if set

9142 fe51 cpi 'Q ;quit?

G144 c2560 jnz notq
H guit processing, close file

8147 Geld mvi c,closef

2149 115cH 1xi d,fchb

Gl4c cdesd call bdos

bl4f 3c iny a ;err 255 becomes @

8150 cabyg jz error ;error message, retry

8153 c30080 jmp reboot ;back to ccp
;***
o R *
:1* end of gquit command, process write *
.k *
;***
notg:
: not the gquit command, random write?

B156 fe57 cpi 'W'

2158 c2890 jnz notw
2 this is a random write, fill buffer until cr

B15b 11440 ixi d,datmsg

@1l5e cddag call print ;data prompt

G161 Pelf mvi c,127 ;up to 127 characters

B163 2184da 1xi h,buff ;destination
rloop: ;read next character to buff

0166 ¢cb5 push b :save counter

@167 e5 push h ;next destination

8168 cdc2a call getchr ;character to a

016b el pPop h ;restore counter

(All Information Contained Herein is Proprietary to Digital Research.)

49

S T

Bléec cl pop b ;jrestore next to fill

6l6d fedd cpi cr ;end of line?

@lef ca78d jz erloop
: not end, store character

g172 77 mov m,a

P173 23 inx h ;hext to fill

2174 84 dcr c ;counter goes down

0175 c2669 jnz rloop send of buffer?
erloop;
H end of read loop, store @9

8178 3600 mvi n,d
: write the record to selected record number

gl7a 0e22 mvi c,writer ' '

@1l7c 115c@ 1xi d,fch

B17f cd@sg ' call bdos

9182 b7 ora a ;error code zero?

2183 c2b9d jnz error imessage if not

#186 c3379 jmp ready ;for another record
;***t*
% *
;* end of write command, process read *
-k *
;*************************************.**************
notws
; not a write command, read record?

2189 fe52 cpi 'R' -

#l8b c2b9a jnz error ;skip if not
: read random record

@l8e He2l mvi c,readr

6190 115co 1xi d,fcb

8193 cdesd call bdos

8196 b7 ora a ;return code 807

8197 c2b9p jnz error ')
: read was successful, write to console

@1%a cdcfa call crlf shew line

919G GeB0 mvi ¢,128 ;max 128 characters

@19f 21840 1xi h,buff ;next to get
wloop: -

Ala2 e mov a,m ;next character

2la3 23 inx h ;next to get

Plad e67f ani 7fh ;mask parity

@lat ca37p jz ready ;for another command if 26

#lag9 c5 push b ;Save counter

Plaa e5 push h ;jsave next to get

@lab fe29 cpi ' ;graphic?

@lad d4c8eg cnc . putchr ;skip output if not

g1lb@ el pop h

g1lbl c1 pop b

P1b2 6a decr c ;count=count-1

01b3 c2a28 jnz wloop

@1lb6e c33748 jmp ready

{All Information Contained Herein is Proprietary to Digital Research.)

41

-
’
H LRSS RS A AR EES SRR R REEEREERRRRRRR R R R

*

Hl *
;* end of read command, all errors end-up here *
.k *
’
;***
H
error:

81b9 11598 1xi d,errmsg

B lbc cddal call print

P1lbf c3379 jmp ready
;
;***
:* *
;* utility subroutines for console i/o &

*

*
f
;***

getchr:
;read next console character to a
Plc2 Pedl mvi c,coninp
#lcd cdese call bdos
@g1c? c9 ret
putchr:
;write character from a to console
81c8 BeB2 mvi c,conout
@lca 5f mov e,a ;character to send
@lcb cdese call bdos :send character
@lce ¢9 ret
crlf:
;send carriage return line feed
Blct 3end mvi a,cr ;carriage return
9141 cdc8s call putchr
#1d4 3eba mvi a,lf ;line feed
0146 cdc8p call putchr
@139 c9 ret
print:
sprint the buffer addressed by de until $
@lda 45 push d
@1db cdcf@ call crlf
@lde dl pop d ;new line
@14f 0eB9 mvi c,pstring
@lel cdps@ call bdos ;print the string
@led c9 ret
readcom:
;read the next command line to the conbuf
@le5 ll6bd 1xi d,prompt
Dle8 cddad call print ;command?
0 leb PebBa mvi c,rstring
Bled 117a6 Ixi d,conbuf
P1f0 cdesd call bdos sread command line

command line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research,)

42

G1lf3 210449 1xi h,o ;start with 60009

B1f6e 117¢O 1xi d,conlin;command line

01f9 1la readc: 1ldax d ;next command character

@lfa 13 inx d ;£0 next command position

B61fb b7 ora a scannot be end of command

d1lfc c8 rz
; not zero, numeric?

p1fd de639 sui '’

G1£f fepa cpi 18 ;carry if numeric

0201 d213@ jnc endrd
; add~in next digit

B204 29 dad h ;%2

@205 4a mov c,l

@266 44 mov b,h :bc = value * 2

@287 29 dad h ;%4

p208 29 dad h ;%8

2289 B9 dad b ;%2 + *8 = *1¢

p2@a 85 add 1 ;+digit

P28b 6f mov l,a

#20c d2f98 jnc readc ; for another char

g20f 24 inr h toverflow

B210 c3£940 jmp readc ;for another char
endrd:
: end of read, restore value in a

8213 c639 adi ‘g’ ; command

@215 fe6l cpi ‘a' ;translate case?

@217 48 re
H lower case, mask lower case bits

@218 e65f ani 181s81111b

221la c9 ret
;***
. % *
i* string data area for console messages *
'R *
;***
badver:

621b 536£f79 db ‘sorry, you need cp/m version 2§°
nospace:

023a 4e6f29 db ‘no directory space$'
datmsg:

924ad 547970 db ‘type data: $°*
errmsg:

3259 457272 db ‘error, try again.$'
prompt:

G26b 4e6570 db ‘next command? $°

f

(All Information Contained Herein is Proprietary to Digital Research,)

43

e kKKK KRR AR AR AR AR AR AR ARk Ak kh kA kdkhhkrdxhhrhhdnkhhkkkhkk

- -
;* fixed and variable data area *
ok *
7 ;***
p27a 21 conbuf: db conlen ;length of console buffer
@27b consiz: ds 1 ;resulting size after read
g27c conlin: ds 32 ;length 32 buffer
a821 = conlen equ $-consiz
829c ' ds 32 116 level stack
stack:

g2bc - . end

Again, major improvements could be made to this particular
program to enhance its operation, In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a seguential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 108 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 16 and

ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file, The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical

list of LASTNAME fields with their corresponding record numbers,
(This list is called an “inverted 1index" in information retrieval

parlance,)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command 1line might
appear as:

QUERY NAMES.DAT LASTNAME,KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which 1is a particular key to find in the NAMES.DAT data base,
Since the LASTNAME.KEY list is sorted, you can find a particular entry
guite rapidly by performing a “binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, vyou examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search,
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number, Fetch and display
this record at the console, just as we have done in the program shown
above,

(A1l Information Contained Herein is Proprietary to Digital Research,)

44

At this point you're just getting started. With a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted,

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your 1lists are getting too big to fit into memory,
randomly access your key files from the disk as well, One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manuall

(All Information Contained Herein is Proprietary to Digital Research.)

45

6.

SYSTEM FUNCTION SUMMARY,

INPUT PARAMETERS

W odnh b WwhoH®

19
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

* Note that A =

(All Information Contained Herein is Proprietary to Digital Research.)

System Reset
Conscle Input
Console Qutput
Reader Input

Punch Qutput

List Qutput

Direct Conscle I/0
Get I/0 Byte

Set I/0 Byte

Print String

Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk

Cpen File

Close File

Search for First
Search for Next
Delete File

Read Seguential
Write Seguential
Make File

Rename File

Return Login Vector
Return Current Disk
Set DMA Address

Get Addr(Alloc)
Write Protect Disk
Get R/QO Vector

Set File Attributes
Get Addr(disk parms)
Set/Get User Code
Read Random

Write Random
Compute File Size
Set Random Record

L, and B =

none

none

E = char
none

E = char

E = c¢har
see def
none

E = I0BYTE
DE = .Buffer
DE = ,Buffer
none

none

none

E = Disk Number
DE = .FCB
DE = ,FCB
DE = ,FCB
none

DE = .FCB
DE = ,FCB
DE = ,FCB
DE = ,FCB
DE = ,FCB
none

none

DE = .DMA
none

none

none

DE = .FCB
none

see def

DE = ,FCB
DE = .FCB
DE = ,FCB
DE = .FCB

H upon return

46

QUTPUT RESULTS

see def

A = IOBYTE
none
none
see
A
HL=
see
see

def
8@/FF

Version*
def
def
Dir
Dir
Dir
Dir
Dir
Err
Err

Code
Code
Code
Code
Code
Code
Code
Dir Code
Dir Code
Login Vect*
Cur Disk#

t

s ol i g i

ju ol
t O
i3

11

Alloc
def

R/0 Vect*
def

.DPB

def

Err Code
Err Code
rl, r2
rl, r2

00} DIGITAL BESEARCH®

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M ASSEMBLER (ASM)
USER'S GUIDE

COPYRIGHT (¢) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. Al rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacifiec Grove, California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes,

1.
2.
3.

4.

5.

7e

Table of Contents

Section

Im‘Im T X XXX xR R R N R N B BN BB KR
m mm Y XX EESEXEEEEE x> RN SRR R R B L L B B & J
mmm mﬁm Y RS EEY R E RSN R AN AR N R B 0 0
3.1. mls 9B A0 0SS0 SACSRSERSNIEBEASBRIRSESSOERBIERAS
3.2. N‘mric Comtants TXISEEXEZXEESNEERNRRRRE NN R NN BB & J
3.3. mmm mrds S XSRS RN R AR RN RN R N R N J
3.4. Strim Constants 'YYXEXXEREEESREEE N N RR RN N B N B R NN J
3.5, Arithmetic and Logical Operators secsesssscsss
3.6. Precedence of OperatorS .csesssscsccessscssnses
mm DIMIVES YIS 2R RN R TR R R NN R RN RN S N RN
4.1. m Om Di.reCtiw 'TEXXXESEEREERN RN N R S 0 2 R X 2 A N 3 J
4,2, The END DireCtive .scecessscscesescccsacsnsens
4.3. m Ew mrﬂiw RN EERRRRRER N R A N B NN N J
4.4. m Sm Dira:tim [EIEXIEEEE SR RESRNNR RN R R RN B N B N J
4.5, The IF and ENDIF DirectivesS sesssscssacsssssas
4.6. m m Dirxtiw [EEREXNEE NN NNN R NN N N B NN R NRESE]
4.7. m m m‘rwiw S XEEEEEEEEENREERRE NN R RN B N B N N J
wEmIm mms XXX EEEREEEEEESRR R RN RN RN RN 2 B N B N J
S5.1. Jlmm, Calls; and RetUrNS sececcsccsssssasconsa
5.2. Immediate Operal‘ﬂ InStructionS seeecescsancesnse
5.3. Increment and Decrement InStructionS ceeceesse
5.4. Data Movement INStructionsS .sesscscecscessaces
5.5. Arithmetic r.mi.c Unit Omrations ssesesanenten
5.6. Cmtrol Instr‘mtims EXYEEESETEERRR RN R NN R N N J
EmR mms Y SIS EYEEEEE RSN RSN R RN RN R N N 0 NN J
A MIE S&Im "SRRI RS EER SRR R RN E NN A B N BN J

OO OO U bl b Lg

b et
)

12
12
13
14
14
14
15
16
16
17

o

CP/M Assembler User ‘s Guide

1. INTRODUCTION,

The CP/M assembler reads assembly lanquage source files fram the diskette,
and roduces 8888 machine language in Intel hex format. The CP/M assembler is
initiated by typing

ASM filename
or
AM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name
filename .ASM

which contains an 8686 assembly language source file. The first and second
forms shown above differ only in that the second form allows parameters to be

passed to the assembler to control source file access and hex and print file
destinations.

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n.n

where n.n is the current wersion mumber., In the case of the first commandg,
the assembler reads the source file with assumed file type "ASM* and creates
two autput files

fil ename ,HEX
and

filename .PRN

the “HEX" file contains the machine code corresponding to the original program
in Intel hex format, and the “"PRN” file contains an annotated listing showing
generated machine code, error flags, and source lines., If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second cammand form can be used to redirect input and output files
fram their defaults. 1In this case, the "parms” portion of the command is a

three letter group which specifies the origin of the source file, the

c_lestination of the hex file, and the destination of the print file, The form
is

filename.plp2p3
where pl, p2, and p3 are single letters

Pl: A,B, ..., Y designates the disk name which contains

the source file
¢By ¢es, ¥ designates the disk name which will re-
ceive the hex file
skips the generation of the hex file
/Br «ee, ¥ designates the disk name which will re-
ceive the print file
places the listing at the console
gkips generation of the print file

S
1

o
w
[-5

Thus, the command
ASM X,AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A.
This form of the command is implied if the assembler is run from disk A, That
is, given that the operator is currently addressing disk 2, the above command
is eguivalent to

AM X
The command
ASM X.ABX
indicates that the source file is to be taken from disk A, the hex file is

placed on disk B, and the listing file is to be sent to the console. The
command

AM X.BZZ

takes the source file from disk B, and skips the generation of the hex and
print files (this command is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible with both the Intel 8080 assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #1 assembler., That is, the CP/M
assembler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which make it somewhat easier to use. These
extensions are described below,

2. PROGRAM FORMAT,

An assembly language program acceptable as input to the assembler consists
of a sejuence of statements of the form

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance, Each

~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "!" which is a treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physmal line
if separated by exclaim symbols).

The line¢ is an optional decimal integer wvalue representing the source
program line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

and is optional, except where noted in particular statement types. The
identifier is a seguence of alphanumeri¢ characters (alphabetics and numbers),
where the first character is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assenbler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($) which
can be used to improve readability of the name. Further, all lower .case
alphabetics become are treated as if they were upper case. Note that the “:"
following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all wvalid
instances of labels

X Xy longSname
X: yxl: longer$named$data:
X1y2 X1x2 x2345567859012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8088 machine operation code. The pseudo operations and
machine operation codes are described below.

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements. »Again, the complete details of properly formed
expressions are given below. 7

The camnment field contains arbitrary characters following the *;" symbol
until the next real or logical end-of-line, These characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements which begin with a "*" in column one as comment statements,
which are listed and ignored in the assembly process, Note that the Processor

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an ambiguous
situation when attempting to be compatible with Intel’s language, since
arbitrary expressions are allowed in this case, Hence, programs which use
this side effect to introduce comments, must be edited to place a “;" before
these fields in order to assemble correctly.

The assenbly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. FORMING THE COPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements, Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed sibexpressions by arithmetic and logical operators., The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance is given with the individual
instructions,

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular
statement, In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SET, then the label is given
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assembler, This value can then be combined with other operands and operators
to form the operand field for a particular instruction,

3.2, Numeric Constants,

A numeric constant is a 16-bit value in one of several bases, The base,
called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
0 octal constant (base 8)

Q octal constant (base 8)
D decimal constant (base 1)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal nunbers since the letter O is
easily confused with the digit @. Any numeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an
optional radix indicator, where the digits are in the appropriate range for
the radix. That is binary constants must be composed of @ and 1 digits, octal
constants can contain digits in the range # - 7, while decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (1eD), B (11p), C (12D}, D (13D), E (14D), and F
{15D) . Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading @ will always suffice). A constant composed in this
manner must evaluate to a binary number which can be contained within a 16~bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded "$" are allowed within constants to improve their
readability. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234 1234D 11698 111150200$1111560300B
1234H @FFEH 33770 335778220
33770 ofe3h 12348 @ffffh

3.3. Reserved Words,

There are several reserved character sequences which have predefined
meanings in the operand field of a statement. The names of B888¢ registers are
given below, which, when encountered, produce the value shown to the right

%ZL"IMUOWU’
AU W NS]

PSW

(again, lower case names have the same values as their upper case
equivalents), Machine instructions can also be used in the operand field, and
evaluate to their internal codes. 1In the case of instructions which require
operands, where the specific operand becomes a part of the binary bit pattern

ofF +he instruction (e.g, MOV A,B), the value of the instruction (in this case
MW) is the bit pattern of the instruction with zeroes in the optiocnal fields
(e.g, MOV produces 44H).

When the symbol “$" occurs in the operand field (not inmbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained withing the
current logical line.

3.4, String Constants,

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (7). All
strings must be fully contained within the current physical line (thus
allowing “!" symbols within strings), and must not exceed 64 characters in
length., The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes °7), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively, Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be represented., Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

I

A’ AB “ab’ c
‘Walla Walla Wash,~

‘She said “‘Hello ™ to me.’
‘T said "Hello" to her.’

3.5. Arithmetic and Logical Operators.,

~ The operands described above can be combined in normal algebraic notation
using any cambination of properly formed operands, operators, ard
parenthesized expressions. The operators recognized in the operand field are

unsigned arithmetic sum of a and b

unsigned arithmetic difference between a and b
wmary plus (produces b)

unary minus (identical to @ - b)

unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b

remainder after a / b

logical inverse of b (all 6's become 1°s, 1's
become 0°s), where b is considered a 16-bit value

o

~S*1 + 1 +

Zo o

3%

ToQUoDUoCOoUOoOU
o

aAND b bit-by-bit logical and of a and b

aORDb bit-by-bit logical or of a and b

a XORb bit-by-bit logicl exclusive or of a and b

a SHL b the value which results from shifting a to the
left by an amount b, with zero £fill .

a SHR b the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strirngs), or fully
enclosed parenthesized subexpressions such as

16+20 18h+37Q Ll /3 (L2+4) SHR 3
("a” and 5¢h) + ‘@’ ("B°+B) OR (PSW+M)
(1+(2+c)) shr (A-(B+1))

Note that all computations are performed at assembly time as 16-bit unsigned
operations, Thus, -1 is computed as @-1 which results in the wvalue @ffffh
(i.e., all 1°s). The resulting expression must fit the operation code in
which it is used. 1If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero, As a result, the operation "ADI -1" produces an error message (-1
becomes @ffffh which cannot be represented as an 8 bit value), while "ADI (-1)
AND @FFH" is accepted by the assembler since the “AND" operation zeroes the
high order bits of the expression.

3.6. Precedence of Cperators.

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence, Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a*b+c (a*bh +c¢
a+b*c a+(b*C)
aMDDb * cSHL 4 ((a MODb) * ¢) SHL d

aORDb AND NOT ¢ + d SHL e a OR (b AND (NOT (c + (4 SHL e)}))

Balanced parenthesized sd:expfessions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(a ORb) AND (NOT ¢} +4d SHL e
resulting in the assumed parentheses
{a OR b) AND ((NOT ¢) + (4 SHL e))

Note that an unparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed,

4, ASSEMBLER DIRECTIVES.

Assembler directives are used to set labels to specific values during the
assnmbly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
“pseudo operation" which appears in the operation field of the line, The
acceptable pseudo operations are

ORG set the program or data origin

END end program, optional start address
EQU numeric "equate”

SET numeric "set" '

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

s define data’ storage area

The individual pseudo operations are detailed below

4,1. The ORG directive,
The ORG statement takes the form
label ORG expression

where "label” is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assenbler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas. Note that most programs written for

the CP/M system begin with an ORG statement of the form

ORG 108H

which causes machine code generation to begin at the base of the CP/M
transient program area. If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4.2. The END directive.

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subseguent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label 1s again opticnal., If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
2000. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results from the assembly).
Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 10@H (beginning of the transient
program area).

4,3. The EQU directive,

The EQU (eguate) statement is used to set up synonyms for particular
numeric values., the form is

label EQU expression

where the label must be present, and must not label any other statement. The
assermbler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the valuwe in a mpre human-oriented manner. Further, this name 1is used
throughout the program to “parameterize" certain functions, Suppose |, for
example, that data received from a Teletype appears on a particular input
port, and data is sent to the Teletype through the next output port in
sequence, The series of eguate statements could be used to define these ports
for a particular hardware environment

TTYBASE BEQU 10H :BASE PORT NUMBER FOR TTY
TIYIN EQU TTYBASE ;TTY DATA IN
TTYOUT BQU TTYBASE+1;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

IN TTYIN ;READ TTY DATA TO REG-A

OUT TTYOUT ;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute i/o ports had been
used., Further, if the hardware environment is redefined to start the Teletype
communications ports at 7FH instead of 1@H, the first statement need only be
changed to

TTYBASE EQU 7FH :BASE PORT NUMBER FOR TTY
and the program can be reassembled without changing any other statements.
4.4. The SET Directive,
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program.
The expression is evaluated and becomes the current value associated with the
label, Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid from the current SET statement to
the mint where the label occurs on the next SET statement. The use of the

SET is similar to the EQU statement, but is used most often in controlling
conditional assembly.

4.5. The IF and ENDIF directives,

The IF and ENDIF statements define a range of assembly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#l
statement#?2
statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement)., If the expression evaluates to a non-zero value, then
statement#l through statement#n are assembled; if the expression evaluates to
zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single *“generic" program which includes a number of
possible run-time ervironments, with only a few specific portions of the
program selected for any particular assembly. The following program segments
for example, might be part of a program which communicates with either a
Teletype or a CRT console (but not both) by selecting a particular value for
TTY before the assembly begins

10

ar

TRUJE EQU @FFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE

TY BOU TRUE .TRUE IF TTY, FALSE IF CRT
TTYBASE BQU 10H ;BASE OF TTY I/0 FORTS
CRTBASE EQU 20H \RASE OF CRT 1/0 EORTS

IF TTY :ASSEMBLE REIATIVE TO TTYBASE

CONIN BEQU TTYBASE ;OONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLE OUTPUT
ENDIF

-

IF NOT TTY ;ASSEMBLE RELATIVE TO CRIBASE
(QONIN EQU CRIBASE ;CONSOLE INPUT
CONOUT EQU CKRIBASE+1l ;CONSOLE OQUTPUT

ENDIF

iN CONIN ;READ QONSOLE DATA

our CONOUT ;WRITE OONSOLE DATA

In this case, the program would assemble for an environment where a Teletype
is connected, based at port 19H. The statement defining TTY could be changed
to

TTY BQU FALSE
and, in this case, the program would assemble for a CRT based at port 20H.
4.6, The DB Directive.

The DB directive allows the programmer to define initialize storage areas
in single precision (byte) format. The statement form is

label DB et#l, e#2, ..., e#n

where ekl through e#n are either expressions which evaluate to 8~bit values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the number
of expressions included on a single source line, The expressions are
evaluated and placed sequentially into the machine code file following the
last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last character., Strings of length greater than tw0o characters cannot be
used as operands in nore complicated expressions (i.e., they must stand alone
between the cammas)., Note that ASCII characters are always placed in memory
with the parity bit reset (8). Further, recall that there is no translation
fran lower to upper case within strings, The optional label can be used to
reference the data area throughout the remainder -of the program. Examples of

valid DB statements are

data: DB 0,1,2,3,4,5
DB data and 0ffth,5,3770,1+2+3+4
signon: DB “please type your name ,cr,lf,0
DB °AB° SHR 8, 'C°, 'DE° AND 7FH

4.7. The DW Directive,

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e¥l, e#2, ..., e#n

where efl through e#n are expressions which evaluate to 16-bit results, Note
that ASCIT strings of length one or two characters are allowed, but strings
lorger than two characters disallowed. In all cases, the data storage is
consistent with the 8088 processor: the least significant byte of the
expression is stored forst in memory, followed by the most significant byte.
Examples are

doub ¢ DW @ffefh,doub+4,signon-$,255+255
bW ‘a’, 5, ‘ab”, ‘CD", 6 shl 8 or 1llb

4.8, The DS Directive,

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code generation
after the area reserved by the DS. Thus, the DS statement given above has
exactly the same effect as the statement

label: EQU § :LABEL VALUE IS CURRENT CODE LOCATION
ORG S$+expression ;MOVE PAST RESERVED AREA

5. OPERATION CODES.

Assembly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction, In
general, ASM accepts all the standard mnemonics for the 1Intel 8088
microcomputer, which are given in detail in the Intel manual "8080 Assembly
Langquage Programming Manual.” Labels are optional on each input line and, if
included, take the value of the instruction address immediately before the
instruction is issued, The individual operators are listed breifly in the

12

following sections for campleteness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range -7
which can be one of the predefined registers
A, B,C, D, E, H L, M, 5P, or PSW.

e8 represents an 8-bit value in the range @255
el6 represents a 16-bit value in the range #-65535

which can themselves be formed from an arbitrary combination of operands and
operators. In some cases, the operands are restricted to particular values
within the allowable range, such as the PUSH instruction, These cases will be
noted as they are encountered.

In the sections which follow, each operation codes is listed in its most
general form, along with a specific example, with a short explanation and
special restrictions.

5.1, Jumps, Calls, and Returns,
The Jump, Call, and Return instructions allow several different forms

which test the condition flags set in the 80880 microcomputer CPU. The forms
are

JMP el6 JMP L1 Jump wnconditionally to label
JNZ el6 JMP L2 Jump on non zero condition to label
Jz elé JMP 100@H Jump on zer¢ condition to label
JNC el6 JINC El+4 Jump no carry to label

JC elé JC L3 Jump on carry to label

JBO elé JEO $+8 Jump on parity odd to label

JPE el6 JEE L4 Jump on even parity to label

JP elé JP GAMMA Jump on positive result to label
JM elé6 JM al Jump on minus to label

CALL elé CALL Sl Call subroutine unconditionally
MNZ elé vz s2 Call subroutine if non zero flag
CZ elé6 CZ 1loeH Call subroutine on zero flag
NC el6 ONC S1+4 Call subroutine if no carry set
CC elé cC 83 Call subroutine if carry set
CRO el6 CRO S$+8 Call subroutine if parity odd
CPE elé6 CPE S4 Call subroutine if parity even

CP el6 CP GAMMA Call subroutine if positive result
CM els CM blSc2 Call subroutine if minus flag

RST e3 RST @ Programmed "restart", equivalent to
CALL 8*e3, except one byte call

13

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

Return from subroutine
Return if non zero flag set
Return if zeroc flag set
Return if no carry

Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

5.2. Immediate Operand Instructions,

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on the
accumulator (register A).

MVI e3,e8

ADI e8
ACI e8
SUT e8
SBI e8
ANT e8
XRI e8
ORI e8
CPI <8

IXI e3,elb

MVI B,255

apI 1

ACI @FFH

SUI L+ 3

SBI L AND 11B

ANI § AND 7FH

XRI 111150000B
ORI L AND 1+1

CPI "a’

LXI B,100H

Move immediate data to register A, B,
C, b, E, H, L, or M (memory)

Add immediate operand to A without carry
Add immediate operand to A with carry
Subtract from & without borrow (carry)
Subtract from A with borrow (carry)
Logical "and" A with immediate data
vExclusive or" A with immediate data
Logical "or" A with immediate data
Compare A with immediate data (same
as SUI except register A not changed)

load extended immediate to register pair
(e3 must be eguivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are provided

in the 8080 repetoire for incrementing or

decrementing single and double precision registers. The instructions are

INR e3
ICR e3
INX e3

DCX e3

INR E

ICR A

INX SP

DCX B

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement register (e3
moduces one of A, B, C, D, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register pair
{e3 must be equivalent to B,D,H, or SP)

5.4. Data Movement Instructions.

14

Instructions which move data from memory to the CPU and from CPU to
memory are given below

MW e3,e3

LDAX
STAX
LHLD
SHLD

LDA
STA
POP

PUSH

IN
our
XTHL
PCHL
SPHL
XCHG

e3
el
elf
el6
elé
el6
e3
el

ef
e8

MV A,B

LDAY B
STAX D
LHLD 11
SHLD L5+x
LA Gamma
STA X35
FOP PSW
PUSH B

IN @
our 255

Move data to leftmost element from right-
most element (e3 produces one of A,B,C
D,E,H,L, or M), MOV M,M is disallowed
Load register A from computed address
(e3 must produce either B or D)

Store register A to computed address
(e3 must produce either B or D)

Load HL direct from location el6 (double
precision load to H and L)

Store HL direct to location elé (double
Precision store from H and L to memory)
Load register A from address el6

Store register A into memory at el6
Ioad register pair from stack, set SP
{e3 must produce one of B, D, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Load register A with data from port e8
Send data from register A to port e8
Exchange data from top of stack with HL
Fill program counter with data from HL
Fill stack pointer with data from HL
Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations.

Instructions which act upon the single precision accumulator to perform

arithmetic and logic operations are

ADD
ADC
suB
SBB
ANA
ORA
cMp

cMA
STC

e3

e3
el

el

e3
el
e3
e3

ADD B

ADC L
SUB H

SBB 2

Add register given by e3 to accumulator
without carry (e3 must produce one of a,
B, C, D, E, H, or L}

Add register to A with carry, e3 as above
Subtract reg e3 from A without carry,

e3 is defined as above '

Subtract register e3 from A with carry,
e3 defined as above

Logical “and" reg with A, e3 as above
"Exclusive or" with A, e3 as above
Logical "or" with A, e3 defined as above
Compare register with A, e3 as above
Decimal adjust register A based upon last
arithmetic logic wnit operation
Complement the bits in register A

Set the carry flag to 1

15

cMC Complement the carry flag

RLC Rotate bits left, (re}set carry as a side
effect (high order A bit becomes carry)

RRC Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)

RAL Rotate carry/A register to left (carry is
imvolved in the rotate)

RAR Rotate carry/A register to right (carry

is involved in the rotate)
DAD e3 DAD B Double precision add register pair e3 to
HL (e3 must produce B, D, H, or SP)
5.6. Control Instructions.

The four remaining instructions are categorized as control instructions,
and are listed below

HLT Halt the 8080 processor

D1 Disable the interrupt system
EI Enable the interrupt system
NOP No operation

6. ERROR MESSAGES.

when errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing, The
line in error is also echoed at the console so that the source listing need
not be examined to determine if errors are present. The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be computed at assembly time

L Label error: label cannot appear in this context
(may be duplicate label)

N Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

0} Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

P Phase error: label does not have the same value on
two subsequent passes through the program

16

7.

R Register error: the value specified as a register
is not compatible with the operation code

v Value error: operand encountered in expression is
improperly formed

Several error message are printed which are due to terminal error
conditions

NO SQURCE FILE PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME ERROR

SOURCE FILF READ ERROR

OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

A SAMPLE SESSION.

The file specified in the ASM command does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file name (e.g., it
is specified with "?" fields)

Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

Output files cannot be written properly, most
likely cause is a full disk, erase and retry

Output file cannot be closed, check to see
if disk is write protected

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language progr am,

ASM SORT, assesble SopT.RsMm

CP/M ASSEMBLER - VER 1.8

B15C

vmxt4}eeadduas

pa3H USE FacToR of f ~tzble used 0o To FF C&wdecdd)

END GF ASSEMBLY

DIR SORT. %,
SORT asH souxe file it
SORT BAK loackup frn {ast edd
SORT PRN prisk file (contavns. Tt Chasaciers)
SORT HEX wackwe code file
AYTYPE SORT.PRN
» X
Source (me
code. loczhan 7 SORT PROGRAN IN CP/M ASSEMBLY LANGUAGE
wacluwe ocaT - START AT THE BEGINNING OF THE TRANSIENT PROURAN AR
6180) ORG 160H
qwukAwIdAuLCﬂdz
8166 2146010 SORT. LXI H, S¥ ;ADDRESS SWITCH TOGGLE
0103 3661 MY I M, 1 JSET TO 1 FOR FIRST ITERATION
8185 214781 LRI H, 1 ;ADDRESS INDEX
21868 2600 My 1 M, 0 ;1 = @
; COMPARE I WITH ARRAY SIZE
e1ea 7E COMP. MOV A M ;A REGISTER = 1
@188 FER9 cPl N-1 ,EY SET IF 1 € (N-1)
@180 0219081 JHC CONT ;CONTINUE IF 1 (= (N-2)
; END OF ONE PARSS THROUGH BATA
Q110 214601 LX1 H, 5§ ;CHECK FOR ZERO SUITCHES
0113 7EB7C200081 MOV A,M! DKRA A! JNZ SORT ;END OF SORT IF SW=@
8118 FF RST 7 ;60 TO THE DEBUGGER I1NSTEAD NF RE¢
; uhcakﬂCDNTINUE THIS PRSS
i ADDRESSING 1, &0 LOAD AV(I> INTDO REGISTERS
@119 SF168P2148CONT. MOY E.A! MVI D, @! LXI H.A¥! DAD D! DAD D
@121 4E792346 . MOY C.H! MOY A, C! INX H! MOV B.M
| ; LOU GRDER BYTE IN A AHD C, HIGH ORDER BYTE IN B
; MOV W AND L TOQ ARBDRESS AV(I+1)
@125 23 THX H
i
i COMPARE VALUE WITH REGS CONTAINING AYV(ID)
8126 965778239E SUE M! MOV D,A! MOV A, B! INX H' SBEB W ;SUBTRACT
; BORROW SET I1F AYC(1+1) > AVCI)D
@128 DA3FO1 Je INCI ;SKIP IF IN PROPER ORDER
o CHECK FOR EQUAL VALUES
@I1RPE B2CA3FOI ORA D' gZ IHCL +SKIP IF AVCI) = AY(1+1) 1§

@132 Se7@2B5SE Moy DO, M! HOY M. B! DCX H! MOV E.nN

@136 712B722873 MOY M.C! BCKX H! MGY M, D! DCX H! MOV M. E

; INCREMENT SWITCH COUNT
0138 21468134 LX1 H,SW! INR M

; INCREMENT 1
B13F 21478134C3INCI: LK1 H, 1! INR M! JMP COMP

; DATA DEFINITION SECTION
0146 86 Su. DB @ ;RESERYE SPACE FOR SWITCH COUNT
0147 1. ' i ;SPACE FOR INDEX
@148 OSOA64@BIEAY. U 5, 180,36, 56, 20, 7, 1800, 350, 188, -32767
00EA = EQU ($-8Y),2 ;COMPUTE N INSTEAD OF PRE
015¢C —¢ ulzwnut- END

v
AYTYPE SORT. HEX‘P

. 10818608214601360121478136087EFEB902196146

. 106118062146817EB7C26001FF5F1606214801 1983 ‘ [

. 18812600194E79234623965778239EDAIFA1B2CAAT "‘“‘%‘“" R
:186130003FB156702R5E712B72287321460813421C7 MEX Tavaat
.87014006470134C30081006E

1190 14800050064001F003200140207P0EBRI2C 018D

. 0401580664006 186BE

. 0086666806

AXDDT SORT. HEX, start déuy un

16K DIY VER 1.8)
REXT FC
p15¢c osee defauwtt address (no addvess on BVD sktemed:

~XP)

P=200808 180, Change PC o (00

| : J? {5535 Steps bort Guckta
$%3 ("

-UFFFF) untvace av' xS goor b

COZOMDERID A=A B=6OBD D=BGO0 H-QMEB S=6108 P=B160 LX] H,0146+8160
"TI8y e [0, steps

CoZeMBEBI® A=81 B=PpBOO DsPBBB H=0146 S=01006 P=B1GG LXI H.B146
COZOMBEQ]OG A=0] B=pOBE D[=PBOP H=B8146 S=08180 P=23103 HMVI] K,81
COZGMAER]IG A=P)! B=0000 D=0008 H=9146 S=0108 P=B1ES LXI H.8147
COZOMOEDID® A=B)] B=0(pH0O D=0008 H=0147 S=0168 P=61088 MYI] M,8@
COZoMBERIO A=01 B=POPDG D=P0BB H=0147 S=0190 P=@164 MOV A.H
CoZoMPEDIG A=00 B=G@EBB D=P0BGH H=6G147 S=G106 P=@14E CP] &9
C1Z6MIE@]O A<G0 B=p@oRd0 D=P0Q6 H=0147 S=0100 P=B10D JNC 81193
CI1ZBMIEDGID® R=00 B=0200 D=00068 H=0147 S=Q0100 FP=0119 LXI H.G6146
Cl1ZAMIEOGI® A=00 B=P@06 L=-000p H=06146 S=010@ P=@113 MOV A.M
C1ZBMiEB]1® A=B] B=000P D=BOBBE H=Ot146 S=0100 P=Bi1l4 DRA A
COZOMOED]D® A=f) B=PPBPe D=BODP H=0Q146 S=0i00 P=B115 JNZ B1060
COZBMBER] @ A=01 B=90090 D=BGOP H=B146 $=0100 P=010@ LXI H,B146
COZBNBE@I® A=P1 B=8@R0 D=B@AB H=B146 S=0160 P=0183 HYI M, B1
CoZoMBEDG]Q A=B]1 B=pBBO D=POODP H=0146 S=0106 P=8105 LXI H,8147
C6ZBMBEQG]I D A=B] B=APBO L=0600 H=0147 5=01090 P=0188 MVI M.B0
CBZOMBEG]IO A=B1 B=BRRE D=0000 H=06147 S=0108 P=G61vAa MNV A, M*B 186
~At@D U;?

' " e «f
B1eD ue 119, chame o a yuug on Carey Sty 19

oD
e 2 1#8H

~XP
2

P=0108 180, Vveset progaw cowckr back b beiln&unj f promram

[

~T1e. +race eeadkon €or (04 skpS

»

CoZeMBEDID
CeZoNBEG]O
tezoMoEOl D
CeZBMOEG] G
CeZoMDEQI®
CeZoMpEolDd
CiZeniEQlO
C1Z0MiEBI®
CiZeMiE®l®
C1ZeMi1E@]I®
ClZeMiEele
fOZBMIEGIB
eZaMieelo
CozZeMiEQla
CoZoeMlE®G]I®
CaZeMiERl @
LIGG‘2

p1oa LXI
P13 MV]
9185 LX1
8188 Mvl
p10O4 MOV
atag CPI1
81ep JC
piie LX1
a1t3 MOV
pii4 ORA
B11s% JNZ
L2
6118 RST
8119 Moy
BILA MY
B1tC LXI

- Gt et it rubad
-G, 118, start ?voamu'gm"‘-

H, 8146
M, B1
H,B147
MYI M, @@ N
MOV AL M

CP1 29
8119
£, A
D, 60
H, 8148

P=@l00
P=8183
P=8185
P=@1a8
P=B18A
P=&leb
P=g1@8D JC
P=8119 MOV
P=811A MVI
P=811C LXI
P=811F DAD
P=012@ DAD
P=g12t WOV
P=atz2 mov
P=@123 IRX
P=@124 MOV

LXI
Y1
LX1

B=60800
B=todo
B=pg0bb
B=ggbo
B=b@Bb
B=b#obe D=Boce
8=0000 D=B608
B=eo6e D-Baoe
B=topo D=D0006
B=6b6bP® D=800@0
B=-6o08 D=6B80
B=6060 D=pB0es
B=@@B@ b=a60@
B=8605 D=8000
B=66B85 D=80600
B=6@85 D=8008

A=B0
A=ga
A=00
A=09
A=810
A=B0@
fi=pea
A=6e
A=080
A=0b4a
A=00
A=08
A=Ed
A=00
A=85
A=85

D=p008
D=B8oda
D=8080a
D=008068b
D=Boed

H=0147 5=0180
H=@146 5=6100
H=@146
H=8147 S=01080
H=0147 $=0100
H=8147 5=01080
H=@14?7
H=@147
H=0147 S=01@80
H=0147 £=0108
H=0148
H=8148 $=0100
H=@148 $

H=9148
K=@148
H=0149

o o=

-

T o

s MeB12%

H.B146
M.081
H.8147
H.B88
A, N

Automahic
b reak PO wt

lisk some code

09
s frma 100K

H.8146
AN

A

81609

97 Lt wove
E.AQ

D,oe
H,8148

curved PC 02 and Yl i veal +me o 118H

',,4‘”
@

«0127 54:,??:6 wth auw exdevual \w’famp“' 7 -FVM‘F J\«&((‘Pfoamwum
-T4i ‘Ook a{_ loofl'b ?ygjyam “A +vnce mode 1 \ot'{mj
CPZOMBPEDI® A=30 B=BO64 D=BBO6 H=0B156 S=0180 P=@127 MOV D.A
COZOMPEQID A=38 B=0064 D=23806 H=0156 S=0189 P=8128 MOV A.B
CAZGMOEQLIDP A=00 B=8864¢ D=3806 H=0156 S=0190 P=0129 INX H
Co20MPEGIB A=P0O B=HB64 D=38066 H=0157 S=aie6o P=elza SEE M=612B
~D148

kf" doba 15 sorted, bud program docs-tf 546? .
6148 @5 @@ 07 00 14 60 1E OO
Pp156 32 606 64 0P 64 bo 2C 61 EB 03 Bl 8@ 09 06 @6 PG 2.D.D...
9160 60 00 PO 0D 00 0P ©O 00 B8 vy PO 66 bO OB AL WO .. .

- 2o

—Gﬂa return o CP/ML
BBT SORT. st; reload Hie memwvy IMage
16K DOT VER 1.9

NEXT PC
815C 8608
-XP

P=2008 100 set PC o \oejl;m{.ﬂ aF?mamm
-L183, let bad opeode

818D JNC 8119
8116 LXI H, 0146

" abort Lt wth ruboud
~A18D) assewble new gpcode
810D JC 113,

o118,

-Lige, |t shrhvg sechon of Progosm

6186 LX]1 H.@14d46
B183 MV]I M,a1
6185 LXI H.8147
o188 HMYI M,@0

- oot fist with aubsad o .
-a103) clowe ‘e wchaltatm o gy
8123 MVI M. @,

v1635)
e vehun o P/ witl o€ (68 woks g well)

SAVE 1 SORT.COM, save 1 Pose (256 bytes, fomn 100K 40 26FH) o disk 1ia case

X we have Yo veload [ater
A>DIDT SOURT. COM, yestut DOT ek
Saved mewovy imane
16K DOT YEK 1.8

NEXT FC
Bze@ @106 CoM" -ﬁlc Q(wdss starts wr\‘L address | O0H

~hby run the ?\rcsraw\ Lrom PC=100H
*81138 mewtd stop (2577) enesuntered
~D148 ‘f%?‘q’&b ctrted

8148 95 B0 07 90 14 B0 IE O@
B156 32 PO 64 0D €4 A8 2C O1 Ea 93 Bl 60 0@ 08 96 8O 2.D.D.... . ..
8160 b0 be @0 0P 0D B8 GO OV 0D GB DO @O GO 6P BB 20 .

@178 B@ 60 06 vd ©e B0 0O 6O B3 up Pe @e ev ©8 08 B0

-Gﬂ; returw 4o 0P/

ED SORT.ASH, moke clanaes o an;j\(ul Prograwe
ch-2 . -
tN.ﬂC%BTE, Lond wodt 7

Myl M. e il = 8
"Jutmghu\3+0¢

H. 1 JANDRESS 1INDEX
')urdwﬂﬂlm&
Myl M, 1 JSET THh 1| FOR FIRST ITERATION
*KD h“ \uMJ{g wixd line
) LA1 | H, 1 ;ADDRESS 1NWNDEX
*b watrt whw line
Myl M, 8 ;ZERD SUW
U
LX1 H., I ;ADDRESS INDEX
*NJHN 0T,
: J,NC*T)
CONT JCONTINUE IF 1 (= (N-2)
«-2010CpL T, | |
JiC CONT GCONTINUE IF T (= (H-2)2
*E me.frmchsiﬁ
4 od hey ¥o dist A

ASH SDRT. ﬂﬁ%{“@hpﬂﬂ;h

CPsH ASSEMBLER - VER 1.8

g150 want addras o assewble
BdIR USE FACTOR
END OF ASSEMBLY

ODT SORT.HEX, dest proyose Cliarges

1€K DDY VEEK 1. @
HEZT PC

G150 pooe
-Gl&%e

*B118
-D14%J

O ot 5ot

8148 BS 86 B7? 0B 14 b0 1E GO

8158 32 @8 64 BB 64 BB 2C 081 EB 03 Bl 80 64 a8 906 h@.2.D.DB..,..

Bléo PO GO Go OB ©G bG be BO 6V @O b BO Ovw 69 90 WO

- abovt wt“da rubed

Ge) ﬁﬂung+08fﬂu—1WfTOUA Checks ok .’

]

DIGITAL RESEARCH

Post Office Box 5§79, Pacific Grove, California 93950, (408) 649-3896

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM

USER'S MANUAL

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright {c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transeribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacifiec Grove, California 93950,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

ED TUTORIAL « « « « « « & =
1.1 Introduction to ED . . .
1.2 ED Operation . . . + =«

1.3 Text Transfer Functions

1.4 Memory Buffer Organization .

1.5 Memory Buffer Operation

l.6 Command Strings

1.7 Text Search and Alteration

1.8 Source Libraries

1.9 Repetitive Command Execution

ED ERROR CONDITIONS

CONTROL CHARACTERS AND COMMANDS .

ii

11

12

13

14

ED USER'S MANUAL

1. ED TUTORIAL
l.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

<filename>
ED
<filename>.<filetype>

In general, ED reads segments of the source file given by
<filename> or <filename> . <filetype> into central memory,
where the file is manipulated by the operator, and subse-
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

l1.2. ED Operation

ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the orilginal
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

™~
1.3. Text Transfer Functions

Given that n is an integer value in the range 0 through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem-
porary (and eventually final) file:

Figure 1. Overall ED Operation

Y
N

Source
Libraries
_/_____‘ _ &
Source Append (R) Write Temporary
File (A)\ (W) File

Memory Buffer I
|
|
|
|
|

Type *

(::::?::::) Insert 1
(I) (T)
Backup New
File @ Source
File
NN =
| S— 1

‘ Note: the ED program accepts both lower and upper case ASCIT
|

(

characters as input from the console. S§ingle letter commands
can be typed in either case. rhe U command can be issued to

cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.

Characters are echoed as typed without translation, however.
The +U command causes ED to revert to "no translation” mode.

ED starts with an assumed -U in effect.

Figure 2.

Source File

SP

Memory Buffer Organization

Memory Buffer

First Line. " First Line)
\'Appended .\ | Buffered)|
TOATLY v N _\.
~'Lines . > o N Text _.
~ NN\ T —_
| I wp s v N

| |

: Unprocessedl NexE : Free |

| Source | Append I Memory |

{ Lines : | Space :

e - e — — — — 1 s e e e —
Figure 3.

Temporary File

M First Line™
\ Processed :\

pr———, N\ by \

.\ Text NN
— - N\
N N

pre—

NN N N \

Free File

!

|

| Space :
' i

Logical Organization of Memory Buffer

Memory Buffer

first
line

current
line CL

last
line

<gr><1lf>

na<cr>* - append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

nW<cr> - write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

E<cr> = end the edit. Copy all buffered text
to temporary file, and copy all un-
processed source lines to the temporary
file. Rename files as described
previously.

H<er> - move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

O<ecr> - return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position 1 of the scurce file. The
effects of the previous editing commands
are thus nullified.

Q<cr> = gquit edit with no file alterations,
return to CP/M.

There are a number of special cases to consider. 1If the
integer n is omitted in any ED command where an integer is

- allowed, then 1 is assumed. Thus, the commands A and W append

one line and write 1 line, respectively. 1In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file

to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<cr> represents the carriage-return key

commands are provided as a convenience. The command 0A fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require-
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

1.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carrigge-
return (<cr>) and line-feed (<1f>) characters, and
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the |
first line, behind the last character of the last line, or |
between two characters. The current line CL is the source |
line which contains the CP.

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the lines directly from the console
with the insert command

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <cr> (the <1f> is supplied automatically),
until a control-z {(denoted by +z is typed by the operator.
The CP is positioned after the last character entered. The
seguence

I<cr>

NOW IS THE<cr>
TIME FOR<cr>

ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

NOW IS THE<cr><lf>
TIME FOR<cr><1lf£f>

ALL, GOOD MEN<cr><lf> .t

Various commands can then be issued which manipulate the CP

or display source text in the vicinity of the CP. The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by

t, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced
by 65535. If an integer n is optional, but not supplied,

then n=1 is assumed. Finally, if a plus sign is optional,

but none is specified, then + is assumed.

tB<cr> move CP to beginning of memory buffer

if +, and to bottom if -.

tnC<cr> - move CP by in characters (toward front
of buffer if +), counting the <cr><1lf>
as two distinct characters

tnD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

tnK<cr> - kill (ie remove) in lines of source text
using CP as the current reference. If
CP is not at the beginning of the current
line when K is issuec, then the charac-
ters before CP remain if + is specified,
while the characters after CP remain if -
is given in the command.

tnli<cr> - if n=0 then move CP to the beginning of
the current line (if it is not already
there) if n#0 then first move the CP to
the beginning of the current line, and
then move it to the beginning of the
line which is n lines down (if +) or up
(if -). The 'CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified.

tnT<cr> - If n=0 then type the contents of the
current line up to CP. If n=1 then _
type the contents of the current line
from CP to the end of the line. 1If
n>1 then type the current line along
with n-1 lines which follow, if +
is specified. Similarly, if n>1 and
- is given, type the previous n lines,
up to the CP. The break key can be
depressed to abort long type-outs.

tn<cr> - equivalent to *nLT, which moves up or
down and types a single line

l1.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <cr> is typed. Thus, the operator may use
the CP/M conscole command functions to manipulate the input
command :

Rubout remove the last character
Control-U delete the entire line
Control-C re~initialize the CP/M System
Control-E return carriage for long lines

without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String Effect Resulting Memory Buffer
1. B2T<cr> move to beginning NOW IS THE<cr><l£>
of buffer and type °p TIME FOR<cr><lf>
2 lines:
"NOW IS THE ALL GOOD MEN<cr><lf>
TIME FOR"
2. 5CQT<cr> move CP 5 charac- NOW I ::js THE<cr><1lf>
ters and type the cp

beginning of the
line
"NOW I"

3. 2L-T<cr> move two lines down NOW IS THE<cr><lf>
and type previous TIME FOR<cr><lf>

line
"TIME FOR" | ALL GQOOD MEN<cr><lf>

4. -L#K<cr> move up one line, NOW IS THE<cr><1f>'
delte 65535 lines

which fecllow

5. I<cr»> insert two lines NOW IS THE<cr>»<lf>
TIME TO<cr> of text
> >
INSERT<cr> TIME TO<cr><1f

tz INSERT<cr><lf>

6. =2L#T<cr> move up two lines, NOW IS THE<cr><lf>

and type 65535
lines ahead of CP TIME TO<cr><lf>

"NOW IS THE" INSERT<cr><1lf>
7. <cr> move down one line NOW IS THE<cr><lf>
and type one line
" INSERT" TIME TO<cr><lf> iCPj
INSERT<cr><1f>

1.7. Text Search and Alteration

ED also has a command which locates strings within the
memory buffer. The command takes the form

F <cr>
n Clcz...ck +z

where c; through cx represent the characters to match followed
by either a <cr> or control -z . ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is

moved directly after the character cp. If the n matches are
not successful, the CP is not moved from its initial position.
Search strings can include +tl ‘'(control-l}, which is replaced
by the pair of symbols <cr><lf>.

*The control-z is used if additional commands will be typed
following the +tz.

The following commands illustrate the use of the F
command :

Command String Effect Resulting Memory Buffer
1. B#T<cr> move to beginning NOW IS THE<cr><lf>
and type entire
buffer TIME FOR<cr><lf>
ALL GOOD MEN<cr><1lf»>
2. FS T<cr> find the end of NOW IS 'I'HE<cr><1'f>
the string "S T"
3. FI+z0TT find the next "I" . NOW IS THE<cr><lf>
and type to the
CP then type the TI ME FOR<cr><1lf>
remainder of the ALL GOOD MEN<cr><lf>
current line:
"TIME FOR"

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

I clcz... cn+z or

Ic,cC

- ® @ c <cr>
172 n

where cj; through ¢, are characters to insert. If the inser-
tion string is terminated by a tz, the characters c; through
Cp are inserted directly following the CP, and the CP is
moved directly after character c,. The action is the same.
if the command is followed by a <ecr> except that a <cr><lf>
is automatically inserted into the text following character
Cpn. Consider the following command sequences as examples

of the F and I commands:

Command String Effect Resulting Memory Buffer
BITHIS IS tz<cr> Insert "THIS IS " THIS IS NOW THE <cr><lf>
at the beginning
of the text

TIME FOR<cr><lf>
ALL GOOD MEN<cr><1f>

FTIME+z-4DIPLACE+4z<cr> THIS IS NOW THE<cr><lf>

find "TIME" and delete PLACE FOR<cr><lf>
it; then insert "PLACE" ALL GOOD MEN<cr><lf>
3F0+z-3D5DICHANGESt<cr> THIS IS NOW THE <cr><1lf>

find third occurrence PLACE FOR<cr><lf>

of "O" (ie the second ALL CHANGES‘a;<cr><lf>
"O" in GOOD), delete

previous 3 characters;

then insert "CHANGES"

-8CISOURCE<cYxy> move back 8 characters THIS IS NOW THE<cr><1lf>
and insert the line PLACE FOR<cr><1f>

"SOURCE<cr><1lf>"
ALL SOURCE<cr><lf>

CHANGES<cr><lf>

ED also provides a single command which combines the F and
I commands to perform simple string substitutions. The command
takes the form

<or>
ns clcz...ck+z dld2°"dm { ‘2

and has exactly the same effect as applying the command string

<LCor>
F clcz...ck+z kDIdldz"'dm { 2

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successively sub-
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to F is provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

cr
n N clcz...ck {+z}

which searches the entire source file for the nth occurrence
of the string cjca...cx (recall that F fails if the string
cannot be found in the current buffer). The operation of the

10

4 command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #W is issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

<or>
n J clcz...ck+z dldz...dm+z elez...eq {:+2_}

with the following action applied n times to the memory buffer:
seaych from the current CP for the next occurrence ¢f the
string C1C3.+-.Cr. If found, insert the string dydo.. ., dp,

and move CP to %ollow dm+ Then delete all characters following
CP up to (but not including) the string e;,e,,...e;, leaving

CP directly after dn. If €1/€2/+:.8g cannot be foand, then

no deletion is made. If the current line is

NOW IS THE TIME<cr><lf>

Then the command
JW +2WHAT+ztl<cr>

Results in

NOW WHAT <cr><lf>

{(Recall that +1 represents the pair <cr><1lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S5,N, and J commands is limited to 100 symbols.

1.8. Source Libraries
ED also allows the inclusion of source libraries during

the editing process with the R command. The form of this
command is .

11

R £ £

1 2..fn+z or

R flfz..fn<cr>

where fif;..f, is the name of a source file on the disk with
as assumed fi?etype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB
until the end-of-file, and automatically inserts the charac-
ters into the memory buffer.

l.9. Repetitive Command Execution

The macro command M allows the ED user to group ED com-
mands together for repeated evaluation. The M command takes

the form:
<or>
nM clc2"'ck {“fz}

where cjcjy...cx represent a string of ED commands, not inclu-
ding another M command. ED executes the command string n
times if n>1. If n=0 or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).
As an example, the following macro changes all occur-
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMA+z-5DIDELTA+z0TT<cr>

or equivalently

MSGAMMA+zDELTA+2z0TT<cr>

12

2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized command

> memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or §
strings too long.

cannot apply command the number
of times specified (e.g., in
F command)

o cannot open LIB file in R
command

Cyclic redundancy check {(CRC) information is written with
each output record under CP/M in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where d is the currently selected drive (A,B,...). The oper-
ator can choose to ignore the error by typing any character
at the consocle (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con-
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where x is the file being edited. Then remove the primary
file:

ERA x.y<cr>
and rename the BAK file:
REN x.y=xX.BAK<cr>

The file can then be re-edited, starting with the previous
version.

13

| 3. CONTROL CHARACTERS AND COMMANDS

The following table summarizes the control characters
and commands available in ED:

Control Character Function
+e system reboot
te physical <cr»><lf> (not
actually entered in
command)
t+i logical tab (cols 1,8,
ls'oo-)
+1 logical <«cr><lf> in
-search and substitute
strings
+u ling delete
tz string terminator
rubout character delete
break discontinue command

(e.g., stop typing)

Command

na

n2

tn<cr>

Function
append lines
begin bottom of buffer
move character positions
delete characters

end edit and close files
{normal end)

find string

end edit, clcse and reopen
files

insert characters

place strings in juxtaposition
kill lines

move down/up lines

macro definition

find next occurrence with
autoscan

return to qriéinal file
move and print pages

guit with no file changes
read library file
substitute strings

type lines

translate lower to upper case if U,
no translation if -U
write lines

sleep

move and type (:nLT)

15

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are fourid-in the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by
a number followed by a colon, in the same format as the line number display. Ih this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the ecommand

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command

A480T

is interpreted as "type from the current line number tbrough the line whose absolute
number is 468." Combining the two line reference forms, the command

345::400T
for example, is interpreted as "move to absolute line 345, then type through absclute
line 448," Note that absolute line references of this sort can precede any of the

standard ED commands.

A special case of the V command, "#V", prints the memory buffer statisties ir
the form:

free/total

Where "t_‘ree" is the number of free bytes in the memory buffer (in decimal), and "total"”
is the size of the memory buffer.

ED 1.4 also includes a "bloek move" facility implemented through the "X" (Xfer)
command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$3$$3$8.LIB

which is active only during the editing process. In general! the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line acecumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although 2 K command
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The ecommand

Ax
is provided, however, to empty the transferred _line file.

: Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed, If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas-
terous commands to be typed as single letters, rather than in composite commands.
The ecommands

E (end), H (head), O (original), Q (quit)
must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT ¢

where x is the error character, and ¢ is the command where the error oeccurred.

80) DIGITAL RESEARCH®

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M DYNAMIC DEBUGGING TOOL (DDT)
USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (¢} 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetie,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Section

I.
II.

v,

Table of Contents

Page

INIImDUCI‘Im LA AR E R NN R R NN RN N N N Y R SR l
DDI‘ mM.MAN[B LR AR N RN RN Y N N N N N R R AR

l.
2.
3.
4‘.
5.
6.
7o
8.
9.

The
The
The
The
The
The
The
The
The

14. The
11. The
12, The
III' IMPLEMENTATION NOTES LB A A N R S N N N R N N N S R SRR
m EXAMPLE LE AN R R RN RN N N N N R N N R R R)

XOCHRNIIZoHOTO D

(Assenble) Cmrﬁ (LA N R RN RN R RN NN NN NN N
(DiSplay) COI'HII'Ial’\d tAPSEBEOSENDIOEBRARRARES
(Fill) CO!Tlmand S re IR0 LINEIEEIEIREGERRIRTERS
(Go) Cmrﬂ l..ll..I..‘...I..‘....I....
(Input) Cmm [B A R RN E N RN N NN NN NN N NN N ENE]
(LiSt) C(Xnmand (AR R ERENENENE NN NREN NN NNEREY]
(Move) Cammm LA BN AN ENE N NN NN NN NN NN
(Read) Cmrﬂ [LE R ENEENNNENNNNENNEEENNNENNENE)
(%t) Cmm LA R R AN NS RN N N N E NN N N NN NN NN
(Trace) COMMANG esessssssoarcosssascnses
(Untrace}) COMMANG eeeeevasescsssnesscnne
(ExaminE) Command LE RN R N N R N W N N IR AP

=0 0000 ~d <l Ui bW W

=

CP/M Dynamic Debugging Tool (DDT)

User "s Guide

I. Introduction,

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP/M enviromnment., The debugger is initiated by
typing one of the following commands at the CB/M Console Command level

DOT _
DOT filename ,HEX
DET filename,COM

wvhere "filename" is the name of the program to be loaded and tested. In both
cases, the DDT program is brought into main memory in the place of the Console
Command Processor (refer to the CP/M Interface Guide for standard memory
organization), and thus resides directly below the Basic Disk Operating System
portion of CP/M. The BDOS starting address, which is located in the address
field of the JMP instruction at location 5H, is altered to reflect the reduced
Transient Program Area size.

The second and third forms of the DDT command shown above perform the same
actions as the first, except there is a subsequent automatic load of the
specified HEX or (OM file. The action is identical to the sequence of
commands

poT
Ifilename . HEX or Ifilename.COM
R

where the I and R commands set up and read the specified program to test (see
the explanation of the I and R commands below for exact details).

Upon initiation, DDT prints a sign-on message in the format
nnkK DDT-s5 VER m.m

where nn is the memory size (which must match the CP/M system being used), s
is the hardware system which is assumed, corresponding to the codes

- Digital Research standard version
- MDS version

IMSAI standard version

- Omron systems

- Digital Systems standard version

nNoOHET T
1

and m.m is the revision number.

Following the sign on message, DDT prompts the operator with the character
"—» and waits for input commands from the console, The operator can type any
of several single character commands, terminated by a carriage return to
execute the command. Each line of input can be line-edited using the standard
CP/M controls :

rubout remove the last character typed
ctl-U remove the entire line, ready for re-typing
ctl-C system reboot :

Any command can be up to 32 characters in length (an automatic carriage return
is inserted as the 33rd character), where the first character determines the
command type 7 ;

enter assembly language mnemonics with operands
display memory in hexadecimal and ASCII

fill memory with constant data :
begin execution with optional breakpoints

set up a standard input file control block
list memory using assembler mnemonics

move a memory segment from source to destination
read program for subseguent testing N
substitute memory values

trace program execution

mtraced program monitoring

examine and optionally alter the CPU state

XOHWUWDEBH-OTO P

The cammand character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by commas or single blank characters.
All DIT numeric output is in hexadecimal form. 1In all cases, the commands are
not executed until the carriage return is typed at the end of the command.

At any point in the debug run, the operator can stop execution of DDT
using either a ctl-C or G@ (jmp to location @@0¢H), and save the current
memory image using a SAVE command of the form ' ‘

SAVE n filename.OOM

where n is the number of pages (256 byte blocks) to be saved on disk. The
number of blocks can be determined by taking the high order byte of the top
load address and converting this number to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the number of
pages is 12H, or 18 in decimal., Thus the operator could type a ctl-C during
the debug run, returning to the Console Processor level, followed by :

SAVE 18 X.COM

The memory image 1is saved as X.COM on the di'sket:te, ardd can be directly
executed by simply typing the name X. If further testing is required, the
memory image can be recalled by typing '

DOT X.COM

which reloads previously saved program from loaction 100H through page 18
(12FFH). The machine state is not a part of the (OM file, and thus the
program must be restarted from the beginning in order to properly test it,

II. DOT COMMANDS,

The individual commands are given below in some detail. 1In each case, the
operator must wait for the prompt character (-} before entering the command,
If control is passed to a program under test, and the program has not reached
a breakpoint, control can be returned to DDT by executing a RST 7 from the
front panel (note that the rubout key should be used instead if the program is
executing a T or U command). In the explanation of each command, the command
letter is shown in some cases with nunbers separated by cammas, where the
nurbers are represented by lower case letters, These nurbers are always
assumed to be in a hexadecimal radix, and from one to four digits in length
(longer numbers will be automatically truncated on the right).

Many of the cammands operate upon a “CPU state" which corresponds to the
program under test. The CPU state holds the registers of the program being
debugged, and initially contains zeroes for all registers and flags except for
the program counter (P} and stack pointer (S), which default to 16@H. The
program counter is subsequently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I and R
commands) .

l. The A (Assemble) Command. DDT allows inline assembly language to be
inserted into the current memory image using the A command which takes the
form

As

where s is the hexadecimal starting address for the inline assembly. DDT
prompts the console with the address of the next instruction to fill, and
reads the console, looking for assembly language mnemonics (See the Intel 8088
Assembly language Reference Card for a 1list of mnemonics), followed by
register references and operands in absolute hexadecimal form. Each sucessive
load address is printed before reading the console. The A command terminates
when the first empty line is imput from the console,

Upon campletion of assembly lanquage input, the operawor can review the
memory segment using the DDT disassembler (see the L command).

Note that the assembler/disassembler portion of DDT can be overlayed by
the transient program being tested, in which case the DDT program responds
with an error condition when the A and L commands are used (refer to Section
vy,

2. The D (Display) Command. The D command allows the operator to view
the contents of memory in hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, memory is displayed from the current display address
(initially 109H), and continues for 16 display lines. Each display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccecccccececeee

where aaas is the display address in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa are
given to the right (represented by the sequence of c¢’s), where non-graphic
characters are printed as a period (.) symbol. Note that both upper and lower
case alphabetics are displayed, and thus will appear as upper case symbols on
a console device that supports only upper case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so that the next line begins at an address which is a multiple of 16.

- The second form of the D command shown above is similar to the first,
except that the display address is first set to address s. The third form
causes the display to continue from address s through address f, In all
cases, the display address is set to the first address not displayed in this
command, so that a continuing display can be accomplished by issuing
successive D commands with no explicit addresses,

Excessively long displays can be aborted by pushing the rubout key.

3. The F (Fill) Command, The F command takes the form
Fs,f,c

where s 1s the starting address, f is the final address, and ¢ is a
hexadecimal byte constant. The effect is as follows: DT stores the constant
c at address s, increments the value of s and tests against f. If s exceeds f
then the operation terminates, otherwise the operation is repeated. Thus, the
fill camnmand can be used to set a memory block to a specific constant value.

4, The G (Go) Command., Program execution is started using the G comand,
with up to two optional breakpoint addresses. The G command takes one ot the
forms

G
Gs
Gs,b

Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the program counter in the current machine state, with no breakpoints set
{the only way to regain control in DDI is through a RST 7 execution). The
current program counter can be viewed by typing an X or XP command. ‘The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins, The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are specified, one at b and the other at c. Encountering either
breakpoint causes execution to stop, and both breakpoints are subsequently
cleared. The last two forms take the program counter from the current machine
state, and set one and two breakpoints, respectively,

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDT. Thus, if the program under test does not reach
a breakpoint, control cannot return to DDT without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and types

*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) command. The operator must specify breakpoints which
differ from the program counter address at the beginning of the G command.
Thus, if the current program counter is 1234H, then the commands

G,1234
and
400,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.,

5. The I (Input) Command. The I command allows the operator to insert a
file name into the default file control block at 5CH (the file control block
created by CP/M for transient programs is placed at this location; see the
CP/M Interface Guide). The default FCB can be used by the program under test
as if it had been passei by the CP/M Console Processor, Note that this file
name is also used by DDT for reading additional HEX and COM files., The form
of the I command is

Ifilename
or

Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details),

6. The L (List) Command. The L command is used to list assembly language
mnemonics in a particular program region, The forms are

L
Ls
LS,f

The first cammand lists twelve lines of disassembled machine code from the
current list address. The second form sets the list address to s, and then
lists twelve lines of code, The last form lists disassembled code from s
through address f. In all three cases, the list address is set to the next
unlisted location in preparation for a subseguent L command. Upon
encountering an execution breakpoint, the list address is set to the current
value of the program counter (see the G and T commands). Again, long typeouts
can be aborted using the rubout key during the list process.

7. The M (Move) Command. The M command allows block movement of program
or data areas from one location to another in memory. The form is

Ms,f,d

where s is the start address of the move, £ is the final address of the move,
and 4 is the destination address. Data is first moved from s to d, and both
addresses are incremented. If s exceeds f then the move operation stops,
otherwise the move operation is repeated.

8. The R (Read) Command. The R command is used in conjunction with the I
command to read COM and HEX files from the diskette into the transient program
area in preparation for the debug run. The forms are

R
Rb

where b is an optional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters from @@@H through @FFH (i.e., the first page of memory). If
b is cnitted, then b=0@#6@ is assumed. The R command requires a previous I
command, specifying the name of a HEX or COM file. The load address for each
record is obtained from each individual HEX record, while an assumed load
address of 100¢H is taken for COM files., Note that any number of R commands
can be issued following the I command to re-read the program under test,

assuming the tested program does not destroy the default area at 5CH.
Further, any file specified with the filetype "COM" is assumed to contain
machine code in pure binary form (created with the LOAD or SAVE command), and
all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM command).

Recall that the command
DOT filename.filetype
which initiates the DDT program is equivalent to the commands

por
=Ifilename.filetype
-R

Whenever the R command is issued, DIDT responds with either the error indicator
"?" (file cannot be opened, or a checksum error occurred in a HEX file), or
with a load message takina the form

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (10PH for COM files, or taken from the last record if
a HEX file is specified).

9., The S (S5et) Command. The S command allows memory locations to be
examined and optionally altered., The form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration of
memory. DODT responds with a numeric orompt, giving the memory location, along
with the data currently held in the memory location. If the operator types a
carriage return, then the data is not altered. If a byte value is typed, then
the value is stored at the prompted address. In either case, DDT continues to
prampt with successive addresses and values until either a period (.) is typed
by the operator, or an invalid input value is detected. '

18. The T (Trace) Command, The T command allows selective tracing of
program execution for 1 to 65535 program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, ard the next program step is
executed, The program terminates immediately, with the termination address

displayed as
*hhhh

where hhhh is the next address to execute. The display address (used in the D
command) is set to the value of H and L, and the list address (used in the L
command) is set to hhhh, The CPU state at program termination can then be
examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a program
breakpoint is occurs., A breakpoint can be forced in the trace mode by typing
a rubout character., The CPU state is displayed before each program step is
taken in trace mode. The format of the display is the same as described in
the X command.,

Note that program tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test, Thus, CB/M
functions which access I/0 devices, such as the diskette drive, run in
real-time, avoiding I/0 timing problems. Programs running in trace mode
execute approximately 50@ times slower than real time since DDT gets control
after each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that commands which use the breakpoint facility
{G, T, and U) accomplish the break using a RST 7 instruction, which means that
the tested program cannot use this interrupt location., Further, the trace
mode always runs the tested program with interrupts enabled, which may cause
problems if asynchronous interrupts are received during tracing.

Note also that the operator should use the rubout key to get control back
to DIT during trace, rather than executing a RST 7, in order to ensure that
the trace for the current instruction is completed before interruption,

11, The U {(Untrace) Command. The U command is identical to the T command
except that intermediate program steps are not displayed. The wntrace mode
allows from 1 to 65535 (@FFFFH) steps to be executed in monitored mode, and is
used principally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command apply to the U
command.,

12. The X (Examine) Command. The X command allows selective display and
alteration of the current CPU state for the program under test. The forms are

X
Xr

where r is one of the 8088 CPU registers

C Carry Flag (6/1)
Z Zero Flag (0/1)

Minus Flag (0/1)
Even Parity Flag (8/1)
Interdigit Carry (8/1)
Accumulator (@—FF)
BC register pair (B~-FFFF)
DE register pair (@-FFFF)
HL register pair (#-FFFF)
Stack Pointer (@~FFFF)
Program Counter (B—FFFF)

Tnnowr=mO

In the first case, the CPU register state is displayed in the format
CE£ZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a @ or 1 flag value, bb is a byte value, and dddd is a double byte
guantity corresponding to the register pair. The "inst"” field contains the
disasserbled instruction which oocurs at the location addressed by the CPU
state’s program counter.

The second form allows display and optional alteration of register values,
where r is one of the registers given above (C, 2, M, E, I, A, B, D, H, S, ot
P)s In each case, the flag or register wvalue is first displayed at the
console., The DDT program then accepts input from the console. If a carriage
return is typed, then the flag or register value is not altered. If a value
in the proper range is typed, then the flag or register value is altered.
Note that BC, DE, and HL are displayed as register pairs, Thus, the operator
types the entire register pair when B, C, or the BC pair is altered.

III. IMPLEMENTATION NCIES,.

The organization of DDT allows certain non-essential portions to be
overlayed in order to gain a larger transient program area for debugging large
programs, The DDT program consists of two parts: the DDT nucleus and the
assembler/disassembler module. The DDT nucleus is loaded over the Console
Command Processor, and, although 1loaded with the ©DDT nucleus, the
assembler/disassembler is overlayable unless used to assemble or disassemble.

' In particular, the BDOS address at location 6H (address field of the JMP
instruction at location 5H) is modified by DDT to address the base location of
the DOT nucleus which, in turn, contains a JMP instruction to the BDOS. Thus,
programs which use this address field to size memory see the logical end of
memory at the base of the DDT nucleus rather than the base of the BDCS,

The assembler/disassembler module resides directly below the DDT nucleus
in the transient program area. If the A, L, T, or X commands are used during
the debugging process then the DDT program again alters the address field at
6H to include this module, thus further reducing the logical end of memory.
If a program loads beyond the beginning of the assembler/disassembler module,
the A and L commands are lost (their use produces a "?" in response), and the

trace and display (T and X) commands list the “inst” field of the display in
hexadecimal, rather than as a decoded instruction.

IV. AN EXAMPLE,

The following example shows an edit, assemble, and debug for a simple

program which reads a set of data values and determines the largest value in

the set. The largest value is taken from the wvector, and stored into "LARGE"
at the termination of the program

f r‘bur ruba‘f‘ l(h’

1 ORG b1 leeh LILTSTART OF TRANSIENT aREn,
V1 B-LEW LENGTH OF VECTOR Th SCHM,
nvi c.e FLARGER KST YALUE 50 FAR,
LOOP__P.T_0_L LXI M YECT JERSE OF YECTOR,
LOOP:\ Moy . M iGET YALUE,
By < [LARGEN vaLUE IN C7,
Qs o BINC NFOUND JUMP TF LREGER WL UE N0 FOUMD
j NEW LARGEST VALUE, STORE 1T 70 ¢ ’
L ’
v coa
NFOUND. TNX H % ;70 MEXT ELEMENT,
DCR B WORE T0 SCAN?, Crede Source
_ INZ LOOP iFOR AHOTHER, Pregrom. - wder [med
i
L END OF SCAM, STORE ¢, Characlers typed
oV A, C JGET LARGEST VYALUE
JHE ¥} REBOOT, 0" veesads Camacrc
5. TEST DaTa edur..
VECT. DB 2.8.4,3,56,1.35,
EEN. E QU F-VECT /LENGTH,
LARGE: DS I LARGEST VALUE QN EXIT,
xBap
7 ore 19@H iSTART OF TRANSIEWT ARER
MV1 B.LEN JLENGTH OF VECTOR TQ SCAM
vl C. 8 JLARGEST YALUE SO FaFR
LX1 H.YECT JBASE OF VECTOR
LOOP. MoV Aol JGET YALUVE
SUB c JLARGER YALUE IN 2
JNC NFOUND ;JUMP IF LARGER YALUE NOT FOUND
NEW LARGEST VALUE, STORE IT T0 ¢
mov c. A
NFOUND. INK H ;TO MEXT ELEMENT
DCR B JMORE TO SCAN®
JINZ LooP iFOR ANOTHER

10

END OF SCHN. STORE C

nov R E iGET LARGEST WaLiUE
STA . LRKGE
JHF %} iREBOOT
i TEST DATA
YECT . Le 2.8, 4.3,5,6,1.8
LEN EGu $-VECT LENGTH
LARGE: Bs 1 LARGEST YALUE OH EXIT
: ENK

Ve e Ewd o edd

LN St Aseubler

CP-M RASSEMBLER - YER 1.8

graz
BAZH USE FACTUR

ENT OF ASSENEBLY Assemlab CDMPHC - Loclc an ?vﬁkﬁm LL‘Z}IEﬂ

TYFE SCHN.PRNR

Gﬂehﬂm& :S |f 'P ¥
ame‘)Mod\mc (ode (ouur:G, e

164841 FBTART OF TRAWSIENT ARENR

2189 gswia Bt/ 1 B. LEN P LENGTH 0F VECTOR TO SCAN
B1a2 GEBS My 1 C. & GLARGEST WALUE 50 FaRr
8184 211361 L] H.YECT BASE OF YECTOR
167 7E Lapp, My g5, M CHET VALUE
@alea 91 ' SUB C LAaRGER WALUE IN £7F
81869 Dzenet JHC HMFOUHNEG SJUMP IR LARGER VRLUE NOT FOUND

I NEW LARGEST valLuF, STORE IT TO &
A18C 4F MY C. R
ated 23 , MFOUKD. IHX H i TO HEXT ELEMENT
@18E @5 TCR E SMORE TO 578N7
AataF c2e761 ‘ JNZ Loae JEOR AHOTHER

; EWND OF SCaN, STORE
aL12 79 Moy WL PGET LaRLEST YALUE
113 322181 2T4 LARGE
eiie C3@ af . JHF [JRERCGOT

fhk/ IAMJ i
Fruncated ; TEZT DaTa

8119 @260@P49305YECT. DE 2.0, 4.3.5,6,1,5
HABM2 = < LEN Eqy F-VECT FLENGTH
atzi valmg LARGE:. DS 1 JLARGEST MAQLUE aN EXIT
8122 Equalt END
a6 -

DT SCAN HEZ, Short Defoumtr Loy hex St mackine tade

16K IDT YER 1.8

MEXT PG
6121, BEAO .
N sk lod oddess S———

’ 4o execude af
COZEMPER] @ A=B@ B=0@BE D=BAR H=GE&ED =0174% P=RoEd OUT 7F oreo
.-XP . -
=2 N v veadrs lorfoe debg rum
F=pbon 160

2 (Clange P (00
X, \ok at veaslrs aaan rPC clianged -
COZOMRERI® A=GOG B=REAR D-REOB H-AHAE S=@IE@E P=01@6@ MYI a,asr)
~L168@ , .
v Nad tndvuchon

B#iee M¥YI 8. 04 3 =
@192 MVl C.6@ fo decute at Pesi0
G184 LXI H.B113
B167 MOV A.M
2188 SUE C -
B18Y JUNC 2160 > Dlﬁ&eslee.J MQCLIM.
B16C MOY C.é
B1eD INX H (ode ot lmi&-
f1eE ICR B (See Sauree 0
G18F JNZ @187 o (Sow)
B112 MOV A.C J e
-L
s

4113 5Ta @i2i
Blle JMP ©oE@
B115 ¢STAX B
f1le HOP

BLIE INK B A e wove

@110 INX B wodaine wde.

G110l DCR B

BI1E MYl E.B1 (nste ~Hoal Progrm
5128 DCR & ends al loeation 116
g121 LXI L, 2200 '

8124 LXI H, 0200 weth o JuP fo 0I0)

-at1e ewler wling aséembtg mode fo clange Jhe Jup b ooy who o RST 7, which
2 ol catse e Piosrum under sk o vetuns. do OUT & et

2 ever exeudd.

8117, (gnq\e Carvidge Veturn sHops assemile yote)

iz L cde o 18K o chek At 2517 s pvopecy wseded

Y
8113 STh aizl/lu place & IMP

116 RSET @7

wite RST 7

N

G1i7 NOF

#ll8 NGF

ai19 STAY B

Bita NOP

aite INR 8

a11¢ INK g

g Lodk &l veaskss

CeZeMpEOIO A=00 B=00REk D=-RaBE H=90GQ

"L Execule ProammTor one skep.

CelempEele n=0d B=g@a0 D=N00A

5 Trae 0at kP qag (vake 0fH w B)

CoZan@E@ia

-h119 ‘
—2 Disflay

A=Be

H=0gda

E=@36P D[=a608 H=npep

-1 . : .
=2 Trace agam (Reiskr € « cleared)
CaZeMOE@I® A=AO B=0S@0 D=Ga@D H=G@ad

"12, Trace Havee skeps

COZBMBEQGTE® A=8Q@ B=-08P6 DL=GEAD H=@119
CeZoMBE@GI@ A=8B2 B=069PE L=0P2E H=Q119
CoZoMBER]) A=@? B=@3AR D=AO@E H=0119

momory b

of 119H,

Bl2e\65/11
B134 cz 27
8140 09 0690
Bi5@6 6@ 049
Bl1cH be 69
a179 B0 oo
Bice be 99
#1558 ba ed
B1pd b0 Be
Blea BA @9
Bl1ca Be aa

...-}E-;

aixg(iifggf§4 @3 95 86 @81

CezamnbBEml]
CeZenpEall
tezanabktall
Celangeell
LezZeMBEBI 1

aa 22
9t C3
249 09
g0 oa
8v By
g0 08
ga en
ae 2s
ag @8
ge @8
a4 8o

21 pe
a3 25
ga @e
aa He
28 B84
90 Be
ag ae
a8 Be
aa be
aa ge
98 gk

Bz YE
6@ oe
bg ae
Ba de
0@ 64
a8 oo
bo ag
pe ova
B8 ve
#e gaA
pe 6a

Curret CPU Shate

CeZeMBER]] A=02 E=2800 D=0GRE H=@119

dlﬁv 'ﬁmw*?sk254ﬁm«6unzu&CPufﬂnk

A=@2
A=02
A=@2
A=082
A=809

B=@g8a0@
B=@8p@
g=@8708@
B=8760@
B=8780

h=paen
D=0aon
D=60an
h=paas
h=aa@a

Praaram de

EE 77 13
B8 BB #a
gd 8@ i@
e @b oe
a8 @b wo
ad @y 0@
g @g aa
BE 68 bea
BB @8 de
BB B8 @a
28 @Al Ae

H=&11%
H=&11q
H=8114
H=@11n
H=611n

22 T wdhat Vb udormedide. Shakes

ﬁ=a6 B=0700 D=R06G00 H=01t4
"X, eou Shote ot ondf uS)

CBZAMBEL1]l A=B4 B-G6BL D=BOBE H=011R

CeZiMBELT]

13

$=0108 P=d1@p MVI

sl CPU Stk s pelore) i eecukd

f=@leg P=atlaa My

adowahi redpowt

S=018@ P=B1e2 MVl L.60%6194
E=01GG P=B104 LYI H.B1195+6187
S=@1BE P=@1AT MOY A.M
$=01@6 P=G108 SUE C
5=018@ F=@183 JNC G10D*016D
Gedornaz 'otta\f‘POIYl'l'a"ijDH"J

)
z2 e8 o8 GfRr .0 cu ey
Qe @@ @@ Do B8 . ‘..
GO B0 BB BB PO
00 a6 os 26 po Oan 1S distsed
4@ o9 ap 86 B0 .. . 'hf
60 @ gr on ae WM PHMonot
ee 2¢ 60 20 96 Mon-guphc .
en 9@ 6@ 96 a6 Olhovaddas.
GE @@ B8 A0 B8O
60 2& 88 90 @0
S=@1a9 F=218D INX H
S=@100 P=81@D INK H
520186 P=01€E LR B Adnuade
S=@1@@ F=#l8F JNZ 8107 BreakPoit
S=B18€ P=8187 MOV 4, M
5=G18@ P=R1M8 3UR C+B189
520180 P=@169 JNC @16D*2108
S=@ie@ P=R188 SUB C

E,88

B.B8xa1802

"5, Pun Prog tam fom cunect PC wehil Completion (wm teal-time)
*atie Yreakeowdt ot (I6K) cavsed by oechnn RST 7w Ymaclune Code
= Mu skl ot ewd § Progem

CeZiMBELIIl A=60G B=G6Be D=0G6GEA H=G121 S=01986 P=8116 RST a7

“EE; svamme and Chanae Duamm Countec

P=6116 1088
—

-X
=
CEZIMBELITI] A=B9 B=00he D=060f H=0121 S=ai@e F=01@&49 MW] B.

L2 Tae 10 (hexadecnal) Sleps 4!,4&@&(,,#»* ottt lﬁi; sdonet

COZIMBELIL A=0R B=G@RE D=Gp6h H=0121 166 P=uiB6 MVI
COZIMBEITL A=BD glee P=@1@z Myl
CezZiMBELIT1 A=0@ 8166 F=0164 LXI
CEZIMBELIT] A=@@ 8106 P=@167 MDY
COZIMBELTL A@2) #1868 F=@185 ZUE
COZAMBERIL A=62 g1ee Fr8109 JN§
COZEMPERI! A=B2Z 9126 P=0180 IN
CGZEMPERT1 A=02 8160 P=@16E LCR
COZOMBEE@IL A=02 B=G780 D=REOE H=011A P=@1RF JNZ
CBZEMPEBI) A=0Z B=B786 D=806R H=@11n 5=818@ P=e167 MOV
COZUMAEQI) A=0@ B=67BE [=BG6O H=G11A 5=0190 P=BlE2 SUE
COZIMPEITL #=0@® B=@7B9 D=GEDD H=@11a S=@100 F=218% JNC
COZIN@EII1 A=@G B=678% D=G0H% H=@11m 3=0198 P=p1@D INX
COZIMPELI1 A=B@ B=870@ D=GOOE H=611B 5-@196 P=@#1@E DCR
COZAMPELIT1 A=06 B=BGHD D=E@AD H=@11B ©=@12@ P=016F JNZ @1@7

CEZEMBEL1! A=0@ B=B6AG D=A@EGB H=Q11% 5=0108 P=0187 MOV A, N+B108

Mmoo ®m I, T L

L I R o e o X R L R W I K R f.".

[XS S| N I L { | S N | N | O I (I
=
—
=
]

L . . ol
7 Tueert 0 Lot poteh” 1wl vamshould Uave woved Hie
@189 JC 18l “he wackine ode ?1

—_— o Claw A mt A weo ¢ swmee AVC.
5140 T o Te 8 5»«@ Hus cede was nat e.xea&d:
55, Shp DT ot 4 vevsun o it appeare Hhat Hie TNC should

~the Patcled Program can bt saved o beew o TC 1struchon

SAVE 1 SChaN. CON

p Poan vesdes on st Pae, 50 Saw 4 poge .
“2DDT SCAR-TOM, Yeehart TOT wortl Al Saved memay imaie o cophinuee -{'@hg

{6k DIDT ¥ER 1.0

NEXT FC

B2a0 @108

“Liea, List some Code

Biee MWl E.0&

@1ez MYl (. @@ .

f1o4 LXI Hoe113 Preyous baddh ic Praseat o X.coM
g1a7 MOV A

#1688 SUB C

18y JC eiw

' 4

18l MmUYy <C.4

2180 INX H

BiI9E DCR B

BIBF UNZ @l@7

Bltiz MOY 4a.C
XF)

P=QIGB}

pity Tvace o see Whow pckclaed versm opeides Tz i wowed Srom A C

C6ZBMBEQ] G =0l B=p@Ed D=AE93 H-ug@d S=@1 =gt¥a MY] 3.@%
CBZOMRERID 4=0B B=H8B® D=A@GA H=GuG8 3-81 P=ailaz #Y] C.@8
CBZBMBEDID 4=00 E=pSRE [=60@8 H=0e08 =@ 26 FP=91pd4 L%] H.@113
COZOMBEG]ID A=8PF B=630% [=0EA8 H=g119 <=a] P=21@7 MOY @.M
CezemMpE@ls A€B2) P=pase D=9AR8 ¢ =@y F=@1@es SUB ©
COZBMAEBIL A=82 Ge86 D=0@ 119 S=@! P=316% JC 2160
CBzempEell a=@z ;] P H=@119 S=@1 P=at@l MOY C.@
CAZAMPEOIL A=@2 D=00B8 H=G1!9 S=#1@A P=B1GBD INXY H
CeZoMBER]l 4=§2 B=68 D=0608 H=¢llA S=01068 P=018E HCR B
CB20MBEG]) A=82 B=67Rz D=F0@E H=011a S=@18& P=0i8F JNZ Q2187
COZBMAEQ@]! A=62Z B=8782 D=RB@GA H=0114 S=@10A¢ F=01@7 MOY A.M
COZBMBER]! A=Bp B=07P2 D=B@AE H=@!la =0128 P=81¥S3 SUB C
CIZBMIE@]I® A=FE B=67Be D=6008 H=%1iA =018 P=§18% JC 214D
C1Z6MIEBI@ A=FE B=8782 [=8@0Q9 H=011a S5=013& P=91@D IN¥ H
C1Z8M1EBI@ A=FE B=87P2 D=B@EA® H=0)lE Z=81G& P=81@E DCR B
C1Z6RMBEL]l] G=FE B=8608z D=R@WH H=G{1B S=@128% P=G1BF JNZ B187+*0187
.-x .

£, \neakrviat aler u,su»—J
C1ZBMBEL1]1l A=FE B=6662 D=0GGEA H=R118 <=@13@ P=A1@7 MOy

5188, Ruadom Curvest PC and eakpoidt ot HORH

*B188 .

%, [/ hedt dab thow

C1Z@MPEL1I! A=84 B=R6BZ D=B@A@ H=@11B S=61@¢ P=aled SUB O

_T o

L ‘Suqk,ﬁk?‘ﬁw & Jew cucles

C1ZOMBE1]) A=B4 B=66P2 D=B0@B H=91i6 5=01@08 P=el&3 3UE C»B189
-7

-l—e ‘

COZBMBEGT 1 A=B2 B=R6BZ D=P6@& H=@611B S=@10@ P=ai@gd JC @lebealec
Cq _

-~

COZ@MBE@I1 A=02 B=06B2 L=BOOB H=@l1R S=Qt1@¢ P=01@C MOY 0.4

-5 :

5 Ruio comdlehon

x@116
-¥
COZIMPELl1 A=83 B=0083 D=PWA® H=@0121 S=@1M@ F=R116 RST &7

312, ook ak e value of LACSE®

8121 83, Wins value !

5

v
B1Z6 B2, /E“A"g_“‘ﬁs Command

@127 7E

23
~LIE®

v

@196 MY1 5.88
#182 MYl .88
@184 LXI H.et1s
B1@a7 MOy A.M
A1AR SUB
g1as JC @160
B10L HMOY C.A
B16F INX H
mi8E DCR B
@1RF JUNZ @lev ﬂL
w1tz MOY A.C ¥
L (L v He Cade
-
@113 s5Ta @t2t
ai16€ RST @7
@117 HNOP
B118 NOP
mity STaX B
Bi1A MNOP
Bi1B INR B
#g11C IMX B
611D DCR B
ALIE MY¥I E.@1
pi12e DCR B J
-%P
—

P=g116 _1_5122 Qeﬁf{' ’Jf\‘ﬂ PC,
I, Swale Sep s and weteh dat values

CaZIMBELIl A=83 B=R83 D=@p048 H=9!12] S=0180@ F=0188 HMVI
-7

-

CoZIMBELI]l A=83 B=65A83 D=0062 H=G121 S5=01@6 F=81602 RMVI
- Count sef

’ 4 * lavqed "5t

CAZIMPELIl A=e3 B-0g08 [=head H=G121 S=aloe F=2184 L¥I
- T

=2 r—lmseadiwssfdﬁsef

CeZiMBELII1 A=03 B=@580¢ D=8009 H=0119% S=81@88 P=8147 MOV

/6

B,oG=@102

C.oB+x2104

H. 81138187

A.M*+B 188

~-T

-
CazimMeelll
-Iv

COZOMAE®RT |
-1

')
CHZEMBERI Y
-1

=
CozZenuEal s
-1

7
COzZeMBEDI
-1

v
CBZEMBER]]

-7
=2

ZaMeEel t
7

CozampES] 1
-1
-V

o

&

§

C1ZBMiEQ@I@
-1

=3
C1ZeMiE@Ia
-Li@w

v
gtae MYI
g1az MYl
alas LXI1
Bia? Maw
g19g SUB
pl1as JdC
pi1agc Moy
g9t INX
f1ae DCE
glaF JNZ
g1rrz nay
~H1E3

gigg CHF

uiwa

{"‘Flr'sl' dat rkm qugH bA

4=@2 DB=p3806 D=@Foew H=6G!1% S=@i18@é FP=@185 SUR C+@1RA9

X
H
)
s

B=00A6 D=HB9d H=0119% ZS=elw@ P=a183 J0 gi@braiac

R=@2 B=B38E D=nadd H=&11Y% =S=@laa P=gibl MOV C.a+Bta0

=0z B=0gH2 DR=0008 H=#91{% S=alago P=GlBD INX H=@]pE

B=#

I
H
o
P
o

B2 D=B0va H=@114 S=81980 P=wlBE LLR B+alBF

fi=R2 B=0782 D=0804 H=811a =

f
o
—
[

A

F=@18F JNZ B1B7+21@7

@2 B=e7B2 [=0@03 H=G1ls S=818¢ P=@ley MOV &, Hegleg
r—Seaml doda. chem brousle 4o A
A=BH B=8782 D=p@OE H=@ililn S=G1%8 P=@le8 SUE C=*x@189%

Is subtvad d&JNagS doda value wlieh was (oaded i

A=FE B=@782 D=R00@E H=-@11n S=01606 P=0183 JC prapxatel
A=FE B=07BZ D=p@@e H=@!1A S=81858 P=818F INY H+BlBAE

B.@3

C.ada

H.B11%2

G h _ ,

¢ a—— Tl should kave bew a CMP so et vegsser A
elen would wst be deetroged -

C.RA
H

B
a1e7v
fa.cC

o bt patch ot 108H clanges sue o oMP
2

~5i, chop W for SAE

7

SAYE 1 SCAN. CONM

Y Saw memony \Mar;e
APDDT scan.coma Caskroct DOT

16K DBYT VER 1.@
HEXT PC
B2eE 6100
-3p
-9
F=a100)

-Lile

—"1

@ite RET @7
117 MNOP

@1LE NOP Look ot cede tosce f i s Dicbrly Looded

6119 STAX B

@1ta NOP (long typeout alosvted Lol Ydooud)
" (vuloout)

IR e Qun Srom 0o o completion

*@iic .

25 lakat Cory (omdechal $ypo)

cly

) Look at Cpu shate

C1ZIMBEIIL A=6C B=Q@H6 D=RA9E H=81Z1 L=@18@ P=@l1c RET a7

_51“2 Losk at” Lagc" - H'aPPeafSer]ueCarred‘.
a1zl 26,

nizz 69)

1

H123 2 o)

"58 <P DOT

ED ScaMenst Re-edit Hhe source Digram. avd wake btl, chgnges

NSUE

*aLT 4

iLARGER YALUE IM CF

iLARGER YalLUE IW £7F

*
d INC NFOUNE s JUMP 1F LARGER VALUE NOT FOUND
vsncfh X :‘GL 1,

ac NFOUND JUMP IF LARGER VALUE MOT FOUND
Y

¥

HEM SCAN HAZ Qe-asseutde, Seléél;q Souvce Lrom duck 4

ceow en g hex o disk A s
CPM GSSEMBLER ER 1. @ Prut 4o 7 (elecks wo ?nul'j;t(t)

Blze
aB2ZH USE FACTOR
END OF ASSEMBLY

GDT SCaN. HE s:) Q,..ym delgwﬁer +o cleck dwats

1K IDT YER 1.8

HEAT PC
HiZll Geae
~L1l&

aite one asen che o enouve end s ohill ab [lGU
B119 STAY B

G116 HOP

B1LE IHR B

= (rdoout) -
-G18g 1€) Go Srom Lwll'w'mj Wl‘*\! \veakpomt 2t eud
vat1s loveakvott veaelad

N "
Dizi, Lok ot Laeée Cowvect Value Cowductel
w121 (B @0 22 21 0B B2 FE ER 77 13 23 EB BE TE BL .U " W . %

Rite C2 27 @1 C3 B2 23 00 96 @@ 98 GO0 0O H6 @B 9@ 84e

4140 B@ 6@ A0 v@ 00 Bo B0 AR B9 49 Q9 B0 @G 4B AV BB

“ (rudost) alow{t, lpmﬁ -l-zjm-i—

Eﬁ) Shp DOT, debua Session Complele

9

