
,

-.... -A ++ ------- -·

,-------"===========================:-.,=-

.,

Ka
yp
roJ
ou
rna
l

,,

.,

;·

,,,____,,....__ ,.

microsoft
BASIC
user's guide

for 8080/ 8085 and 280
Microprocessors and
CP/M Operating System

I

•

~

Ka
yp
roJ
ou
rna
l

. , . . .
Information in this document is subject to change without noti~ and dae5 not represent a commitment
on the part of Microsoft. Inc. The software described in this qocument is furnished under a license
agreement or non-<iisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy MiC1'050ft ·BASIC on cassette tape, disk, or any
other medium for any purpose other than the purchaser's personal use. •

(C) MiC1'050ft. Inc., 1981

LIMITED WARRANn

MICROSOFT, INC. shall have no liability or responsibility to purchaser or any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directfy or indirectiy by this
product, induding but not limited to any interruption of service, loss of business or anticipatory profits or

. consequential damages resulting from the use or operation of this product. This product_ ·will tie
exchanged within tweive months from date of purchase if defective in manufacture, l~in1 or
packaging, but except for such replacement the sale or subsequent use of this program is without
warranty or liability.

THE ABOVE IS A UMITEP WARRANn AND THE ONLY WARRANn MADE BY MICROSOFT, INd.
ANY AND AU. WARRANTIES FOR MERCHANTABILITY ANDIOR FITNESS FOR A PARTICULAR
P\JRPOSE ARE EXPIESSU' EXCWDED. •

I '

• J . '
To !'ePC)rt software bugs or error, in the documentation, please complete and return the Problem R~rt
at the back of this manual. '

Microsoft BASIC is a trademark of Microsoft. Inc.
CPI M is a registered trademark of Digital Research

8'108A-530-00
30F148

Ka
yp
roJ
ou
rna
l

r

~,---------------------------
. '

Int.coduction

BASIC Release 5 from Microsoft is the most extensive
implementation of BAS.IC available for microprocessors. It
meets the requirements for the ANSI subset standard for
BASIC, and supports many unique features rarely found in
other BASICS. In addition, Microsoft BASIC has
sophisticated string handling and structured programming
features that are· especially suited for applications
development. Microsoft BASIC gives- users what they want from
a BASIC -- ease of use plus the features that make a micro per­
form like a minicomputer or large mainframe.

In 1975, Microsoft wrote the fir·st BASIC interpreter for the
microcompute·r. Today Micros·oft BASIC, with over 750,000
installations in over 20 o~erating environments, is
recognized as the industry standard. It's the BASIC you'll
find on all the largest-selling microcomputers. Many users,
manufacturers, and software houses have written application
programs in Microsoft BASIC.

Ka
yp
roJ
ou
rna
l

r-
r
t
I

'. \
I

t :
t
i

I
◄

j

i

J

• •

ti

Ka
yp
roJ
ou
rna
l

Package Contents

1 diskette
(Refer to the Index of Files on Diskette)

1 binder with 2 manuals
Microsoft BASIC User's Guide
Microsoft BASIC Reference Manual

1 Microsoft BASIC Reference Book

System Requirements

Your implementation of Microsoft BASIC requires:

32K bytes of memory minimum:
24K for Microsoft BASIC
approximately 6K for your operating system
some additional memory to run programs

1 disk drive

If your svstem does not meet these minimum requirements, ask
your computer dealer how to expand your system.

Ka
yp
roJ
ou
rna
l

·•· -~

~
"" • !Ill - - 11 •

Ka
yp
roJ
ou
rna
l

'
r

Mic,:osoft

Welcome to the Microsoft family of products.

Microsoft, Inc. is recognized as the leader in microcomputer
software. Microsoft BASIC interpreter, in its several
versions, has become the standard high-level programminq
language used in microcomputers. Microsoft, Inc. continues
to suPplv consistently high-quality software which sets the
standard for software quality for all types of users.

For more information about other Microsoft products,
contact:

Microsoft, Inc.
10700 Northup Way
Bellevue, WA 98004

I

_)

Ka
yp
roJ
ou
rna
l

Contents

Introduction

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Index

Major Features
Using these Manuals
Syntax Notation

1

2

3

4

5

6

6.1
6.2
6.3
6.4
6.6
6.6
6.7

Features Included in This Implementation

Language Differences for This Implementation

Converting Programs to Microsoft BASIC

Microsoft BASIC Disk I/0

BASIC Assembly Language Subroutines

Microsoft BASIC with the CP/M Operating System

Initialization
Disk Files
Files Command
RESET Command
LOF Function
EOF Function
Miscellaneous

Index of Files on Diskette

Ka
yp
roJ
ou
rna
l

Major Features Page 4

1. Four variable types: Integer (+32767), String (up
to 255 characters), Single Precision Floating Point
(7 digits), Double Precision Floating Point (16
digits)

2. Trace facilities (TRON/TROFF) for easier debugging

3. Error trapping using the ON ERROR GOTO statement

4. PEEK and POKE statements to read and write any
memory location

S. Automatic line number generation and renumbering,
including referenced line numbe·rs

6. Arrays with up to 8 dime-nsions

7. Boolean operators OR, AND, NOT, XOR, EOV, IMP

8. Formatted output usinq the complete PRINT USING
facility, including asterisk fill, floating dollar
siqn, scientific notation, trailing sign, comma
insertion

9. Direct access to I/O ports with the INP and OUT
functions

10. Extensive program editing facilities via
command and EDIT mode subcommands.

EDIT

11. Assembly language subrout·ine calls (up to 10 per
program) are supported.

12. IF/THEN/ELSE and nested IF/THEN/ELSE constructs

13. Disk BASIC supports variable length random and
sequential disk files with a complete set of file
manipulation statements: OPEN, CLOSE, GET, PUT,
KILL, NAME, MERGE

NOTE

Features vary from one
implementation of Microsoft
BASIC to the next. See
Chapter 1 of this manual for
an exact description of the
features in your
implementation of Microsoft
BASIC.

Ka
yp
roJ
ou
rna
l

r
f

Using these Manuals

The information in
package is divided
information.

the documents you received
into reference information

Page 5

in this
and user

The Microsoft BASIC Reference Manual contains descriptions
of all the features of Microsoft BASIC. The Reference
Manual contains no information tha~ is either implementation
specific (that is, applies to a particular microprocessor),
or operating system specific.

The Microsoft BASIC User's Guide contains all of the
implementation-specific and operating-system specific
information. This information includes telling you which
features of Microsoft BASIC are included and which are
excluded from your implementation, telling you how your
implementation changes the format and use of some features,
and telling you how your operating system affects some
features and operations of Microsoft BASIC.

use the Reference Manual for details of the features. Use
the User's Guide to see if a feature differs from its
description in the Reference Manual. Also, use the User's
Guide ·for hints about disk I/0 and calling assembly language
subroutines into your BASIC programs.

The Microsoft BASIC Reference Book is a quick reference
guide to the features and their syntax. The Reference Book
includes all the features described in the Reference Manual,
but does not contain information that is
implementation-specific or operating system-specific.

Ka
yp
roJ
ou
rna
l

[
r
I
l

r
' I

l

Page 6

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

[J Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate user entered data. When
the angle brackets enclose lower case text, the
user must type in an entry defined by the texti
for example, <filename>. When the angle brackets
enclose upper case text, the user must press the
key named by the text i for example, <RETURN>.

{ } Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the
entries are also enclosed in square brackets.

•••

CAPS

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

Ka
yp
roJ
ou
rna
l

CHAPTER 1

FEATURES INCLUDED IN THIS IMPLEMENTATION

All statements, commands, and functions described in the
Microsoft BASIC Refe-rence Manual are implemented unless
listed below. SQllle of the statements, commands, or
functions may be affected by this particular implementation.
Read Chapter 2, Lan~auge Differences for This
Implementation.

The following features are not included in the Standard Disk
Version of Microsoft BASIC:-

CLOAD CSAVE

Ka
yp
roJ
ou
rna
l

CHAPTER 2

LANGUAGE DIFFERENCES FOR THIS IMPLEMENTATION

The features in your version of Microsoft BASIC are as
described in the Microsoft BASIC R~ference Manual.

Ka
yp
roJ
ou
rna
l

CHAPTER 3

CONVERTING PROGRAMS TO MICROSOFT BASIC

If you have programs written in a BASIC other than Microsoft
BASIC, some minor adjustments may be necessary before
running them with Microsoft BASIC. Here are some specific
things to look for when converting BASIC programs.

3.1 STRING DIMENSIONS

Delete all statements that are used to declare the length of
strings. A statement such as DIM A$(I,J), which dimensions
a string array for J elements of length I, should be
converted to the Microsoft BASIC statement DIM A$(J).

Some BASICs use a comma or ampersand for
concatenation. Each of these must be changed to
siqn, which is the operator for Microsoft BASIC
concatenation.

string
a plus
string

In Microsoft BASIC, the MID$, RIGHT$, and LEFT$ functions
are used to take substrings of strings. Forms such as A$(I)
to access the Ith character in A$, or A$(I,J) to take a
substrinq of A$ from position I to position J, must be
changed as follows:

Other BASIC

X$=A$(I)
X$•A$(I,J)

Microsoft BASIC

X$,.MID$(A$,I,l)
X$aMID$(A$,I,J-I+l)

If the substring reference is on the left side of an
assignment and X$ is used to replace characters in A$,
convert as follows:

Other BASIC

A$(I),.X$
A$(I,J9,.X$

Microsoft BASIC

MID$(A$,l,l)"'X$
MID$(A$,I,J-I+l)=X$ Ka

yp
roJ
ou
rna
l

CONVERTING PROGRAMS TO MICROSOFT BASIC Page 3-2

3.2 MULTIPLE ASSIGNMENTS

Some BASICs allow statements of the form:

10 LET B-C:a0

to set B and C equal to zero. Microsoft BASIC would
interpret the second equal sign as a logical operator and
set B equal to -1 if C equaled 0. Instead, convert this
statement to two assignment statements:

10 C•0:B•0

3.3 MULTIPLE STATEMEN'?S

Some BASICs use a backslash (\) to separate multiple
statements on a line. With Microsoft BAS'IC, be sure all
statements on a line are separated by a colon (:).

3.4 MAT l!'UNCTIONS

Proqrams using the MAT functions available in some BASICS
must be rewritten using FOR ... NEXT loops to execute
properly.

l

l
' I
l

Ka
yp
roJ
ou
rna
l

CHAPTER 4

MICROSOFT BASIC DISK I/O

Disk I/O procedures for the beginning BASIC user are
examined in this appendix. If you are new to BASIC or if
you' re getting disk related errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.

Wherever a filename is required in a disk command or
statement, use a name that conforms to your operating
system's requirements for filenames. The CP/M operating
system will append a default extension .BAS to the filename
given in a SAVE, RUN, MERGE or LOAD command.

4.1 PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in
program file manipulation.

SAVE <filename>[,A]

LOAD <filename>[,RJ

Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
{Otherwise, BASIC uses a compressed
binary format.)

Loads the program from disk into
memory. Optional R runs the program
iJmDediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files. {LOAD
<filename>,R and RUN <filename>,R are
equivalent.) Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC DISK I/O Page 4-2

RON <filename>[,RJ RON <filename> loads the program from
disk into memory and runs it. RON
deletes the current contents of memory
and closes all files before loading
the prOC1ram. If the R option is
included, however, all open data files
are kept open. (RON <filename>,R and
LOAD <filename>,R are equivalent.)

MERGE <filename> Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the •merged• program
resides in memory, and BASIC returns
to command level.

KILL <filename> Deletes the file from the disk.
<filename> may be a program file, or a
sequential or random access data file.

NAME <old filename> To change the name of a disk file,
AS<new filename> execute the NAME statement, NAME

<oldfile> AS <newfile>. NAME may be
used with program files, random files,
or sequenti~l files.

4. 2 PROTECTED FILE

If you wish to save
use the •Protect•
example:

SAVE •MYPROG•,p

a program in an encoded
option with the SAVE

binary format,
command. For

A program saved this way cannot be listed or edited. You
may also want to save an unprotected copy of the program for
listing and editing purposes.

4.3 DISK DATA FILES - SEQUENTIAL AND RANDOM I/O

There are two
and accessed
random access

types of disk
by a BASIC

files.

data files that may be created
program: sequential files and

Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC DISK I/0 Page 4-3

4.3.1 Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is a series of ASCII characters stored, one
item after another (sequentially), in the order it is sent
and is read back in the same way.

The statements and functions that are used with sequential
files are:

OPEN PRINTt INPUTt WRITEt
PRINTt USING LINE INPUTt

CLOSE EOF LOC

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in •o• mode.

2. Write data to the file
using the PRINTt statement.
(WRITEt may be used instead.)

3. To access the data in the
file, you must CLOSE the file
and reOPEN it in •I• mode.

4. Use the INPUTt statement to
read data from the sequential
file into the program.

OPEN •o•,tl,•DATA•

CLOSE tl
OPEN •I•,t1,•DATA•

INPUTtl,X$,Y$,Z$

Program 1 is a short program that creates a sequential file,
•DATA•, from information you input at the terminal.

Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC DISK I/O

10 OPEN "O",il,"DATA"
20 INPUT "NAME";N$
25 IF N$~"DONE" THEN END
30 INPUT "DEPAR'l'MENT9 ;D$
40 INPUT "DATE HIRED";H$
50 PRINTtl,N$1","1D$1•, 111H$
60 PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VrSUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

PROGRAM 1 - CREATE A SEQUENTIAL DATA FILE

Page 4-4

Now look at Program 2. It accesses the file "DATA" that was
created in Program 1 and displays the name of everyone hired
in 1978.

10 OPEN "I",il,"DATA"
20 INPUTtl,N$,D$,H$
30 IF RIGHT$(H$,2)a"78" THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

PROGRAM 2 - ACCESSING A SEQUENTIAL FILE

Program 2 reads, sequentially, every item in the file. When
all the data has be.en read, line 20 causes an "Input past
end• error. To avoid getting this error, insert line 15
which uses the EOF function to test for end-of-file:

Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC DISK I/O Page 4-5

15 IF EOF(l} THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write
formatted data to the disk with the PRINT# OS!NG statement.
For example, the statement

PRINTtl,USING"tttt.tt,";A,B,C,O

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the disk file.

The LOC function, when used with a sequ~ntial file, returns
the number of sectors that have bee·n written to or read from
the file since it was OPENed. A sector is a 128-byte block
.of data.

4.3.1.l Adding Data To A Sequential File -

If you have a sequential file residing on disk and late
want to add more data to the end of it, you cannot simpl
open the file in "O" mode and start writing data. As soo
as you open a sequential file in "O" mode, you destroy it
current contents. The following procedure can be used t
add data to an existing file called "NAMES". I

1. OPEN "NAMES" in "I" mode.

2. OPEN a second file called "COPY" in "O" mode.

3. Read in the data in "NAMES" and write it to "COPY".

4. CLOSE "NAMES" and KILL it.

S. Write the new information to "COPY".

6. Rename "COPY" as "NAMES"' and CLOSE.

7. Now there is a file on disk called "NAMES" that
includes all the previous data plus the new data
you just added.

Program 3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUT# to read strings with
embedded commas from the disk file. Remember, LINE INPUTt
will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas} or
until it has read 255 characters.

Ka
yp
roJ
ou
rna
l

1·
'

MICROSOFT BASIC DISK I/O Page 4-6

10 ON ERROR GOTO 2000
20 OPEN "I",il,"NAMES"
30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "O",#2,"COPY"
50 IF EOF(l) THEN 90
6 0 LINE INPUTt 1 , A$
70 PRINTi2,A$
80 GOTO 50
90 CLOSE il
100 KILL "NAMES"
110 REM ADO NEW ENTRIES TO FILE
120 INPUT "NAME"1N$
130 IF N$•"" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? "1A$
150 LINE INPUT "BIRTBDAY? "1B$
160 PRINTi2,N$

. 170 PRINTi2,A$
180 PRINTi2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO •NAMES"
210 NAME "COPY" AS "NAMES"
2000 IF ERR•S3 AND ERL•20 THEN OPEN "O",t2,"COPY":RESUME 120
2010 ON ERROR GOTO 0

PROGNAM 3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line
not exist" error in line 20.
statements that copy the file are
created as if it were a new file.

4.3.2 Random Files

2000 traps a "File
If this happens,

skipped, and "COPY"

does
the

is

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC DISK I/O Page 4-7

The statements and functions that are used with random files
are:

OPEN

PUT

FIELD

CLOSE

MRI$ CVI
MKS$ CVS
MKD$ CVD

LSET/RSET

toe

GET

4.3.2.l Creating A Random File -

The following program steps are required to create a random
file.

l.

2.

3.

OPEN the file for random
access c•R• mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128
bytes.

Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be written to the random
file.

Use LSET to move the data
into the random buffer.
Numeric values must be made
into strings when placed in
the buffer. To do this, use the
•make• functions: MKI$ to
make an integer value into a
string., MKS$ for a single
precision value, and MKD$ for
a double precision value.

4. Write the data from
the buffer to the disk
using the PUT statement.

FIELD tl, 20 AS N$,
4 AS A$, 8 AS P$

LSET N$aXS
LSET A$•MKS$(AMT)
LSET P$•TEL$

PUT tl,CODEI Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC DISK I/O Page 4-8

Look· at Program 4.
It takes information that is
writes it to a random file.
ex.ecuted, a record is written
code that is input in line 30

input at the terminal and
Each time the PUT statement is
to the file. The two-digit
becomes the record number.

Do not use a
variable in
statement.
pointe-r for
point into
instead of
buffer.

NOTE

FIELDed string
an INPUT or LET

This causes the
that variable to

string space
the random file

10 OPEN "R",tl,"FILE•,32
20 FIELD tl,20 AS N$, 4 AS A$, 8 ASP$
30 INPUT "2-DIGIT CODE•;CODEI
40 INPUT "NAME•;X$
SO INPUT "AMOONT•;AMT
60 INPUT "PBONE•rTEL$:PRINT
70 LSET N$•X$
80 LSET A$•MKS$(AMT)
90 LSET P$-TEL$
100 PUT tl,CODEI
110 GOTO 30

PROGRAM 4 - CREATE A RANDOM FILE

4.3.2.2 Accessing A Random File -

The following program steps are required to access a random
file:

1.

2.

OPEN the file in "R• mode.

Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be read from the file.

FIELD tl 20 As N$,
4 AS A$, 8 ASP$

NOTE

In a program that performs both
input and output on the same random
file, you can often use just one
OPEN statement and one FIELD
statement.

Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC DISK I/O

3.

4.

Use the GET statement to move
the desired record into the
random buffer.

The data in the buffer may
now be accessed by the program.
Numeric values must be converted
back to numbers using the
"conve.r t" functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

GET tl,CODEI

PRINT N$
PRINT CVS (A$)

Page 4-9

Program 5 accesses the random file "FILE" that was created
in Program 4. By inputting the three-digit code at the
terminal, the information associated with that code is read
from the file and displayed.

10 OPEN "R",tl,"FILE",32
20 FIELD tl, 20 AS N$, 4 AS A$, 8 ASP$
30 INPUT "2-DIGIT CODE"1CODEI
40 GET tl, CODE%
50 PRINT N$
60 PRINT USING "$$ttt.tt"rCVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

PROGRAM 5 - ACCESS A RANDOM FILE

The LOC function, with random files,
record number." The current record
last record number that was used in a
For example, the statement

IF LOC(l)>S0 THEN END

returns the "current
number is one plus the
GET or PUT statement.

ends program ~ecution if the current record number in
filetl is higher than SO.

Program 6 is an inventory program that illustrates random
file access. In this program, the_ record number is used as
the part number, and it is ·assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC DISK I/0 Page 4-10

120 OPEN"R",tl,"INVEN.DAT",39
125 FIELDtl,l AS F$,30 AS 0$, 2 AS Q$,2 AS R$,4 ASP$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT l,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,•SUBTRACT FROM STOCK"
180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION•;FUNCTION
225 IF (FUNCTION<l)OR(FUNCTION>6) THEN PRINT

"BAD FUNCTION NOMBER•:GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT•OVERWRITE•;A$:

IF A$<>"Y• THEN RETURN
280 LSET F$-CHR$(0)
290 INPUT "DESCRIPTION";DESC$
300 LSET D$=DESC$
310 INPUT "QUANTITY IN STOCK";QI
320 LSET Q$=MKI$(QI)
330 INPUT "REORDER LEVEL";RI
340 LSET R$=MKI$(RI)
350 INPUT "UNIT PRICE•;P
360 LSET P$=MKS$(P)
370 PUTtl,PARTI
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY•:RETURN
420 PRINT USING "PART NUMBER ttt•;PARTI
430 PRINT 0$
440 PRINT USING "QUANTITY ON HAND ttttt•;CVI(Q$)
450 PRINT USING "REORDER LEVEL tttti";CVI(R$)
460 PRINT USING "UNIT PRICE $$ii.ti";CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT 0$:INPUT "QUANTITY TO ADD ";Al
520 QI-CVI(Q$)+AI
530 LSET Q$•MKI$(QI)
540 PUTtl,PARTI
550 RETURN
5 6 0 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$)•255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT 0$
600 INPUT "QUANTITY TO SUBTRACT•;SI
610 Ql=CVI(Q$)
620 IF (QI-Sl)<O THEN PRINT "ONLY";QI;" IN STOCK":GOTO 600
630 Ql=QI-SI

Ka
yp
roJ
ou
rna
l

MICROSOF~ BASIC DISK I/0

640 IF Ql•<CVI(R$) THEN PRINT "QUANTITY NOW";QI;
" REORDER LEVEL" ;CVI (R$)

650 LSET Q$aMKI$(QI)
660 PUTil,PARTI
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR Ial TO 100
710 GET#l,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT 0$;" QUANTITY";

CVI(O$) TAB(50) "REORDER LEVEL"1CVI(R$)
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER"1PART%

Page 4-11

850 IF(PART%<l)OR(PART%>100) THEN PRINT "BAD PART NUMBER":
GOTO 840 ELSE GET#l,PARTl:RETURN

890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$:IF B$<>"Y" THEN RETURN
920 LSET F$=-CHR$(255)
930 FOR Ial TO 100
940 PUT#l,I ~
950 NEXT I
960 RETURN

PROGRAM 6 - INVENTORY

Ka
yp
roJ
ou
rna
l

CBAP'l'ER 5

BASIC ASSEMBLY LANGUAGE SUBROUTINES

All versions of Microsoft BASIC have provisions for
interfacing with assemblv language subroutines via the USR
function and the CALL statement.

The USR function allows assembly language subroutines to be
called in the same way BASIC Intrinsic functions are called.

5.1 MEMORY ALLOCATION

IMPORTANT

Memory space must be set aside for an assf-bly language
subroutine before it can be loaded. During initializ-ation,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine(s) with the /M:
switch.

BASIC uses all memory available from its starting location
upwards, so only the topmost locations in memory can be set
aside for user subroutines.

If, when an assembly language subroutine is called, more
stack space is needed, BASIC's stack can be saved and a new
stack set up for use by the assembly language subroutine.
BASIC's stack must be restored, however, before returning
from the subroutine.

The assembly language subroutine may be loaded into memory
by means of the operating system, the BASIC POKE statement,
or (if the user has the Utility Software Package) routines
may be assembled with the MACRO assembler and loaded using
the LINK linkinq loader. Ka

yp
roJ
ou
rna
l

BASIC ASS~.BLY LANGUAGE SUBROUTINES Page 5-2

5.2 USR FUNCTION CALLS

The format of the USR function is

USR[<digit>] (argument)

where <digit> is from Oto 9 and the argument is any numeric
or string expression. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USR0 is assumed. The address given in the DEF USR
statement determines the starting address of the subroutine.

When the USR
value that
The value in

function call is made, register
specifies the type of argument
A mav be one of the following:

A contains a
that was given.

Value l!!A ~ of Argument

2 Two-byte integer (two's complement)

3 String

4 Single precision floating point number

8 Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and
FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (0-positive, !•negative).
FAC is the exponent minus 128, and the binary
point is to the left of the most significant
bit of the mantissa.

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the
to 3
string

argument is a string, the [D,E] register pair
bytes called the "string descriptor." Byte 0
descriptor contains the length of the string

points
of the
(0 to

Ka
yp
roJ
ou
rna
l

BASIC ASSEMBLY LANGUAGE SUBROUTINES Page 5-3

255). Bytes 1 and 2, respectively, are the lower and upper
8 bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +•• to the string
literal in the program. Example:

A$• "BASIC"+""

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MAKINT routine returns the integer in [H,L] as the value of
the function, forcing the value returned by the function to
be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

PUSH
LHLD
XTHL

RET

H
XXX

1save value to be returned
1get address of MAKINT routine
1save return on stack and
1get back [H,L]
1return

Also, the argument of the function, regardless of its type,
may be forced to an intege-r by calling the FRCINT routine to
get the inteqer value of the argument in [H,L]. Execute the
following routine:

LXI H 1get address of subroutine
1continuation

PUSH H 1place on stack
LHLD XXX 1get address of FRCINT
PCHL

SUBl: • • • • •

5.3 CALL STATEMENT

User function calls may also be made with the
statement.

CALL

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET," (CALL and RET are 8080 opcodes - see an 8080
reference manual for details,)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL

Ka
yp
roJ
ou
rna
l

BASIC ASSEMBLY LANGUAGE SUBROUTINES

argument list, a parameter is passed to the
That parameter is the address of the low
argument. Therefore, parameters always occupy
each, regardless of type.

Page 5-4

subroutine.
byte of the

two bytes

The method of passing the parameters depends upon the number
of parameters to pass:

l. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
l will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of pa-rame·ters is greater than 3, they
are passed as follows:

l. Parameter l in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i .. e., to the low byte of parameter
3) •

Note that, with this scheme, the subroutine must know how
many parameters to expect in • order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
the correct number or tvpe of parameters.

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named $AT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2). The subroutine is
responsible for saving the first two parameters before
calling $AT. For example, if a subroutine expects 5
parameters, it should look like: Ka

yp
roJ
ou
rna
l

BASIC ASSEMBLY LANGUAGE SUBROUTINES Page 5-5

SUBR: SBLD Pl iSAVE PARAMETER 1
XCHG
SHLD P2 iSAVE PARAMETER 2
MVI A, 3 :NO. OF PARAMETERS LEFT
LXI H,P3 1POINTER TO LOCAL AREA
CALL $11:T 1TRANSFER THE OTHER 3

PARAMETERS

•
•
[Body of subroutine]
•
•
•
RET iRETURN TO CALLER

Pl: OS 2 7SPACE FOR PARAMETER 1
P2: OS 2 rSPACE FOR PARAMETER 2
P3: OS 6 iSPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine $AT follows.

00100 1 ARGUMENT TRANSFER
00200 1 [B ,CJ POINTS TO 3RD PARAM.
00300 i[H,LJ POINTS TO LOCAL STORAGE FOR PARAM 3
00400 i [Al
00500

CONTAINS THE t- OF PARAMS TO XFER (TOTAL-2)

00600
00700 ENTRY $AT
00800 $AT: XCHG iSAVE [H,L] IN [O,E]
00900 MOV H,B
01000 MOV L,C i[H,L] • PTR TO PARAMS
01100 ATl: MOV C,M
01200 INX H
01300 MOV B,M
01400 INX H i[B,C] • PARAM ADR
01500 XCBG i [H, L] POINTS TO LOCAL STORAGE
01600 MOV M,C
01700 INX H
01800 MOV M,B
01900 INX H 1 STORE PARAM IN LOCAL AREA
02000 XCBG iSINCE GOING BACK TO ATl
02100 OCR A iTRANSFERRED ALL PARAMS?
02200 JNZ ATl 7 NO, COPY MORE
02300 RET 7 YES , RETURN

Ka
yp
roJ
ou
rna
l

BASIC ASSEMBLY LANGUAGE SUBROUTINES Page 5-6

When accessing parameters in a subroutine, remember that
they are pointers to the actual arguments passed.

NOTE

The programmer must match the
number, type, _!!!£ length of
the arguments in the calling
program with the parameters
expected by the subroutine •
This applies to BASIC
subroutines, as well as those
written in assembly language.

5. 4 INTERRUPTS

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register AL and the PSW. Interrupts should always be
re-enabled before returning from the subroutine because an
interrupt automatically disables all further interrupts once
it is received. The user should be aware of which interrupt
vectors are free in the particular version of BASIC that has
been supplied. (Note to CP/M users: In CP/M BASIC., all
interrupt vectors are free.)

Ka
yp
roJ
ou
rna
l

CHAPTER 6

MICROSOFT BASIC WITH THE CP/M OPERATING SYSTEM

The CP/M version of Microsoft BASIC (MBASIC) is supplied on
a standard size 3740 single density diskette. The name of
the file is MBASIC.COM. (A 28K or larger CP/M system is
recommended.)

To run MBASIC, bring up CP/M and type the following:

A>MBASIC <carriage return>

The system will reply:

xxxx Bytes Free
Microsoft BASIC Version 5.0
(CP/M Version)
Copyright 1978 (C) by Microsoft
Created: dd-mmm-yy
Ok

MBASIC is the same
Microsoft BASIC
exceptions:

as Microsoft BASIC as described in the
Reference Manual, with the following

6.1 INITIALIZATION

The initialization dialog has been replaced by a
options which are placed after the MBASIC command
The format of the command line is:

set of
to CP/M.

A>MBASIC [<filename>) [/F:<number of files>) [/M:<highest memory location>)
[/S:<maximum record size>)

If <filename> is present, MBASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
Ka
yp
roJ
ou
rna
l

L

MICROSOFT BASIC WITH TBE CP/M OPERATING SYSTEM Page 6-2

when they have finished, allowing the next program in the
batch stream to execute.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at any one time during the
execution of a BASIC program. Each file data block
allocated in this fashion requires 166 bytes of memory. If
the /F option is omitted, the number of files defaults to 3.

The /M:<hiqhest memory location> option sets the highest
memory location that will be used by MBASIC. In some cases
it is desirable to set the amount of memory well below the
CP/M's FOOS to reserve space for assembly language
subroutines. In all cases, <highest memory location> should
be below the start of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, a.ll memory
up to the start of FDOS is used.

/S:<maximum record
command line to
random files. The

size> may be added at the end of
set the maximum record size for use
default record size is 128 bytes.

Examples:

NOTE

<number of files>, <highest
memory location>, and <maximum
record size> are numbers that
may be either decimal, octal
(preceded by &O) or
hexadecimal (preceded by &H).

A>MBASIC PAYROLL.BAS Use all memory and 3 files,
load and execute PAYROLL.BAS.

A>MBASIC INVENT/F:6

A>MBASIC /M:32768

Use all memorv and 6 files,
load and execute INVENT.BAS.

use first 32K of memory and
3 files.

A>MBASIC DATACK/F:2/M:&H9000
Use first 36K of memory, 2
files, and execute DATACK.BAS.

the
with

Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC WITH THE CP/M OPEllTING SYSTEM Page 6-3

6. 2 DISK FILES

Disk filenames follow the normal CP/M naming conventions.
All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the currently
selected drive is assumed. A default extension of .BAS is
used on LOAD, SAVE, MERGE and RUN <filename> commands if no
"·" appears in the filename and the filename is less than 9
characters long.

For systems with CP/M 2.x, large random files are supported.
The maximum logical record number is 32767. If a record
size of 256 is specified, then files up to 8 megabytes can
be accessed.

6.3 FILES COMMAND

Format:

Purpose:

Remarks:

Examples:

FILES[<filename>]

To print the names of files residing on the
current disk.

If <filename> is omitted, all the files on the
cu.rrently selected drive will be listed.
<filename> is a string formula which may contain
question marks C-~l to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.

FILES
FILES "*.BAS"
FILES "B:•.••
FILES "TEST?.BAS•

6.4 RESET COMMAND

Format:

Purpose:

Remarks:

RESET

To close all disk files and write the directory
information to a diskette before it is removed
from a disk drive.

Always execute a RESET command before removing a
diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.

Ka
yp
roJ
ou
rna
l

MICROSOFT BASIC WITH THE CP/M OPERATING SYSTEM Page 6-4

RESET closes all open files on
writes the directory track
with open files.

all drives and
to every diskette

6.5 LOF FUNCTION

Format:

Action:

Example:

6.6 EOF

LOF(<file number>)

Returns the number of records present in
last extent read or written. If the file
not exceed one extent (128 records), then
returns the true length of the file.

the
does

LOF

110 IF NCMl>LOF(l) THEN PRINT •INVALID ENTRY•

With CP/M, the EOF function may be used wi"th random files.
If a GET is done cast the end of file, EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithm.

6.7 MISCELLANEOUS

1. CSAVE and CLOAD are not implemented.

2. To return to CP/M, use the SYSTEM command or
statement. SYSTEM closes all files and then
performs a CP/M warm start. Control-C always
returns to MBASIC, not to CP/M.

3. FRCINT is at 103 hex and MAKINT
(Add 1000 hex for ADDS versions,
versions.)

is at 105 hex.
4000 for SBC CP/M Ka

yp
roJ
ou
rna
l

INDEX

CALL • • • • • • • 5-3
CLOSE • • • • • • 4-3, 4-7
CP/M • • • • • • • • • 6-1
CP/M-86 • • • • • • • • 4-1
CVD • • • • • • • • • • • • • 4-7
CVI • • • • • • • • • • • • • 4-7
CVS • • • • • • • • • • • 4-7

EOF • • • • • • • • • • 4-3, 4-5, 6-4
Error trapping • • • • • • 4-6

FIELD • • • • • • • • • • • 4-7
FILES • • • • • • • • • • • • 6-3
FRCINT • • • • • • • • • • • 5-3, 6-4

GET • • • • • • • • • 4-7, 6-4

INPUT • • • • • • • • • 4-8
INPUT# • • • • • • • • • • • 4-3
Interrupts • • • • • • • 5-6

KILL .. • • • • • • • • 4-2

Language Differences from Reference Manual 2-1
LET • • • • • • • • • • 4-8
LINE INPUT# • • • • • • • 4-3
LOAD • • • • • • • • • • • • 4-1
LOC • • • • • • • • • • 4-3, 4-5, 4-7
LOF • • • • • • • • 6-4
LSET • • • • • • • • • • 4-7

MAKINT • • • • • • • • 5-3, 6-4
MBASIC • • • • • • • • • 6-1
MERGE • • • • • • • • • 4-2
MID$ • • • • • • • • 3-1
MKD$ • • • • 4-7
MKI$ • • • • • • • • • 4-7
MKS$ • • • • • • • • 4-7

OPEN • • • • • • • • • • • 4-3, 4-7

PRINT# USING • • • • • • 4-5
PRINT# USING • • • • • • 4-3
PRINT# • • • • • • • 4-3
Protected files • • • 4-2
PUT • • • • • • • 4-7

Random files • • • • • • • 4-6, 6-4
RESET • • • • • • • • 6-3
RSET • • • • • • • 4-7

Ka
yp
roJ
ou
rna
l

RUN • • • • • • • • • • • • • 4-2

SAVE • • • • • • • • • • • • • 4-1
Seauential files • • • • • • • 4-3
String functions • • • • • • • 3-1
String space • • • • • • • • 4-8
Syntax Notation • • • • • • 6
SYSTEM • • • • • • • • • • • 6-4

WRITEt • • • • • • • • • • • • 4-3

Ka
yp
roJ
ou
rna
l

basic-80
reference
manual

This manual is a reference for MiCl'050ft's BASIC~ language, release 5.0 and later.

There are significant differences between the 5.0 release of BASIC~ and the previous releases
(release 4.51 and earlier). If you have programs written under a previous release of BASIC~.
check Appendix A for new features in S.O that may affect execution.

Ka
yp
roJ
ou
rna
l

Information in this document is subiect to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy Microspft
BASIC on cassette tape, disk,' or any other medium for any purpose other than personal
convenience.

© Microsoft. 1979

UMmD WARRANn
MICJlOSOFT shall have no liability or responsibility to purchaser or any other person or entity
with respect to any liability, loss or damage caused or alleaed to be caused directly or indirectly
by this product, including but not limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use or operation of this
product. This product will be exchanged within twelve ~ from date of purchase if
defective in manufacture, labeling or packaging. but except for such replacement the sale or
subsequent use of this program is without warranty or liability.

THE ABOVE IS A UMmD WARRANn AND THE ONLY WARRANn MADE BY MICROSOFT.
ANY AND All WARRANTIES FOR MERCHANTABILln ANDIOR FITNESS FOR A PARTIC•
ULAR PURPOSE ARE EXPUSSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the
Problem Rel)Ort at the back of this manual.

CP/M is a registered trademark of Digital Research

8101-530-08
30F14A

Ka
yp
roJ
ou
rna
l

BASIC-SO Reference Manual

CONTENTS

INTRODUCTION

CHAPTER 1 General Information About BASIC-SO

CHAPTER 2 BASIC-SO Commands and Statements

CHAPTER 3 BASIC-SO Functions

APPENDIX A New Features in BASIC-SO, Release 5.0

APPENDIX B BASIC-SO Disk I/O

APPENDIX C Assembly Language Subroutines

APPENDIX D BASIC-SO with the CP/M Operating System

APPENDIX E BASIC-SO with the ISIS-II Operating System

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

APPENDIX L

APPENDIX M

BASI.C-SO with the TEKDOS Operating System

BASIC-SO with the Intel SBC and MOS Systems

Standalone Disk BASI.C

Converting Programs to BASI.C-SO

Summary of Error Codes and Error Messages

Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes Ka
yp
roJ
ou
rna
l

Introduction

BASIC-80 is the most extensive implementation of BASIC
available for the 8080 and ZS0 microprocessors. In its
fifth major release (Release 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
BSRXJ.60-1978. Each release of BASIC-a~ consists of three
upward compatible versions: 8K, Extended and Disk. This
manual is a reference for all three versions of BASIC-80,
release S.0 and later. This manual is also a reference for
Microsoft BASIC-86. BASIC-86 is currently available in Extended
and Disk Standalone versions, which are comparable to the BASIC­
SO Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the previous releases (release 4.51 and
earlier). If you have programs written under a previous
release of BASIC-80, check Appendix A for new features in
5,0 that may affect execution.

The manual is divided into three large chapters plus a
number of appendices. Chapter l covers a variety of topics,
largely pertaininq to information representation wh·en using
BASIC-80. Chapter 2 contains the syntax and semantics of
every command and statement in BASIC-80, ordered
alphabetically. Chapter 3 describes all of BASIC-80's
intrinsic functions, also ordered alphabetically. The
appendices contain informa.tion pertaining to individual
operating systemsi plus lists of error messages, ASCII
codes, and math functionsi and helpful information on
assembly language subroutines and disk I/O.

..J

Ka
yp
roJ
ou
rna
l

CHAPTER 1

GENERAL INFORMATION ABOU'l' BASIC-80

1.1 INITIALIZATION

The procedure for initialization will vary with different
implementations of BASIC-80. Check the appropriate appendix
at the back of this manual to determine how BASIC-80 is
initialized with your operating system.

1.2 MODES Q! OPERATION

When BASIC-80 is initialized, it types the prompt "Ok".
"Okn means BASIC-80 is at command level, that is, it is
ready to accept commands. At this point, BASIC-80 may be
used in either of two modes: the direct mode or the
indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
ncalcul_ator • for quick computations that do not require a
complete program.

The indirect mode is the mode used
Program lines are preceded by line
memory. The program stored in
entering the RON command.

1.3 LINE FORMAT

for entering programs.
numbers and are stored in

memory is executed by

Program lines in a BASIC program have the following format
(square brackets indicate optional) :

nnnnn BASIC statement[:BASIC statement ...] <carriage return>

j

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page 1-2

At the programmer's option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 characters in 8K BASIC-80
255 characters in Extended and Disk BASIC-80.

In Extended and Disk versions, it is possible to extend a
logical line over more than one physical line by use of the
terminal's <line feed> key. <Line feed> lets you continue
typing a logical line on the next physical line without
entering a <carriage return>. (In the 8K version, <line
feed> has no effect.)

1.3.1 hl!l!, Numbers

Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range 0
to 65529. In the Extended and Disk versions, a period (.)
may be used in EDIT, LIST, AUTO ~nd DELETE commands to refer
to the current line.

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page l-3

l. 4 CHARACTER SET

The BASIC-80 character set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC-80 are the upper case and
lower case letters of the alphabet.

The numeric characters in BASIC-80 are the digits 0 through
9.

The following special characters and terminal keys are
recognized by BASIC-80:

Character

•
+

*
I
A

(
)
I
t
$
!
[
l
,
•

; . .
&
?
<
>
\
@

<rubout>
<escape>

<tab>

<line feed>
<carriage

return>

~

Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (or pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore
Deletes last character typed.
Escapes Edit Mode subcommands.
See Section 2.16.
Moves print position to next tab stop.
Tab stops are every eight columns.
Moves to next physical line.

Terminates input of a line.

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page 1-4

1.4.1 Control Characters

The following control characters are in BASIC-80:

Control-A

Control-C

Control-G

Control-B

Control-I

Control-O

Control-R

Control-S

Control-Q

Control-U

1.5 CONSTANTS

Enters Edit Mode on the line being typed.

Interrupts program execution and returns to
BASIC-80 command level.

Rings the bell a·t the terminal.

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.

Halts program
continues. A
output.

output
second

while
Control-O

execution
restarts

Retypes the line that is currently being
typed.

Suspends program execution.

Resumes program execution after a Control-S.

Deletes the line that is currently being
typed.

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255
characters enclosed in double quotation marks.
string constants:

alphanumeric
Examples of

"BELLO"
"$25,000.00"
"Number of Employees•

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer constants

2. Fixed Point
constants

Whole nlimbers between -32768 and
+32767. Integer constants do not
have decimal points.

Positive or negative real numbers,
i.e., numbers that contain decimal
points.

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page l-5

3. Floating Point
constants

4. Hex constants

5. Octal constants

Positive or negative numbers repre­
sented in exponential form (similar
to scientific notation). A
floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent). The allowable range for
floating point constants is 10-38
to 10+38.
Examples:

23S.988E-7,. .0000235988
23S9E6 • 2359000000

(Double precision floating point
constants use the letter D instead
of E. See Section 1.5.l.)

Hexadecimal numbers with the prefix
&H. Examples:

&H76
&H32F

Octal numbers with the prefix &O or
&. Examples:

&0347
&1234

1.5.l Single And Double Precision~ !2E_ Numeric Constants

In the SK version of BASIC-80, all numeric constants are
single precision numbers. They are stored with 7 digits of
precision, and printed with up to 6 digits.

In the Extended and Disk versions, however, numeric
constants may be either single precision or double precision
numbers. With double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.
Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page 1-6

A single precision constant is any numeric constant that
has:

1. seven or fewer digits, or

2. exponential form using E, or

3. a trailing exclamation point (!)

A double precision constant is any numeric constant that
has:

1. eight or more digits, or

2. exponential form using D, or

3. a trailing number sign (tl

Examples:

Single Precision Constants Double Precision Constants

46.8
-l.09E-06

3489.0
22.5!

1. 6 VARIABLES

345692811
-l.09432D-06

3489.0t
7654321.1234

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

1.6.1 Variable Names!!!£ Declaration Characters

BASIC-80 variable names may be any length, however, in the
8K version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed -- see below.

A variable name mav not be a reserved word. The Extended
and Disk versions allow embedded reserved words1 the 8K
version does not. If a variable begins with FN, it is
assumed to be a call to a user-defined function. Reserved
words include all BASIC-80 commands, statements, function

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page 1-7

names and operator names.

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: A$= "SALES REPORT". The
dollar sign is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

In the Extended and Disk versions, numeric variable names
may declare integer, single or double precision values.
(All numeric values in 8K are single precision.) The type
declaration characters for these variable names are as
follows:

I Integer variable

Single precision variable

t Double precision variable

The default type for a numeric variable name is single
precision.

Examples of BASIC-80 variable names follow.

In Extended and Disk versions:

Pit
MINIMUM!
LIMIT%

declares a double precision value
declares a single precision value
declares an integer value

In 8K, Extended and Disk versions:

N$ declares a string value
ABC represents a single precision value

In the Extended and Disk versions of BASIC-80, there is a
second method by which variable types may be declared. The
BASIC-SO statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
included in a program to declare the types for certain
variable names. These statements are described in detail in
Section 2.12.

1.6.2 Arrav Variables

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with an integer or
an integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(l0) would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-dimension
array, and so on. The maximum number of dimensions for an

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page l-8

array is 255. The maximum number of elements per dimension
is 32767.

l. 6. 3 Space Reguirements

VARIABLES:

ARRAYS:

STRINGS:

INTEGER
SINGLE PRECISION
DOUBLE PREC1:SION

INTEGER
SINGLE PRECISION
DOUBLE PRECISION

BYTES

2
4
8

BYTES

2 pe,r element
4 pe,r eleme,nt
8 per element

3 bytes overhead plus the present contents of the string.

l.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples
should be kept in mind.

l. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable is set equal to a
numeric vaiue or vice versa, a •-rype mismatch•
error occurs.)
Example:

10 Al• 23.42
20 PRINT Al
RON

23

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.
Examples:

10 Dt • 6t/7 The arithmetic was performed

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

20 PRINT D# in double precision and the
RON result was returned in D#

.8571428571428571 as a double precision value.

10 D a 6#/7
20 PRINT D
RON

.857143

The arithmetic was performed
in double precision and the
result was returned to D (single
precision variable), rounded and
printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to intege-rs and return an integer result.
Operands must be in the range -32768 to 32767 or an
"overflow• error occurs.

4. When a floating point value is converted to an
intege-r, the fractional portion is rounded.
Example:

10 Cl• 55.88
20 PRINT Cl
RON

56

5. If a double precision variable is assigned a single
precision val~e, only the first seven digits,
rounded, of the converted number will be valid.
This is because onl.y seven d.igits of accu.racy were
supplied with the single precision value. The
absolute val.ue of the difference between the
printed double precision number and the original
single precision value will be less than 6. 3E-8
times the original single precision value.
Example:

10 A a 2.04
20 Bt a A
30 PRINT AJB#
RON

2.04 2.039999961853027

1.8 EXPRESSIONS !!!2. OPEru\TORS

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators
values.
into four

perform mathematical or
The operators provided by
categories:

logical operations on
BASIC-SO may be divided

Ka
yp
roJ
ou
rna
l

l

GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

1. Arithmetic

2. Relational

3. Logical

4. Functional

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation

Exponentiation

Negation

Sample Expression

X"Y

*,/

+,-

Multiplication, Floating
Point Division

Addition, Subtraction

To change the order in which the operations
use parentheses. -Operations within
performed first. Inside parentheses, the
operations is maintained.

-x
X*Y
X/Y

X+Y

are performed,
parentheses are
usual order of

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression

X+2Y
y

x-T
XY
T
X+Y ,-
(X2)Y
yZ

X

X (-Y)

BASIC Expression

X+Y*2

X-Y/Z

X*Y/Z

(X+Y)/Z

(X"2) "y

X" (Y" Z)

X*(-Yl Two consecutive
operators must
be separated by
parentheses.

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page l-ll

l.8.l.l Integer Division And Modulus Arithmetic -
Two additional operators are available in Extended and Disk
versions of BASIC-80: Integer division and modulus
arithmetic.

Integer division is denoted by the
operands are rounded to integers
-32768 to 32767) before the division
quotient is truncated to an integer.
For example:

baskslash (\). The
(must be in the range

is performed, and the

10\4,. 2
25.68\6.99,. 3

The precedence of integer division is
multiplication and floating point division.

just after

Modulus arithmetic is denoted
the integer value that is
division. For example:

by the operator MOD. It gives
the remainder of an integer

10.4 MOD 4 = 2 (10/4=-2 with a remainder 2)
25.68 MOO 6.99 • 5 (26/7•3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

1.8.1.2 Overflow !a9. Divi.sion ~ !.!£2 -
If, during the evaluation of an expression, a division by
zero is encountered, the nDivision by zero• error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow• error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

l.B.2 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either •true• (-l) or "false•
(OJ. This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.)

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOU'l' BASIC-80 Page 1-12

Operator Relation Tested ExPression

- Equality X•Y

<> Inequality X<>Y

< Less than X<Y

> Greater than X>Y

<• Less than or equal to X<•Y

>• Greater than or equal to X>•Y

(The equal sign is a1so used to assign a value to a
variable. See LET, Section 2. 30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-1)/Z

is true if the value of X plus Y is less than the value of
T-1 divided by z. More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J <> 0 THEN K•K+l

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either •true• (not zero)
or •false• (zero). In an express.ion, logical operations a.re
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence. Ka

yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page l-13

NOT
X NOT X
l 0
0 l

AND
X y X AND y
l l l
l 0 0
0 l 0
0 0 0

OR
X y XOR Y
l l l
l 0 l
0 1 l
0 0 0

XOR
X y X XOR Y
l l 0
l 0 l
0 l l
0 0 0

IMP
X y X IMP y
l l l
l 0 0
0 l l
0 0 l

EQV
X y X EQV Y
l l l
l 0 0
0 l 0
0 0 l

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26). For
example:

IF 0<200 AND F<4 THEN 80
IF I>l0 OR K<0 THEN SO
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as 0 or -l,
logical operators return 0 or -l. The given operation is

)

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-BO Page 1-14

performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator may be used to •mask• all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to •merge• two bytes to create a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16al6

15 AND 14•14

-1 AND 8•8

4 OR 2•6

10 OR lQal0

-1 OR -2•-l

NOT X•-(X+l)

63 a binary 111111 and 16 • binary
10000, so 63 AND 16 • 16

15 • binary 1111 and 14 • binary 1110,
so 15 AND 14 • 14 (binary 1110)

-1 • binary 1111111111111111 and
8 • binary 1000, so -1 AND 8,. 8

4 • binary 100 and 2,. binary 10,
so 4 OR 2 • 6 (binary 110)

10 • binary 1010, so 1010 OR 1010 •
1010 (10)

-1 a binary llllllllllllllll and
-2 • binary lllllllllllllll0,
so -1 OR -2 a -1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two's complement representation of -1.

The two's complement of any integer
is the bit complement plus one.

1.8.4 Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC-BO
has •intrinsic" functions that reside in the system, such as
SOR (square root) or SIN (sine). All of BASIC-BO'S
intrinsic functions are described in Chapter 3.

BASIC-BO also allows •user defined" functions that are
written by the programmer. See DEF FN, Section 2.11.

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-80 Page l-15

l.8.5 String Operations

Strings may be concatenated using+. For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$+ B$
30 PRINT "NEW"+ A$+ B$
RUN
FILENAME
NEW FILENAME

Strings may-be compared using the same relational operators
that are used with numbers:

.. <> < >

String comparison's are made by taking one character at a
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the
~igher. If, during string comparison, the end of one string
is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. Examples:

"AA" < "AB"
"FILENAME"= "FILENAME"
"X&" > "Xt"
"CL"> "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78" where B$.. "8/12/78"

Thus, string comparisons can be used to test string
or to alphabetize strings. All string constants
comparison expressions must be enclosed in quotation

l.9 INPUT EDITING

values
used in
marks.

If an incorrect character is entered as a line is being
typed, it can be deleted with the RUBOUT key or with
Control-H. Rubout surrounds the deleted character(s) with
backslashes, and Control-H has the effect of backspacing
over a character and erasing it. Once a character(s) has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-O. A carriage return is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-80 will automatically replace the old line with the
new line.

Ka
yp
roJ
ou
rna
l

GENERAL INFORMATION ABOUT BASIC-BO Page 1-16

More sophisticated edi-ting capabilities are provided in the
Extended and Disk versions of BASIC-BO. See EDIT, Section
2.16.

To delete the entire program that is currently residing in
memory, enter the NEW command. (See Section 2.41.) NEW is
usually used to clear memory prior to entering a new
program.

1.10 ERROR MESSAGES

If BASIC-BO detects an error that cause-s program execution
to terminate, an error me-s.sage is printed. In the BK
version, only the error code is printed. In the Extended
and Disk version·s, the entire error message is printed. For
a complete list of BASIC-BO error codes and error messages,
see Appendix J.

Ka
yp
roJ
ou
rna
l

CHAPTER 2

BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in
this chapter. Each description is formatted as follows:

Format:

Versions:

Purpose:

Remarks:

Example:

Shows the correct format for the instruction.
See below for format notation.

Lists the versions of BASIC-80
in which the instruction is available.

Tells what the instruction is used for.

Describes in detail how the instruction
is used.

Shows sample programs or program segments
that demonstrate the use of the instruction.

Format Notation
Wherever the format for a statement or command is given, the
following rules apply:

l. Items in capital letters must be input as shown.

2. Items in lower case letters enclosed in angle
brackets (< >) are to be supplied by the user.

3. Items in square brackets ([)) are optional.

4. All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

S. Items followed by an ellipsis (...) may be repeated
any number of times (up to the length of the lirie). Ka
yp
roJ
ou
rna
l

BASIC-BO COMMANDS AND STATEMENTS Page 2-2

Format:

Versions:

Purpose:

Remarks:

Example:

AUTO [<line number>[,<increment>]]

Extended, Disk

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<incremen·t> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return illDllediately after the asterisk
will save the line and generate the next line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved.
After Control-C is typed, BASIC returns to
command level.

AUTO 100,50

AUTO

Generates line numbers 100,
150, 200 ...

Generates line numbers 10,
20, 30, 40 ...

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-3

2.2 CALL

Format:

Version:

Purpose:

Remarks:

Example:

CALL <variable name>[(<argument list>)]

Extended, Disk

To call an assembly language subroutine.

The CALL statement is one way to transfer
program flow to an external subroutine. (See
also the OSR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the external subroutine.
<argument list> may contain only variables.

The CALL statement generates the same calling
sequence used by Microsoft's FORTRAN, COBOL and
BASIC compilers.

110 MYROUT•&HDOOO
120 CALL MYROUT(I,J,K)

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-4

2.3 CHAIN

Format:

Version:

Purpose:

Remarks:

CHAIN [MERGE] <filename>[,[<line number exp>]
[,ALL] [,DELETE<range>]]

Disk

To call a program and pass variables to it from
the current program.

<filename> is the name of the program that is
ca.lied. Example:

<line number exp> is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CBAIN•PROGl",1000

<line number exp> is not affected by a RENCM
command.

With the ALL option, every variable in the
current program i.s passed to the called program.
I:f the ALL option is omitted, the current
prog.ram must contain a COMMON statement to list
the variables that are passed. See Section 2.7.
Example:

CBAIN•PROGl•,1000,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the - current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY•,1000

After an overlay is
desirable to delete
be brought in. To
option. Example:

brought in, it
it so that a new
do this, use

is usually
overlay may
the DELETE

CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENtJM command.

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-5

NOTE:

NOTE:

The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined
functions for use by the chained program. That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be
restated in the chained program.

_____ ,)

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-6

2.4 CLEAR

Format:

Versions:

Purpose:

Remarks:

NOTE:

CLEAR [,[<expressionl>] [,<expression2>]]

8K, Extended, Disk

To set all numeric variables to zero, all string
variables to null, and to close all open files:
and, optionally, to set the end of memory and
the amount of stack space.

<expressionl> is a memory location which, if
specified, sets the highest location available
for use by BASIC-80.

<expression2> sets aside stack space for BASIC.
The default is 256 bytes or one-eiqhth of the
available memory, whichever is smaller.

In previous versions of BASIC-80, <expressionl>
set the amount of string space, and
<expression2> set the end of memory. BASIC-80,
release s.o and later,. allocates string space
dynamically. An wout of string space error"
occurs only if there is no free memory left for
BASIC to use.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-7

2.5 CLOAD

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CLOAD <filename>

CLOAD? <filename>

CLOAD* <array name>

8K (cassette) , Extended (cassette)

To load a program or an array from cassette tape
into memory.

CLOAD executes a NEW command before it loads the
program from cassette tape. <filename> is the
string expression or the first character of the
string expression that was specified when the
program was CSAVEd.

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that
has the same filename. If they are the same,
BASIC-80 prints Ok. If not, BASIC-80 prints NO
GOOD.

CLOAD* loads a numeric array that has been saved
on tape. The data on tape is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level as direct mode commands. CLOAD* may be
entered at command level or used as a program
statement. Make sure the array has been
DIMensioned before it is loaded. BASIC-80
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the
tape is possitioned correctly.

See also CSAVE, Section 2.9.

CLOAD and CSAVE are not included
implementations of BASIC-80.

CLOAD "MAX2"

Loads file "M" into memory.

in all Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format:

Version:

Purpose:

Remarks:

Example:

CLOSE[[t]<file number>[,[t]<file number ... >]]

Disk

To conclude I/O to a disk file.

<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number termina·tes upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number, likewise, that
f!le number may now be reused to OPEN any file.

A CLOSE for. a sequential output file writes the
final buffer of output.

Th.e END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)

See Appendix B.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-9

2.7 COMMON

Format:

Version:

Purpose:

Remarks:

Example:

COMMON <list of variables>

Disk

To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appe·ar anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omi.t the COMMON statement.

100 COMMON A,B,C,D()·,G$
110 CHAIN "PROG3",10

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-10

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-11

2.8 £2!!

Format:

Versions:

Purpose:

Remarks:

Example:

CONT

8R, Extended, Disk

To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string).

CONT is usually used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error·.

CONT is invalid if the program has been edited
during the break. In 8R BASIC-80, execution
cannot be CONTinued if a direct mode error has
occurred during the break.

See example Section 2.61, STOP.

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-12

2.9 CSAVE

Formats:

Versions:

Purpose:

Remarks:

NO'l'E:

Example:

CSAVE <string expression>

CSAVE* <array variable name>

SK (cassette), Extended (cassette)

To save the program or an array currently in
memory on cassette tape.

Each program or array saved on tape is
identified by a filename. When the command
CSAVE <string expression> is executed, BASIC-SO
saves the program currently in memory on tape
and uses the first character in <string
e;xpression> as the filename. <string
expression> may be more than one character, but
only the first character is used for the
filename.

When the command CSAVE"* <array variable name> is
executed, BAS"IC-SO saves the specified array on
tape. The array must be a numeric array. The
elements of a multidimensional array are saved
with the leftmost subscript changing fastest.

CSAVE may be used as a program statement or as a
direct mode command.

Before a CSAVE or CSAVE* is executed, make sure
the cassette recorder is properly connected and
in the Re.cord mode.

See also CLOAD, Section 2.5.

CSAVE and CLOAD are not included
implementations of BASIC-SO.

CSAVE •TIMER"

Saves the program currently in memory on
cassette under filename •T•.

in all

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-13

2.l0 DATA

Format:

Versions:

Purpose:

Remarks:

Example:

DATA <list of constants>

SK, Extended, Disk

TO store the numeric and string constants that
are accessed by the program's READ statement(s).
(See READ, Section 2.54)

DATA statements are nonexecutable and may be
placed anyw-here in the program. A DATA
stateme-nt may contain as many constants as will
fit on a line (separated by conunas), and any
number of DATA statements may· be used in a
program. The READ statements access the DATA
statements in order (by line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are
placed in the program.

<list of constants> may contain numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by doubl.e quota.tion marks only if they contain
commas, col.ons or significant leading or
trail.ing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or
the READ statement must
corresponding constant. in the

string) given in
agree with the

DATA statement.

DATA sta:tements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

See examples in Section 2.54, READ. Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-14

2.11 ~ !?!

Format:

Versions:

Purpose:

Remarks:

DEF FN<name>[(<parameter list>)J•<function definition>

SK, Extended, Disk

To define and name a function that is written by
the user.

<name> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function. <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function1 they do not affect program
variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, in the SK version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In EXtended and Disk BASIC-SO, user-defined
functions may be numeric or string1 in SK,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch• error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an •undefined user function" error occurs. DEF
FN is illegal in the direct mode.

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS

Example:

410 DEF FNAB(X,Y)•XA3/YA2
420 TaFNAB(I,J)

•
•

Line 410 defines the function
function is called in line 420.

Page 2-lS

FNAB. The

Ka
yp
roJ
ou
rna
l

BASIC-BO COMMANDS AND STATEMENTS Page 2-16

2.12 DEFINT/SNG/DBL/STR

Format:

Versions:

Purpose:

Remarks:

Examples:

DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Extended, Disk

To declare variable types as integer, single
precision, double precision, or string.

A DEFtype statement declares that the variable
names beginning with the letter (s) specified
will be that type variable. However, a type
declaration character always takes precedence
over a DEFtype statement in the typing of a
variable.

If no type declaration statements are
encountered, BASIC-BO assumes all variables
without declaration characters are single
precision variables.

10 DEFDBL L-P All variables beginning with
the letters .L, M, N, o, and P
will be double precision
variables.

10 DEFSTR A Al.l. va,riables beginning with
the letter A will be string
variables.

10 DEFINT I-N,W-Z
All variable beginning with
the letters I, J, K, L, M,
N, w, X, Y, Z wili be integer
variables.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.13 .Q!! ~

Format:

Versions:

Purpose:

Remarks:

Example:

DEF USR[<digit>J•<integer expression>

Extended, Disk

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from Oto 9. The digit
corresponds to the number of the OSR routine
whose address is being specified. If <digit> is
omitted, DEP OSR0 is assumed. The value of
<integer expression> is the starting address of
the OSR rou.tine. See Appendix C, Assembly
Language Subroutines.

Any number of DEF OSR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

•
•
•

200 DEF OSR0a24000
210 X•OSR0(YA2/2.89)

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-18

2.14 DELETE

Format:

Versions:

Purpose:

Remarks:

Examples:

DELETE[<line number>] [-<line number>]

Extended, Disk

To delete program lines.

BASIC-80 always returns to command level after a
DELETE is executed. If <line number> does not
exist, an •Illegal function call" error occurs.

DELETE 40

DELETE 40-100

DELETE-40

Deletes line 40

Deletes lines 40 through
100, inclusive

Deletes all lines up to
and including line 40

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-19

2.15 ~

Format:

Versions:

Purpose:

Remarks:

Example:

DIM <list of subscripted variables>

SK, Extended, Disk

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a
•subscript out of range• error occurs. The
minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

10 DIM A(20)
20 FOR I,..0 TO 20
30 READ A(I)
40 NEXT I

•

•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-20

2.16 EDIT

Format:

Versions:

Purpose:

Remarks:

EDIT <line number>

Extended, Disk

To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering Edit Mode, BASl:C-80 types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the
cursor or to inse.rt, delete, replace, or search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the
command to be executed that number of times.
When a preceding integer is not specified, it is
assumed to be l.

Edit Mode subcommands may be categorized
according to the following f1oU1ctions:

l ..

2.

3.

4.

s.
6.

Moving the cursor

Inserting text

Deleting text

Pind.ing text

Replacing text

Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbitrary length, [i] represents an
optional integer (the default isl), and
$ represents the Escape (or Altmode)
key.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-21

1. Moving the Cursor

Space Use the space bar to move the cursor to the
right. [i]Space moves the cursor i spaces to
the right. Characters are printed as you space
over them.

Rubout In Edit Mode, [i]Rubout moves the cursor i
spaces to the left (backspaces). Characters are
printed as you backspace over them.

2. Inserting Text

I I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To term-inate insertion, type
l!lsc·ape. If carriage Return is typed during an
Insert comma•nd, the e·ffect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout, Delete, or
Underscore key on the terminal may be used to
delete characters to the left of the cursor.
Rubout will print out the characters as you
backspace over them. Delete and Underscore will
print an underscore for each character that you
backspace over. If an attempt is made to insert
a character !;hat will make the line longer than
255 cha~acters, a bell (Control-G) is typed and
the character is not printed.

X The X subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type Escape
or Carriage Return.

3. Deleting Text

D [i]D deletes i characters to the right of the
cursor. The del.eted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line.

H deletes all characters to the
cursor and then automatically
mode. His useful for replacing
the end of a line.

4. Finding Text

right of the
enters insert
statements at

s The subcommand [i]S<ch> searches for the ith

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-22

occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of
the line. All characters passed over during the
search are printed.

The subcommand (i]K<ch> is similar to [i]S<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

5. Replacing Text

C The subcommand C<ch> change·s the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

6. Ending and Restarting Ed.it Mode

<er> Typing Carriage Return prints the remainder of
the line, saves the changes you made and exits
Edit Mode.

E The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.

Cl The Q.subcommand
level, without
were made to the

returns to BASIC-80 command
saving any of the changes that
line during Edit Mode.

L The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

A The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If BASIC-80 receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-23

Syntax Errors

When a Syntax Error is encountered during
execution of· a program, BASIC-80 automatically
enters Edit Mode at the line that caused the
error. For example:

10 K • 2(4)
RUN
?Syntax error in 10
10

When you finish editing the line and type
Carriage Return (or the E subcommand), BASIC-80
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination, first exit Edit Mode
with the O subcommand. BASIC-80 will return to
command level, and all variable values will be
preserved.

Control-A

To enter Edit Mode on the lin~ you are currently
typing, type Control-A. BASIC-80 responds with
a carriage return, an exclamation point (!) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

NOTE

Remember, if you have just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number
symbol•.• always refers to the current
line.)

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-24

2.17 ~

Format:

Versions:

Purpose:

Remarks:

Example:

END

SK, Extended, Disk

To terminate program execution, close all files
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAR message to
be printed. An END statement at the end of a
program is optional. BASIC-SO always returns to
command level after an END is executed.

520 IF lt>l000 THEN END ELSE GOTO 20

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-25

2.18 ERASE

Format:

Versions:

Purpose:

Remarks:

Example:

ERASE <list of array variables>

Extended, Disk

To eliminate arrays from a program.

Arrays may be redimensioned after they are
EMSEd, or the previously allocated array space
in memory may be used for other purposes. If an
a.ttempt is made to redimension an array without
first ERASEing it, a ,..Redimensioned array" error
occurs.

•
•
•

450 EMSE A, B
4-60 DIM B (99)

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-26

2.19 ,2! ~~VARIABLES

When an error handling subroutine is entered,
the variable ERR contains the error code for the
error, and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF ... THEN statements to direct program
flow in the error trap routine.

If the statemen·t that caused the error
direct mode statement, ERL will contain
To test if an error occurred in a
statemen·t, use IF 65535 • ERL THEN ...
Other'liri se, use

IF ERR• error code THEN . . .
IF ERL• line number THEN ...

was a
65535.
direct

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserv:ed
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASIC-80's error codes are listed in Appendix J.
(For Standalone Disk BASIC error codes, see
Appendix H.)

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-27

2.20 ERROR

Format:

Versions:

Pu:cpose:

Remarks:

ERROR <integer expression>

Extended, Disk

1) To simulate the occurrence of a BASIC-80
error; or 2) to allow error codes to be
defined by the user.

The value of <integer expression> must be
greater than 0 and less than 255. If the value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J), the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that
is greater than any used by BASIC-80's error
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
BASIC-80.) This user-defined error code may then
be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC-80
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
to be printed and execution to halt.

Example 1: LIST
10 S • 10
20 T • 5
30 ERRORS+ T
40 END
Ok
RUN
String too long in line 30

Or, in direct mode:

Ok
ERROR 15
String too long
Ok

(you type this line)
(BASIC-80 types this line)

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS

Example 2: •
•
•

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET•7B
130 IF B > 5000 THEN ERROR 210

•
•
•

Page 2-28

400 IF ERR• 210 THEN PRINT •BOOSE LIMIT IS $5000•
410 IF ERL • 130 THEN RESUME 120

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-29

2.21 FIELD

Format:

Version:

Purpose:

Remarks:

Example:

NOTE:

FIELD[t]<file number>,<field width> AS <string variable>.

Disk

To allocate space for variables in a random file
buffer.

To get data out of a random buffer after a GET
or to enter data- be·f·ore a PUT, a FIELD statement
must have been executed.

<file numbe-r>
was OPENe.d.
c'haracte·rs to
For exa-mple,

is the numbe-r under which the file
<field width> is the number of

be allocated to <string variable>.

FIELD l, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the nex.t 10 POs·i tions to ID$", and the next 40
posi tion·s to ADD$. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET.)

The total numbe-r of bytes al.located in a FIELD
statement. must not exceed the record length that
was spec·ifie-d when the file was OPENed.
Otherwise-, a "Field overflow-" error occurs.
(The default record length is 128.)

Any numbe-r of FIELD sta-tements may be executed
for the same file, and all FIELD statements that
have bee-n executed are in e-ffect at the same
time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT or LETstatement. Once a variable-name is
F'IELDed, it points to the correct place in the
random file buf·fer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to
string space.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-30

Format:

Versions:

Purpose:

Remarks:

FOR <variable>ax TO y [STEP z]

NEXT [<variable>] [,<variable> ...]

where x, y and z are numeric expressions.

8K, Extended, Disk

To all.ow a series of instructions to be
per~ormed in a loop a given number of times.

<variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP. A cheek is performed to see
if the value of the ooun~er is now greater than
the final value (y). If it is not greater,
BASIC-80 branches back to the statement after
the FOR statement and the process is repeated,
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR ... NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if the
value of the loop times the sign of
exceeds the final value times the sign
step.

Nested Loops

initial
the step
of the

FOR ... NEXT loops may be nested, that is, a
FOR ... NEXT loop may be placed within the context
of another FOR ... NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be •Jsed for
all of them.

The variable(s) in the NEXT statement may be

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-31

Example 1:

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

10 KalQ
20 FOR I•l TO K STEP 2
30 PRINT I;
40 KaK+l0
so PRINT K
60 NEXT
RON

1 20
3 30
s 40
7 so
9 60

Ok

Example 2: 10 JaQ

Example 3:

20 FOR Ial TO J
30 PRINT I
40 NEXT I

In this example, the
because the initial
the final value.

10 I'"S
20 FOR Ial TO I+S
30 PRINT I;
40 NEXT
RON

1 2 3 4 s 6 7
Ok

8

loop does not execute
value of the loop exceeds

9 10

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set. (Note:
Previous versions of BASIC-80 set the initial
value of the loop variable before setting the
final value; i.e., the above loop would have
executed six times.) Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-32

2.23 ~

Pormat:

Version:

Purpose:

Remarks:

Example:

NOTE:

GET [t]<file number>[,<record number>]

Disk

To read a record from a random disk file into a
random buffer.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the bu·ffer. The largest possible record number
is 32767.

See Appendix B.

After a GET statement, INPUTt and LINE INPUTt
may be done to read characters from the random
file buffer.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2. 24 GOSUB •.. RETURN

Format:

Versions:

Purpose:

Remarks:

Example:

GOSUB <line number>
•
•

RETURN

8K, Extended, Disk

To branch to and return from a subroutine.

<line number> is the first
subroutine.

line of the

A subrou.tine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause
BASIC-80 to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dicta.te a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it is
recomme•nded that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROOTnm" 7
5 0 PRINT " IN" 7
60 PRINT" PROGRESS"
70 RETURN
RON
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMEN'l'S Page 2-34

2.25 GOTO

Format:

Versions:

Purpose:

Remarks:

Example:

GOTO <line number>

8K, Extended, Disk

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered a·fte.r <line number>.

LIST
10 READ R
20 PRINT wR ••iR,
30 A• 3.14*RA2
40 PRINT wAREA •wiA
50 GOTO 10
60 DATA 5, 7, 1.2
Ok
RUN
R '" 5
R • 7
R,. 12

AREA• 78.5
AREA• 153.86
AREA• 452.16

?Out of data
Ok

in 10

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

Format:

Format:

Versions:

NOTE:

Purpose:

Remarks:

IF <expression> THEN <statement(s)>

(ELSE <statement(s)> I <line number>]

IF <expression> GOTO <line number>

(ELSE <statement(s)> I <line number>]

ax, Extended, Disk

<line number>

The ELSE clau.se is allowed only in Extended and
Disk ve-rsions.

To make a decision regarding program flow based
on the result returned by an expression.

If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or·more statements to be executed. GOTO
is always followed by a line number. If the
result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if
present, is executed. Execution continues with
the next executable statement. (ELSE is allowed
only in Extended and Disk versions.) Extended
and Disk versions allow a comma before THEN.

Nesting of IF Statements

I'n the Extended and
IF ... TBEN ... ELSE statements
Nesting is limited only by the
line. For example

Disk versions,
may be nested.

length of the

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
TBEN PRINT "LESS THAN• ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A•B THEN IF B--C THEN PRINT "A=C•
FLSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF ... THEN statement is followed by a
number in the direct mode, an "Undefined
error results unless a statement with
specified line number had previously
entered in the indirect mode.

line
line"

the
been

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-36

NOTE: When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IP ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than l.0E-6.

Example 1: 200 IF I THEN GETtl,I

This statement GETs record number I if I is not
zero.

Example 2: 1.00 IP(I<20)*(I>l0) THEN DB•l979-l:GOTO 300
110 PRINT •otJT OF RANGE•

•
•
•

In this example, a test determines if I is
greater than 10 and less than 20. If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

Example 3: 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOPLAG) .
If IOFLAG is zero, output goes to the line
printer, otherwise output goes to the terminal.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-37

2.27 INPUT

Format:

Versions:

Purpose:

Remarks:

INPU'l'[il [<•prompt string•>i]<list of variables>

BK, Extended, Disk

To allow input from the terminal during program
execution.

When an INPU'l' statement is encountered, program
e«ecut.ion pa.uses and a question mark i.s printed
to ind.ica·te the program is waiting for data. If
<•·prompt string•> is included, the string is
printed be•fore the question mark. The required
d·ata is then entered at the terminal.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement INPU'l' •ENTER
Bllt'?HDATE•,B$ will print the prompt with no
question mark.

If INPU'l' is immediately followed by a semicolon,
then the carriage return typed by the user to
inpu.t data does not echo a carriage return/line
feed sequence.

The data that is entered is assigned to the
va:riable(s) g'i.ven in <variabl.e list>. The
numbe·r· of data item·s supplied must be the same
as· the number of vuiable-s in the list. Data
items a1:e separated by commas.

The variable name-sin the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPU'l'
stateme·nt need not be surrounded by quotation
m·arks.)

Responding to INPU'l' with too many or too few
items, or with the wrong type of value (numeric
inste·ad of string, etc.) causes the messsage
•?Redo from start• to be printed. No assignment
of input values is made until an acceptable
response is given.

In the BK version, INPU'l' is illegal in the
direct mode.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-38

Examples: 10 INPUT
20 PRINT
30 END
RON
? 5 (The 5 was typed in

in response to the
5 SQUARED IS 25

Ok

LIST
10 PI•3.14

by the user
question mark.)

20 INPUT "WHAT IS THE RADIUS•: R
30 A•PI*RA2
40 PRINT •TBE AREA OP THE CIRCLE IS•:A
50 PRINT
60 GOTO 20
Ok
RON
WHAT IS THE RADIUS? 7.4 (User types 7.4)
TBE AREA OP THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-39

2. 28 INPUTt

Format:

Version:

Purpose:

Remarks:

Example:

INPUTt<file number>,<variable list>

Disk

To read data items from a sequential disk file
and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)
With INPUTt, no question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would if data w.ere being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If BASIC-80 is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark (•) , the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-40

2.29 KILL

Format:

Version:

Purpose:

Remarks:

Example:

KILL <filename>

Disk

To delete a file from disk.

If a KILL statement is given for a file that is
currently OPEN, a •File already open• error
occurs.

KILL is used for all types of disk files:
program files, random data files and sequential
data files.

200 KILL •DATAl•

See also-Appendix B.

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-41

2.30 LET

Format:

Versions:

Purpose:

Remarks:

Example:

[LET] <variable>•<expression>

SK, Extended, Disk

To assign the value of an expression to a
variable.

Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable n·ame.

110 LET 0•12
120 LET S-12'"'2
130 LET F-12'"'4
14'0 LET StJM-D+E+F

•
•
•

or

110 0•12
.120 E•l2.'"'2
130 F•l2'"'4
140 StJM•D+E+F

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-42

2.31 ~ INPUT

Format:

Versions:

Purpose:

Remarks:

Example:

LINE INPUT[il [<•prompt string">i]<string variable>

Extended, Disk

To input an entire line (up to 254 characters)
to a string variable, without the use of
delimiters.

The prompt string is a string literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string variable>. However, if a
line feed/carriage return sequence (this order
only) is encountered, both characters are
echoedi but the carriage return is ignored, the
line feed is put into STRING variable>, and data
input continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
carriage return/line feed sequence at the
terminal.

A LINE INPUT may be escaped by typing Control-C.
BASIC-BO will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

See Example, Section 2.32, LINE INPUTt.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.32 LINE INPUTt

Format:

Version:

Purpose:

Remarks:

Example:

LINE INPUTt<file number>,<string variable>

Disk

To read
without
file to

an entire line (up to 254 characters),
delimiters, from a sequential disk data

a string variable.

<file number> is the number under which the file
was OPENed. <string variable> is the variable
name to which the line will be assigned. LINE
INPUTt reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and
the next LINE INPUTt reads all characters up to
the next carriage return. (If a line
feed/carriage return sequence is encountered, it
is preserved. J

LINE INPUTt is especially useful
a data file has been broken into
BASIC-80 program saved in ASCII
read as data by another .program.

10 OPEN •o•,1,•LIST"

if each line of
fields, or if a
mode is being

2.0 LINE INPUT "CUSTOMER INFORMATION? "iC$
30 PRINT tl, C$
40 CLOSE 1
50 OPEN "I•,1,•LIST•
60 LINE INPUT tl, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-44

2.33 LIST

Format 1:

Versions:

Format 2:

Versions:

Purpose:

Remarks:

LIST [<line number>]

SK, Extended, Disk

LIST [<line number>[-[<line number>]]]

Extended, Disk

To list all or part of the program currently in
memory at the terminal.

BASIC-SO always returns to command level after a
LIST is executed.

Format 1: If <l.ine number> is omitted, the
program is listed beginning at the lowest line
number. (Listing is terminated either by the
end of the program or by typing Control-C.) If
<line number> is included, the SK ve-rsion will
list the prog-ram beginning at that linei and
the Extended and Disk versions will list only
the. specified l.ine.

Format 2: This format allows the following
options:

1. If only the
l.ine and
listed.

first number is specified,
all higher-numbered lines

that
are

2. If only the second number is specified, all
lines from the beginning of the program
throu.gh that l.ine are listed.

3. If both numbers are specified, the entire
range is listed. Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-45

Examples: Format 1:

LIST

LIST 500

Format 2:

Lists the program currently
in memory.

In the SK version, lists
all programs lines from
500 to the end.
In Extended and Disk,
1 i.sts line SO O.

LIST 150- Lists all lines from 150
to the end.

LIST -1000 Lists all line·s from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-46

2.34 LLIST

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

LLIST [<line number>[-[<line number>]]]

Extended, Disk

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a 132-character wide printer.

BASIC-80 always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Forma·t 2.

LLIST and LPRINT are not included in
implementations of BAS~C-80.

See the examples for LIST, Format 2.

all

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-47

2.35 ~

Format:

Version:

Purpose:

Remarks:

Example:

LOAD <filename>[,R]

Disk

To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd. (With CP/M, the default
extension .BAS is supplied.)

LOAD closes all open file-s and deletes all
variables and program lines currently residing
in memory before it loads the 'designated
program. Roweve-r, if the "R" option is used
w-ith LOAD, the program is RUN after it is
LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used to
chain several programs (or segments of the same
program). Information may be passed between the
programs using their disk data files.

LOAD "'STRTRK" , R

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-48

2. 36 LPRIN'l' AND LPRIN'l' USING

Format:

Versions:

Purpose:

Remarks:

NOTE:

LPRIN'l' [<list of expressions>]

LPRIN'l' USING <string exp>i<list of expressions>

Extended, Disk

To print data at the line printer.

Same as PRIN'l' and PRIN'l' US~NG, except output
goes to the line printe.r. See Section 2. 49 and
Section 2.50.

LPRIN'l' assumes a 132-character-wide printer.

LPRIN'l' and LLIS'l' are not included in
implementations of BASIC-80.

all

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-49

2.37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

Examples:

NOTE:

LSET <string variable>• <string expression>
RSET <string variable>• <string expression>

Disk

To move data from memory to a random file buffer
(in preparation for a PUT statement).

If <string expression> requires fewer bytes than
were FIELDe.d to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric val.ue-s must be converted to
strings before they are LSET or RSET. See the
MKI$, MKS$, MKD$ functions, Section 3.25.

1 SO LSE'l' A$!"'MKS$ (AMT)
160 LSET D$•DESC($)

See also Appendix B.

LSET or RSET may also be used with· a non-fielded
string variable to left-justify or right-justify
a string in· .a given field. For example, the
program line-s

110 A$-SPACE$(20)
120 RSET A$•N$

right-justify the string N$
field. This can be very
printed ou.tput.

in a 20-character
handy for formatting

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-50

2.38 MERGE

Format:

Version:

Purpose:

Remarks:

Example:

MERGE <filename>

Disk

To merge a specified disk file into the program
currently in memory.

<filename> is the name used when the file was
SAVEd. (With CP/M, the default extension .BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode• error
occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as •inserting• the program lines on
disk into the program in memory.)

BASIC-80 always returns to command level after
executing a MERGE command.

MERGE •NUMBRS •

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-51

2.39 MID$

Format:

Versions:

Purpose:

Remarks:

Example:

MID$(<string expl>,n[,m])•<string exp2>

where n and
<string expl>
expressions.

Extended, Disk

m are integer expressions and
and <string exp2> are string

To replace a portion of one string with another
string.

The characters in <string expl>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the
numbe·r of characters from <string exp2> that
will be used in the replacement. If m is
omitted, all of <string exp2> is used. However,
regardless of whether mis omitted or included,
the replacement of characters·never goes beyond
the original length of <string expl>.

10 A$•RKANSAS CITY, MOR
20 MID$(A$,14)•RKSR
30 PRINT A$
RUN
KANSAS CITY, KS

MID$ is also a function that returns a substring
of a given string. See Section 3.24.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-52

2.40 NAME

Format:

Version:

Purpose:

Remarks:

Example:

NAME <old filename> AS <new filename>

Disk

To change the name of a disk file.

<old filename> must exist and <new filename>
must not exist1 otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the new name.

Ok
NAME •'ACCTS• AS •LEDGER•
Ok

In this example, the file that was
formerly named ACC'l'S will now be named LEDGER.

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-53

2.41 !!!

Format:

Versions:

Purpose:

Remarks:

NEW

SK, Extended, Disk

To delete the program currently in memory and
clear all variables.

NEW is entered at command level to clear memory
be-fore entering a new program. BASIC-80 always
re-turns to command level after a NEW is
executed.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-54

2.42 ~

Format:

Versions:

Purpose:

Remarks:

Example:

NULL <integer expression>

SK, Extended, Disk

To set the number of nulls to be printed at the
end of each line.

For 10-character-per-second tape punches,
<integer expression> should be >•3. When tapes
are not being punched, <integer expression>
should be O or l for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is o.

Ok
NULL 2
Ok
100 INPUT X
200 IF X<S0 GOTO 800

•
•
•

Two null characters will be printed after each
line.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-55

2.43 ON ERROR GOTO

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR GOTO <line number>

Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors) , will cause a jump to the
specified error handling subroutine. If <line
number> does not exist, an "Undefined line•
error results. To disable error trapping,
execute an ON l!IRROR GOTO O. Subsequent errors­
will print an e-rror me-ssage and halt execution.
An ON ERROR GOTO O statement that appears in an
error trapping subroutine causes BASIC-80 to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO O if an error is encountered for
w-hich there is no recovery action.

If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine.

10 ON ERROR GOTO 1000

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-56

2.44 Q! ... GOSOB AND Q! ... GOTO

Format:

Versions:

Purpose:

Remarks:

Example:

ON <expression> GOTO <list of line numbers>

ON <expression> GOSOB <list of line numbers>

SK, Extended, Disk

To branch to one of several specified line
numbe,rs, dependi.ng on the value returned when an
expression is evalua·ted.

The value of <expression> determines which line
numbe-r in the list will be used for branching.
For exampl.e, if the val.ue is three, the third
line number in the list will be the destination
of the branch.. (If the value is a non-integer,
the fractional portion is rounded.)

In the ON ... GOSOB statement, each line number in
the list must be the first line number of a
subro11tine.

If the ·va·l.ue of <expression> is zero or greater
than the number of items in the list (but less
than or equal to 255), BASIC continues with the
nex.t execu.table statement. If the value of
<expression> is nega·t.ive. or gre-ater than 255, an
•Illegal function call• error occurs.

100 ON L-1 GOTO 150,300,320,390

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.45 OPEN

Format:

Version:

Purpose:

Remarks:

NOTE:

Example:

OPEN <mode>,[t]<file number>,<filename>,[<reclen>J

Disk

To allow I/0 to a disk file.

A disk file must be OPENed before any disk
operation can be performed on that file.
a.llocates a buffer for I/0 to the file
determ·ines the mode of access that will be
with the buffer.

<mode> is a string expression whose
cha·racter is one of the following:

O specifies sequential output mode

I spec'ifies sequential input mode

I/0
OPEN

and
used

first

R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is
then associated with the file for as long as it
is OPEN and is used to refer other disk I/0
sta-tenients to the file.

<filename> is a string expression containing a
name tha,t conforms to your operating system's
rules for di.sk filenames.

<reclen> is an integer expression
inc·luded, sets the r·ecord length
files. Th.e defau.lt record length is
See also page A-3.

which, if
for random

128 bytes.

A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on onl.y one file number at a time.

10 OPEN •r•,2,•rNVEN•

See also Appendix B.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.46 OPTION~

Format:

Versions:

Purpose:

Remarks:

OPTION BASE n
where n isl or 0

8K, Extended, Disk

To declare the
subscripts.

minimum value for

The default base is 0. If the statement

OPTION BASE l

array

is executed, the lowest value an array subscript
mc1y have is one.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-S9

2.47 Q!r!:

Format:

Versions:

Purpose:

Remarks:

Example:

OUT I,J
where I and J are integer expressions in the
range Oto 25S.

SK, Extended, Disk

To send a byte to a machine output port.

The integer expression I is the port number, and
the integer expression J is the data to be
transmitted.

100 OUT 32,100

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-60

2.48 POKE

Format:

Versions:

Purpose:

Remarks:

Exampl.e:

POKE I,J
where I and J are integer expressions

SK, Extended, Disk

To write a byte into a memory location.

The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range O to 255. In the SK version, I
must be less than 32'768. In the Extended and
Disk versions, I must be in the range O to
65536.

With the SK version, data may be POKEd into
memory locations above 32768 by supplying a
negative number for I. The value of I is
computed by subt.racting 65536 from the desired
address. For exampl.e, to POKE data into
location 45000, I• 45000-65536, or -20536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.27.

POKE and PEEK are useful for efficient data
storage,- loading assembl.y language subroutines,
and passing arguments and results to and from
assembly language subroutines.

10 POD &H5A00,&BFF

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMEN'?S Page 2-61

2.49 PRINT

Format:

Versions:

Purpose:

Remarks:

PRINT [<list of expressions>]

SK, Extended, Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
incl.uded, the val.ues of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

Print Pos:i tions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-SO divides the line into print
zones of 14 spaces each. In the list of
expressions, a comma causes the next val.ue to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediatel.y after the last val.ue. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

I:f a comma or a sem:icol.on term·in:ates the l.ist of
expressions, the next PRINT statement begins
prin.ting on the same l.ine, spacing accordingly.
If the list of expressions terminates without a
comma or a. semicolon, a carri.age retu-rn is
printed at the end of the l.ine. If the printed
l.in:e is longer than the terminal width, BASIC-SO
goes to the next physical. l.ine and continues
printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Singl.e precision numbers that can be represented
with 6 or fewe-r digits in the unscal.ed format no
l.ess accuratel.y than they can be represented in
the scaled format, are output using the unscaled
format. For example, lE-7 is output as .0000001
and lE-S(-7) is output as lE-0S. Double
precision numbe-rs that can be represented with
16 or fewer digits in the unscaled format no
less accuratel.y than they can be represented in
the scaled format, are output using the unscaled
format. FOr example, 1D-15 is output as
.0000000000000001 and lD-16 is output as 1D-16.

Ka
yp
roJ
ou
rna
l

BI.SIC-8.Q COMMANDS AND STATEMEN'11S Page 2-62

Example 1:

A question mark may be used in place of the word
PRINT in a PRINT statement.

10 X•S
20 PRINT
30 END
RUN

10
Ok

In this
statement

.beginning

x+s, x-s, X*(-5), XAS

0 -25 3125

example, the commas in the PRINT
cause each value to be printed at the

of the next print zone.

Example ·21 LIST

Example 3:

10 INPUT X
20 PRINT x "SQUARED IS" xA2 "AND"r
30 PRINT X "CUBED IS" XA3
40 PRINT
50 GOTO 10
Ok
RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blan·k line to be printed before the next prompt.

10 FOR X • l TO 5
20 J•J+S
30 K•K+l0
40 ?J;K;
so NEXT X
Ok
RUN

5 10 10 20 15 30 20 40 25 so
Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a. space.)
In line 40, a question mark is used instead of
the word PRINT.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-63

2.50 PRINT OSING

Format:

Versions:

Purpose:

Remarks
and
Examples:

PRINT OSING <string exp>7<list of expressions>

Extended, Disk

To print strings or numbers using a specified
format.

<list of expressions> is comprised of the string
e-xpressions or numeric expressions that are to
be printed, separated by semicolons. <s~ring
exp> is a string literal (or variable) comprised
of special formatting characters. These
form·atting cha-racte-rs (see below) determine the
field and the format of the printed strings or
numbe·rs.

When PRINT
of three
format the

String Fields

OSING is used to print
formatting characters
string field:

strings, one
may be used to

• ! • Specifies that only the first character in the
given string is to be printed.

"\n spaces\• Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed7
with one space, three characters will be
printed, and so on. If the string is longer
than the field, the extra characters are
ignored. If the field is lonnger than the
string, the string will be left-justified in the
fie.ld and padded with spaces on the right.
Example:

10 A$,m"LOOK":B$a"OUT"
30 PRINT OSING •1•7A$7B$
40 PRINT OSING "\ \"1A$;B$
50 PRINT OSING •\ \"7A$;B$7"!!"
RUN
LO
LOOKOUT
LOOK OUT ! I

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMEN'l'S • Page 2-64

•&• Specifies a variable length string field. When
the field is specified with•&•, the string is
output exactly as input. Example:

•

10 A$••LooK•:B$••oUT•
20 PRINT USING •1•1A$7
30 PRINT USING •&•1B$
RON
LOUT

When PRINT
following
format the

Numeric P'ie.lds

US'ING is used to print numbers, the
special characters may be used to
numeric field:

A number- s.ign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field ..

A decimal point 111ay be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as O if
necessary). Numbers are rounded as necessary.

PRINT USING •·••t••1.78
0.78

PRINT USING •· .. ·••·••1987.654
987.65

PRINT USING •·••tt •710 .. 2,5.3,66.789,.234
10.20 5.30 66. 79 0.23

In .the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

+ A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS l?age 2-65

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING •+tt.tt •7-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING •tt.tt- •7-68.95,22.44-9,-7.0l
68.95- 22.45 7.01-

** A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The •• also
specifies posi.tions for two more digits.

PRINT USING •• ... t •712.39,-0.9,765.1
*12.4 •-0.9 765.1

$$ A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Neg·a:tive numbe-rs cannot be used unless the minus
sign trails to the right.

PRINT USING •$$ttt.tt•7456.78
$456.78

-$ The **$ at the beginning of a forma·t string
combines the effects of the above two symbols.
Lead.ing spaces w-ill be asterisk-filled and a
dollar sign will be printed before the number.
••$ specifies three more digit positions, one of
which is the dollar sign.

,

PRINT USING •·••S-tt. tt·• t 2 .. 34
•-s-2.34

A comma that. is to the left of the decimal point
in a form·atting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
posit.ion. The comma has no effect if used with
the exponential (AAAA) format.

PRINT USING •tttt,.tt•71234.5
1,2.34.50

PRINT USING •tttt.tt,•71234.5
1234.50,

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading+ or trailing+ or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING :234.56
2.3SE+02

PRINT USING ... llll _ .. 7888888
.8889E+06

PRINT USING .. + :123
+.12E+03

An underscore in
next character
character.

the format string
to be output as

PRINT USING .. 1•t.t• 1 .. :12.34
!12.34! - -

causes the
a literal

The literal character itself may be an
underscore by placing in the format string.

the If the number to be printed is larger than
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed in front of the rounded
number.

PRINT USING 1.11 .. :111.22
1111.22

PRINT USING ... 11 .. :.999
11.00

If the number of digits specified exceeds 24, an
.. Illegal function call .. error will result. Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-67

2.51 PRINTt ~ PRINTt OSING

Format:

Version:

Purpose:

Remarks:

PRINTt<filenumber>,[OSING<string exp>i]<list of exps>

Disk

To write data to a sequential disk file.

<file number> is the number used when the file
was OPENed for output. <string exp> is
comprised of formatting characters as described
in Section 2.50, PRINT OSING. The expressions
in <list of expressions> a.re the numeric and/or
string expressions that will be written to the
file.

PRINTt doe-s not compress data on the disk. An
image of the da.ta is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.

In the list of expressions, numeric
should be delimited by semicolons.

PRINTtl,A1B1C1X1Y1Z

expressions
For example,

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

For example, let A$••·CAMERA• and B$••93604-l•.
The statement

PRINTtl,A$1B$

would write CAMERA93604-l to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINTt statement as follows:

PRINTtl,A$1•,•1B$

The image written to disk is

CAMERA,93604-1

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS

which can be read back
variables.

into two

If the strings themselves contain
semicolons, significant leading blanks,
returns, or line feeds, write them
surrounded by explicit quotation
CBR$ (34) .

Page 2-68

string

commas,
carriage
to disk

marks,

Por example, let A$••CAMERA, AtJ'l'OMATIC• and
B$•• 93604-l •. The statement

PRINTtl,A$:B$

would write the following image to disk:

CAMERA, AtJ'l'OMATIC

and the statement

INPtJ'l'tl,A$,B$

93604-l

would input •CAMERA• to
•·AtJ'l'OMAT'.IC 93604-l• to B$. To
strings prope!!ly on the disk,
quotes to the disk image using
statement

A$ and
separate thes~
write double

CBR$(34). The

PRINTf:1,CBR$(34) :A$:CBR$(34) :CBR$(34) :B$7CBR$(34)

writes the following image to disk:

·CAMERA, AtJ'l'OMATic••

and the statement

INPtJ'l'tl,A$,B$

93604-l•

would input •CAMERA, AtJ'l'OMATic• to
• 93604-l• to B$.

A$ and

The PRINTt statement may also be used with the
USING option to control the format of the disk
file. Por example:

PRINTtl,USING•$$ttt.tt,•:.T:K:L

Por more examples using PRINTt, see Appendix B.

See also WRITE#, Section 2.68.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2.52 ~

Format:

Version:

Purpose:

Remarks:

Example:

NOTE:

POT [t]<file number>[,<record number>]

Disk

To write a record from a random buffer to a
random disk file.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will have the next available record
number (after the last POT) . The largest
possible record number is 32767. The smallest
record number isl.

See Appendix B.

PRINTt·, PRINTt USING, and WRITEt may be used to
put characters in the random file buffer before
a POT statement.

In the case of WRI'l!Et, BASIC-80 pads the buffer
with spaces up to the carriage return. Any
attempt to read or write past the end of the
buffer causes a •Field.overflow• error.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-70

2.53 RANDOMIZE

Format:

Versions:

Purpose:

Remarks:

Example:

RANDOMIZE [<expression>]

Extended, Disk

To reseed the random number generator.

If <expression> is
program execution
printing

omitted,
and asks

BASIC-SO suspends
for a value by

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

10 RANDOMIZE
20 FOR I•l TO 5
3 0 PRINT RND i
40 NEXT I
RUN
Random Number Seed (-32768 to 32767)? 3 (user
types 3)

. 88598 . 484668 . 586328 .119426 . 709225
Ok
RUN
Random Number Seed (-32768 to 32767)? 4 (user
type.s 4 for new sequence)

. 803506 .162462 . 929364 . 292443 . 322921
Ok
RUN
Random Number Seed (-32768 to 32767)? 3 (same
sequence as first RUN)

. 88598 . 484668 . 586328 .119426 . 709225
Ok Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-71

2.54 ~

Format:

Versions:

Purpose:

Remarks:

Example l:

READ <list of variables>

8K, Extended, Disk

To read values from a DATA statement and assign
them to variables. (See DATA, Section 2.10,)

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a •syntax
error• will result,

A single READ statement may access one or more
DATA statements (they will be accessed in
order), or several READ statements may access
the same DATA statment. If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statement(s), an
00'1' OF DATA message is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statement (s·), subsequent
.READ statements will begin reading data at the
first unread element. If there are no
subsequent READ statements, the extra data is
ignored.

To reread DATA statements from
the RESTORE statement (see
2.57)

the start, use
RESTORE, Section

•
•
•

80 FOR Ial TO 10
90 READ A(I)
100 NEXT I
110 DATA 3,08,5,19,3,12,3.98,4,24
120 DATA 5,08,S,55,4.00,3,l6,3.37

•

This program segment READs the values
DATA statement% into the array
execution, the value of A(l) will be
so on.

from the
A. After
3.08, and

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS

Example 2: LIST
1.0 PRINT •cITY·, •sTATE·, • ZIP·
20 READ C$,S$,Z
30 DATA •oErivER,•, COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

Page 2-.72

This program RBADs string and numeric data from
the DATA statement in line 30.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMEN'l'S Page 2-73

2.55 .!!!!!

Format:

Versions:

Purpose:

Remarks:

Example:

REM <remark>

SK, Extended, Disk

To al.low explanatory remarks to be inserted in a
prog.ram.

REM statements are not executed but are output
exactl.y as entered when the program is listed.

REM statements may be bra•nc:hed into (from a GOTO
or GOSlJB statement) , and execution will. continue
w-ith the first executabl.e statement after the
Rl!IM statement.

In the· mxtended and Disk versions, remarks may
be added to the end of a line by preceding the
rem·ark w-i th a single quotation mark instead of
:REM.

WARNING: Do not use this in a data statement as
it would be considered legal. data.

•
•
•·

lZ0 REM CALCtlUTE' AVERAGE VELOCITY
130 FOR I•l TO 20
140 SOM-SOM + V(I)

•
•
•

or, with Extended and Disk versions:

•
•
•

12.0 POR I•l TO 20
130 SOM•SOM+V(I)
140 NEXT I

•
•
•

'CALCULATE AVERAGE VELOCITY Ka
yp
roJ
ou
rna
l

EIASIC-80 COMMANDS AND STATEMENTS Page 2-74

2.56 RENOM

Format:

Versions:

Purpose:

Remarks:

NOTE:

Examples:

RENOM [[<new number>] [,[<old number>] [,<increment>]]]

Extended, Disk

To renumber program lines.

<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENOM also changes all line number references
following GOTO, GOSUB, THEN, ON ... GOTO,
ON ... GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message •undefined line xxxxx in yyyyy• is
printed. The incorrect line number reference
(xxxxx) is not changed by RENOM, but line number
yyyyy may be changed.

·RENOM cannot be used to change the order of
program lines (for example, RENOM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An •Illegal function call• error will result.

RENOM Renumbers the entire program.
The first new line number
will be 10. Lines will
incremen·t by 10.

RENOM 300,, 50 Renumbers the entire pro­
gram. The first new line
number will be 300. Lines
will increment by SO.

RENOM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS : Page 2-75

2.57 RESTORE

Format:

Versions:

Purpose:

Remarks:

Example:

RESTORE [<line number>]

SK, Extended, Disk

To allow DATA statements to be reread from a
specified line.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
numbe·r> is specified, the next READ statement
accesses the first item in the specified DATA
statement.

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-76

2.58 RESUME

Formats:

Versions:

Purpose:

Remarks:

Example:

RESUME

RESUME 0

RESUME NEXT

RESUME <line number>

Extended, Disk

To continue program execution after an error
recove-ry procedure has been performed.

Any one of the four formats shown above may be
used, depending upon where execution is to
resume:

RESUME
or

REStJMB 0

RESUME NEXT

Execution resumes at the
statement which caused the
e.r:ror.

Execution resumes at·the
statement innnediately fol­
lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement that is not in an error trap
routine causes a •RESUME without error• message
to be printed.

10 ON ERROR GOTO 900
•
•
•

900 IF (ERR•230)AND(ERL•90) THEN PRINT •TRY
AGAIN•:RESUME 80

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-77

2.59 RON

Format l:

Versions:

Purpose:

Remarks:

Example:

Format 2:

Version:

Purpose:

Remarks:

Example-:

RUN [<line number>]

SK, Extended, Disk

To execute the program currently in memory.

If <line number> is specified, execution begins
on tha.t line. Otherwise, execution begins at
the lowest line number. BASIC-80 always returns
to command level after a RON is executed.

RUN

RUN <filename> [,R]

Disk

To load a file from disk into memory and run it.

<filename> is the name used when the file was
SAVEd. (With CP/M and ISIS-II, the default
~tension .BAS is supplied.)

RUN closes all open
current contents. of
desig.n·a,ted program.
option, all data files

RUN "NEWPIL II, R

See also Appendix B.

files and deletes
memory before loading
Howeve•r, with the
remain OPEN.

the
the
"R"

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-78

2. 60 SAVE

Format:

Version:

Purpose:

Remarks:

Examples:

SAVE <filename>[,A I ,Pl

Disk

To save a program file on disk.

<filename> is a quoted string that conforms to
your operating system's requirements for
filenames. (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII
format. Othe.rwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires and ASCII
format file, and some operating system commands
such as LIST may require an ASCII format file.

Use the P option to protect the file by saving
it in an encoded binary format. When a
protected file is later RUN (or LOADed), any
attempt to list or edit it will fail.

SAVE•COM2 • ,A
SAVE•PROG•,p

See also Appendix B.

Ka
yp
roJ
ou
rna
l

USIC-80 COMMANDS AND STATEMEN'l'S Page 2-79

2.61 STOP

Format:

Versions:

Purpose:

Remarks:

Example:

STOP

SK, Extended, Disk

To terminate program execution and return to
command level.

STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

unlike the END statement, the STOP statement
does not close files.

BASIC-80 always returns to command level after a
STOP is executed. Execution is resumed by
issuing a CONT command (see Section 2.8).

10 INPUT A,B,C
20 K•A"2*5.3:L•B"3/.26
30 STOP
40 M=-C*K+lOO:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L

30.7692
Ok
CONT

115.9
Ok

Ka
yp
roJ
ou
rna
l

BASIC-BOCOMMANDS AND S'rA'l'EMEN'l'S Page 2-80

2.62 SWAP

Format:

Versions:

Purpose:

Remarks:

Example:

SWAP <variable>,<variable>

Extended, Disk

'1'o exchange the values of two variables.

Any type variable may be SWAPped (integer,
singl.e precision, double precision, string), but
the two variables must be of the same type or a
•-rype mismatch• error results.

LIS'?
1.0 A$•• ONE • : B$•• ALL • : C$••J'Oa•
20 PRIN'l' A$ C$ B$
30 SWAP A$, B$
40 PRIH'l' A$ C$ B$
RON
Ok

ONE POR ALL
ALL POR CIC!:

Ok

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-81

2. 63 TRON/TROFF

Format: TRON

Versions:

Purpose:

Remarks:

Example:

TROFF

Extended, Disk

To trace the execution of program statements.

As an aid in debugging, the TRON statement
(e-xecuted in e-ither the direct or indirect mode)
ena·ble·s a trace flag that prints each line
number of the prog.ram as it is executed. The
numbers appear enclosed in square brackets. The
trace flag is· disabled with the TROFF statement
(or when a NEW command is executed).

TRON
Ok
LIST
10 1{•10
20 FOR J•l TO 2
30 L•K + 10
40 PRINT J;K;L
SO K•K+lO
60 NEXT
70 END
Ok
RUN
(10] (20] (30] (40] 1 10 20
[5.0] [6 0] [3 0] [4 0] 2 2 0 3 0
[SO] (60] (70]
Ok
TROFF
Ok

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-82

2.64 WAIT

Format:

Versions:

Purpose:

Remarks:

CAUTION:

Example:

WAIT <port number>, I[,J]
where I and J are integer expressions

BK, Extended, Disk

To suspend program execution while monitoring
the status of a machine input port.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with I. If the
result is zero, BASIC-80 loops back and reads
the data at the port again. If the result is
nonzero, execution continues with the next
statement. If J is omitted, it is assumed to be
zero

It is possible to enter an infinite loop with
the WAIT statement, in which case it will be
necessary to manually restart the machine.

100 WAIT 32,2

•

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-83

2.65 WHILE ... WEND

Format:

Versions:

Purpose:

Remarks:

Example:

WHILE <expression>

[<loop statements>)

WEND

Extended, Disk

To execute a series of statements in a loop as
long as a given condition is true.

If <expre,ssion> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a "WHILE
without WEND"' error, and an unmatched WEND
statement causes a "WEND without WHILE" error.

90 'BUBBLE SORT ARRAY A$
100 FLIPSal 'FORCE ONE PASS THRO LOOP
110 WHILE FLIPS
115 FLIPS•O
120 FOR Ial TO J-1
130 IF A$ (I) >A$ (I+l) THEN

SWAP A$(I) ,A$(I+l) ::FLIPSal
140 NEXT I
150 WEND

Ka
yp
roJ
ou
rna
l

BASIC-80 COMMANDS AND STATEMENTS Page 2-84

2.66 WIDTH

P'ormat:

Versions:

Purpose:

Remarks:

Example:

WIDTH [LPRINT] <integer expression>

Extended, Disk

To set the printed line width in number of
characters for the terminal or line printer.

If the LPRINT option is omitted, the l.ine width
is set at the terminal. If LPRINT is included,
the l.ine width is set at the line printer.

<integer expression> must have a value in the
range 15 to 255. The default width is 72
character.s.

If <integer expression> is 255, the l.ine width
is •infinite,• that is, BASIC never inserts a
carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, retu·r·n·s to zero after position
255.

l0 PRINT •ABCDEFGBIJKLMNOPQRSTOVWXYZ•
ROH
ABCDEPGBIJKLMNOPQRS'l'OVWXYZ
Ok
WIDTH 18
Ok
ROH
ABCDEPGBIJKLMNOPQR
STUVWX!Z
Ok

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-85

2. 67 WRITE

Format:

Version:

Purpose:

Remark's:

Example:

WRITE[<list of expressions>]

Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is outpu.t. If <list of expressions> is
included, the va.lue-s of te expressions are
output at thee termina.l. The expressions in the
lis-t may be nume-ric and/or string expressions,
and they must be separated by commas.

When the printed i.tems are output, each . item
w,ill be separated from· the last by a comma.
Printed strings will be delimited by quotation
ma,rks. After the last item in the list is
prin·ted, BASIC inse-rts a carriage return/line
feed.

WRITE outputs numeric values using the same
format as the PRINT statement, Section 2.49.

10 A•80:B•90:C$••THAT'S ALL•
20 WRITE A,B,C$
RtJN

8·0, 90, '"'rDT' S ALI,•
Ok

Ka
yp
roJ
ou
rna
l

BASIC-SO COMMANDS AND STATEMENTS Page 2-86

Format:

Version:

Purpose:

Remarks:

Example:

WRI'l'Et<file number>,<list of expressions>

Disk

To write data to a sequential file.

<file number> is the number under which the file
was OP!:Ned in •o• mode. The expressions in the
list are string or numeric expressions, and they
must be separated by commas.

The difference between WRI'l'Et and PRIN'l't is that
WRI'l'Et inserts commas between the the items as
they are written to disk and delimits strings
with quotation marks. Therefore, it is not
necessary for the user to put explicit
delimiters in the list. A carriage return/line
feed sequence is inserted after the last item in
tbe list is written to disk.

Let A$••CAMEl!A. and The
statement:

WRI'rEtl,A$,B$

writes the following image to disk:

A subsequent INPOTt statement, such as:

INPOTtl,A$,B$

would input •CAMERA• to A$ and •93604-1• to B$.

Ka
yp
roJ
ou
rna
l

Cl!AP'l'ER 3

BASIC-80 !'UNCTIONS

The intrinsic functions provided by
in this chapter. The functions
program without further de-finition.

BASIC-80 are presented
may be called from any

Arguments to functions are always enclosed in
In the formats given for the functions in this
arguments have been abbreviated as follows:

parentheses.
chapter, the

X and Y

I and J

X$ and Y$

Repre-sent any numeric expressions

Represent integer expressions

Represent string expressions

If a floa,ting point value, is supplied whecre an integer is
required, BAS"IC-80 will round the fractional portion and use
the re-sulting intege-r.

Ka
yp
roJ
ou
rna
l

BASIC-SO PONC'l'IONS Page 3-2

3.1 !li

Format:

Versions:

Action:

Example:

3.2 MS

Format:

Versions:

Action:

Example:

ABS(X)

ax, Extended, Disk

Returns the absolute value of the expression x.

PRIN'l' ABS(7•(-5))
35

Ok

ASC (X$)

ax, Extended, Disk

Returns a numerical value that is the ASCII code
of the first character of the string X$. (See
Appendix M for ASCII codes.) If X$ is null, an
•·Illegal function ca11• error is returned.

10 xs •· •us-r•
2.0 PRIN'l' ASC(X$)
RON

84
Ok

See the CBR$ function
conversion.

for ASCII-to-string

Ka
yp
roJ
ou
rna
l

BASIC-SO PtJNCTIONS Page 3-3

Format:

Versions:

Action:

Example:

3.4 CDBL

Format:

Versions·:

Action:

A'l'N(X)

ax, Extended, Disk

Returns the arctangent of X in radians·. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
A'l'N is always performed in single precision.

10 INPtJ'l' X
20 PRINT ATN(X)
RON
? 3
1.24905

Ok

CDBL(X)

Extended, Disk

Converts X to .a double precision number.

10 A• 454.67
20 PRINT A:CDBL (A)
RON

4'54. 67 4'54.6700134277344
Ok

Ka
yp
roJ
ou
rna
l

BASIC-80 !'UNCTIONS Page 3-4

3.5 £!!!!

Pormat:

Versions:

Action:

Example:

3.6 CINT

Pormat:

Versions:

Action:

Example:

CHR$ (I)

ex, Extended, Disk

Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix M.)
CBR$ is C01111110nly used to send a special
character to the terminal. Por instance, the
BEL character could be sent (CBR$(7)) as a
preface to an error message, or a form feed
could be sent (CBR$ (12)) to clear a CRT screen
and return the cursor to the home position.

PRINT CER$ (66)
B
Ok
See the ASC function
conversion.

CINT(X)

Extended, Disk

for ASCII-to-numeric

Converts X to an integer by rounding the
fractional portion. If Xis not in the range
-32768 to 32767, an "Overflow• error occurs.

PRINT CINT(45.67)
46

Ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers. Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS

3.7 £2§.

Format:

Versions:

Action:

Example:

3.8 ~

Format:

Versions:

Action:

Example:

COS(X)

SK, Extended, Disk

Returns the
calculation
precision.

cosine of
of COS (X)

10 X,. 2*COS(.4)
2.0 PRINT X
RUN

l.84212
Ok

CSNG(X)

Extended, Disk

X
is

in radians. The
performed in single

Converts X to a single precision number.

10 Ai ,. 975. 342li
2.0 PRINT Ai; CSNG(Ai")
RUN

975.3421 975.342
Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types.

Ka
yp
roJ
ou
rna
l

BASIC-SO FUNCTIONS Page 3-6

Pormat:

Version:

Action:

Example:

3.10 EOP

Pormat:

Version:

Action:

Example:

CVI(<2-byte string>)
CVS(<4-byte string>)
CVD(<S-byte string>)

Disk

Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an 8-byte
string to a double precision number.

•
•
•

70 PIELD tl,4 AS N$, 12 AS B$, ...
80 GET tl
90 Y-CVS (N$)

•
•
•

See also MXI$, MXS$, MXD$, Section 3.25 and
Append.ix B.

EOF(<file number>)

Disk

Returns -1 (true) if the end of a sequential
file has been reached. Use EOP to test for
end-of-file while INPUTting, to avoid •Input
past end• errors.

10 OPEN •I•,1,•DATA•
20 C•0
30 IP EOP(l) THEN 100
40 INPUT tl,M(C)
50 C•C+l:GOTO 30

•
•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS Page 3-7

3, 11 EXP

Format:

Versions:

Action:

Example:

3,12 FIX

Format:

Versions:

Action:

Examples:

EXP(X)

BK, Extended, Disk

Returns e to the power of x. X must be
<•87.3365. If EXP overflows, the •overflow•
error message is displayed, machine infinity
with the appropriate sign is supplied as the
re-sul.t, and e-xecution continues.

10 X • 5
20 PRINT EXP (X-l.)
RtJN

54. 59·82
Ok

FIX(X)

Extended, Disk

Returns the truncated integer part of x. FIX (X)
is equival.ent to SGN(X)"'INT(ABS(X)). The major
difference between FIX and INT is that FIX does
not re-turn the next lower number for negative x.
PRINT FIX (58, 75)

58
Ok

PRINT FIX (-58 , 75)
-s8
Ok Ka
yp
roJ
ou
rna
l

BASIO~B0: !'UNCTIONS Page 3-8

3.13 m

Format:

Versions:

Action:

Example:

3.14 l!!!!

Format:

Versions:

Action:

Example:

FRE(O)
FRE(X$)

BK, Extended, Disk

Arguments to FRE
returns the number
used by BASIC-BO.

are dummy arguments. FRE
of bytes in memory not being

FRE("") forces a garbage collection before
returning the number of free bytes. BE
PATIENT: garbage collection may take 1 to 1-1/2
minutes. BASIC will not initiate garbage
collection until all free memory has been used
up. · Therefore, using FRE("") periodically will
result in shorter delays for each garbage
collection.

PRINT FRE (0)
14542

Ok

•

HEX$(X)

Extended, Disk

Returns a
hexadecimal
rounded to
evaluated.

10 INPUT X

string which represents
value of the decimal argument.

an integer before BEX$(X)

20 A$,. BEX$ (X)
30 PRINT X "DECIMAL IS• A$• HEXADECIMAL"
RUN
? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function for octal conversion.

the
·X is

is

Ka
yp
roJ
ou
rna
l

BASIC-SO l!'UNCTIONS Page 3-9

3.15 INKEY$

Format:

Action:

Example:

3.16 .£!!

Format:

Versions:

Action:

Example:

INKEY$

Returns either a one-character string containing
a character read from the terminal or a null
string if no character is pending at the
terminal. No characters will be echoed and all
characters are passed through tto the program
except for Control-C, which terminates the
program.

1000 'TIMED INPUT SUBROUTINE
1010 RESPONSE$••·•
1020 FOR Il•l TO TIM:ELIMITI
1030 A$•INKEY$: IF LEN(A$)•0 THEN 1060
1040 IF ASC(A$)•l3 THEN TIMEOUTl•0 : RE'l'ORN
1050 RESPONSE$•RESPONSE$+A$
1060 NEXT II
1070 TIMEOUTlal : RE'l'ORN

INP(I)

ax, Extended, Disk

Returns the
the range
function to

byte read from port I. I must be in
0 to 255. INP is the complementary
the OUT statement, Section 2.47.

100 A•INP (2.55)

Ka
yp
roJ
ou
rna
l

BASIC-SO FUNCTIONS Page 3-10

3.17 INPUT$

Format:

Version:

Action:

Example 1:

Example 2:

INPUT$ (X[, [t]Y])

Disk

Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUT$ function.

5 'LIST THE CONTEi'l~S OF A SEQUENTIAL FILE IN
HEXADECIMAL
10 OPEN•'I• ,1,•DATA•
20 IF EOF(l) THEN 50
30 PRINT .BEX$(ASC(INPUT$(l,ll)))7
40 GO'l'O 20
50 PRINT
6.Q END

•
•
•

100 PRINT •TYPE PTO PROCEED ORS TO STOP"
l:10 X$•INPUT$(1)
120 IF X$•"P• THEN 500
130 IF xs-•s• THEN 700 ELSE 100

•
•

Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS Page 3-ll

3.18 INSTR

Format:

Versions:

Action:

Example:

NOTE:

INSTR ([I,] X$, Y$)

Extended, Disk

Searches for the first occurrence of string Y$
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
the range l to 2S5. If I>LEN(X$) or if X$ is
null or if Y$ cannot be found, INSTR returns O.
If Y$ is null, INSTR returns I or l. X$ and Y$
may be string variables, string expressions or
string literals.

10 X.$ • •·ABCDEB"
20 Y$ • "B•
30 PRINT INSTR(X$,Y$) 7INSTR(4,X$,Y$)
RUN

2 6
Ok

If I.•O is specified, error message "ILLEGAL
ARGUMENT IN <line number>" will be returned.

Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS Page 3-12

3.19 INT

Format:

Version.a:

Action:

Examples:

3.20 LEFT$

Format:

Versions:

Action:

Example:

INT(X)

8K, Extended, Disk

Returns the largest integer <aX.

PRINT INT(99.89)
99

Ok

PRINT INT(-12.ll)
-13
Ok

See the FIX and CINT functions which also return
integer values.

LEFT$ (X$, I)

8K, Extended, Disk

Returns a string comprised of the leftmost I
characters of X$. I must be in the range Oto
255. If I is greater than LEN(X$), the entire
string (X$) will be returned. If I=O, the null
string (length zero) is returned.

10 A$• ·BASic-ao•
20 B$ • LEFT$(A$,5)
30 PRINT B$
BASIC
Ok

Also see the MID$ and RIGHT$ functions. Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS Page 3-13

3.21 ~

Format:

Versions:

Action:

Example:

3.22 f!Q£

Format:

Version:

Action:

Example:

LEN(X$)

8K, Extended, Disk

Returns the number of characters in X$.
Non-printing characters and blanks are counted.

10 X$ • "PORTLAND, OREGON"
20 PRINT LEN(X$)

16
Ok

LOC(<file number>)

Disk

With random disk files, LOC returns the record
number just read or written from a GET or PUT.
If the file was opened but no disk I/O has been
performed yet, LOC returns a 0. ·With sequential
fi.les, LOC returns the number of sectors (128
byte blocks) read from or w-r i tten to the file
since it was OPENed.

200 IF LOC(l)>SO THEN STOP

Ka
yp
roJ
ou
rna
l

BASIC-SO FUNCTIONS Page 3-14

3. 23 LOG -
Format:

Versions:

Action:

Example:

3.24 LPOS

Versions:

Action:

Example:

LOG(X)

SK, Extended, Disk

Returns the natural logarithm of x. X must be
greater than zero.

PRINT LOG (45/7)
l.86075

Ok

LPOS(X)

Extended, Disk

Returns the current position of the line printer
print head within the line pr in·ter buffer. Does
not necessarily give the physical position of
the pr·int head. X is a dummy argument.

100 IF LPOS (X) >60 THEN LPRINT CHR$ (13)

Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS

3.25 MID$

Page 3-15

Format:

Versions:

Action:

Example·:

MID$(X$,I[,J])

SK, Extended, Disk

Returns a string of length J characters from XS
beginning with the Ith character. I and J must
be in the range l to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith characte·r, all rightmost characters
beg·inning with the- Ith character are returned.
If !>tEN (X.$) , MID$ re-turns a null string.

LIST
l.0 A$•"'GOOO "
20 B·$:•"MORNING EVENING AFTERNOON"
30 PRINT A·$ ~MIO$ (B$, 9, i)
Ok
RUN
GOOD EVENING
Ok

Also see the LEFT$ and RIGHT$ functions.

NOTE: If I•O is specified, error message "ILLEGAL
ARGUMENT IN <line number>" will be returned.

3.26 MK.I$, MKS$, MRD$

Format:

Version:

Action:

Example:

MKIS(<integer expression>)
M'KS'$' (<single precision expression>)
MKD$(<double precision expression>)

Disk·

Conve-rt numeric values to string val1+es. 'Any
nume-r·ic value that is placed in a random file
buffe-r w-i th an tSET or RSET statement must be
conve-rted to a string. MKI$ converts an integer
to a 2-byte string. MRS$ converts a single
prec-ision number to a 4-byte string. MRD$
conve-rts a double precision number to an 8-byte
string.

90 AMT2 (K+T)
100 FIELD tl, 8 AS 0$, 20 AS N$
110 tSET 0$ • MRS$(AMT)
120 tSET N$ • A$
130 PUT tl

See also CVI, CVS, cvo, Section 3.9 and Appendix
B.

Ka
yp
roJ
ou
rna
l

BASIC-SO FUNCTIONS Page 3-16

3.27 OCT$

Format:

Versions:

Action:

Example:

3.28 ~

Format:

Versions:

Action:•

Example:

OCT$(X)

Extended, Disk

Returns a string which represents the octal
value of the decimal argument. Xis rounded to
an integer before OCT$(X) is evaluated.

PRINT OCT$ (2 4)
30

Ok

See the BEX$
conversion.

PEEX(I)

ax, Extended, Disk

function for hexadecimal

Returns the byte (decimal integer in the range 0
to 255) read from memory location I. With the
BX version of BASIC-80, I must be less than
32768. To PEEK at a memory location above
32768, subtract 65536 from the desired address.
With Extended and Disk BASIC-SO, I must be in
the range Oto 65536. PEEK is the complementary
function to the POKE statement, Section 2.48.

A•PEEX(&H5A00)

Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS Page 3-17

3.29 POS

Format:

Versions:

Action:

Example:

3.30 RIGHT$

Format:

Versions:

Action:

Example:

POS (I)

8K, Extended, Disk

Returns the current cursor position. The
leftmost position isl. Xis a dummy argument.

IF POS(X)>60 TBEN PRINT CBR$(13)

Also see the LPOS function.

RIGHT$ (X$, I)

8K, Extended, Disk

Returns the rightmost I
If IaLEN(X$), returns
string (length zero) is

10 A$a•DISK BASIC-80"
20 PRINT RI.GHT$ (A$, 8)
RUN
BASIC-80
Ok

characters
X$. If

returned.

of string X$.
I•O, the null

Also see the MID$ and LEFT$ functions.

Ka
yp
roJ
ou
rna
l

BASIC-SO FUNCTIONS Page 3-18

3.31 ~

Format:

Versions:

Action:

Example:

3.32 ~

Format:

Versions:

Action:

Example:

RND[(X)]

SK, Extended, Disk

Returns a random number between 0 and l. The
same sequence of random numbers is generated
each time the program is RUN unless the random
number generator is reseeded (see RANDOMIZE,
Section 2.53). However, X<0 always restarts the
same sequence for any given x.
X>0 or
number
number

X anitted generates the next random
in the sequence. X•0 repeats the last

generated.

l0 J!'OR I•l TO 5
20 PRINT INT(RND*l00)J
30 NEXT
RUN

24 30 31 Sl 5
Ok

SGN(X)

SK, Extended, Disk

If X>0, SGN(X) returns l.
If X•0, SGN(X) returns o.
If X<0, SGN(X) returns -l.

ON SGN(X)+2 GOTO l00,200,300 branches to 100 if
X is negative, 200 if Xis 0 and 300 if Xis
positive. Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS Page 3-19

3,33 SIN

Format:

Versions:

Action:

Example:

3.34 SPACE$

Format:

Versions:

Action:

Example:

SIN(X)

8K, Extended, Disk

Returns the sine of X in
calculated in
COS(X)-SIN(X+3,14159/2),

PRINT SIN(l,5)
. 9974.95

Ok

SPACE$(X)

Extended, Disk

radians.
single

SIN(X) is
precision.

Returns a string of spaces of length X. The
expression X is rounded to an integer and must
be in the range Oto 255,

10 FOR I • l TO 5
20 X:$" • SPACZ$(r)
30 P·RINT X$ 7I
40 NEXT I
RON

l
2

3
4

5
Ok

Also see the SPC function. Ka
yp
roJ
ou
rna
l

BASIC-SO FUNCTIONS Page 3-20

3.35 !!£

Format:

Versions:

Action:

Example:

3.36 §Sm

Format:

Versions:

Action:

Example:

SPC (I)

SK, Extended, Disk

Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range Oto 255. A'1' is assumed
to follow the SPC(I) command.

PRINT •oVER• SPC(l5) •THERE•
OVER THERE
Ok

Also see the SPACE$ function.

SQR(X)

SK, Extended, Disk

Returns the square root of X. X must be >•0.

10 FOR X
20 PRINT
30 NEXT
RUN

10
15
20
25

Ok

• 10 TO 25 STEP 5
X, SQR(X)

3.16228
3.87298
4.47214
5

Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS C Page 3-21

3.37 STR$

Format:

Versions:

Action:

Example:

STR$(X)

8K, Extended, Disk

Returns a string representation of the value of
x.
5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER" 1N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,SOO

•
•
•

Also see the VAL function.

3. 38 STRING$

Formats:

Versions:

Action:

Example:

STRING$ (I , J)
STRING$ (I,X$)

Extended, Disk

Returns a string of length I whose characters
all have ASCII code J or the first character of
X$.

10 X$ • STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT----------
Ok

Ka
yp
roJ
ou
rna
l

BASIC-80 !'tJNCTIONS Page 3-22

3.39 ,!!!

Format:

Versions:

Action:

Example:

3.40 TAN -
Format:

Versions:

Action:

Example:

BK, Extended, Disk

Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB goes to that position on the next line.
Space l is the leftmost position, and the
rightmost position is the width minus one. I
must be in the range l to 255. TAB may only be
used in PRINT and tPRINT statements.

10 PRINT "NAME• TAB (25) •AMOUNT• : PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA •G. T. JONES•,•$25.00•
RUN
NAME AMOUNT

G. T. JONES
Ok

TAN(X)

BK, Extended, Disk

$25.00

Returns the tangent of X in radians. TAN(X) is
calculated in single prec1s1on. If TAN
overflows, the •overflow• er·ror message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

10 Y • Q*TAN(X)/2 Ka
yp
roJ
ou
rna
l

BASIC-80 FUNCTIONS Page 3-23

3.41 g§.!

Format :

Versions:

Action:

Example:

3.42 ~

Format:

Vers·ions:

Action:

Example:

USR[<digit>] (X)

8K, Extended, Disk

Calls the user's assembly language subroutine
with the argument x. <digit> is allowed in the
Extended and Disk versions only. <digit> is in
the range 0 to 9 and corresponds to the digit
supplied with the DEF USR statement for that
routine. If <digit> is omitted, USR0 is
assumed. See Appendix x.

40 B • T*SIN (Y)
SO C • USR(B/2)
60 D • USR(B/3)

•
•
•

VAL (X$)

SK, Extended, Disk

Returns the numerical value of string X$. The
VAL function also strips leading blanks, tabs,
and linefeeds from the argument string. For
example,

VAL(• -·3)

returns -3.

10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699 THEN
PRINT NAME$ TAB(25) •oUT OF STATE•
30 IF VAL(ZIP$)>•9080l AND VAL(ZIP$)<•908l5 THEN
PRINT NAME$ TAB (25) •LONG BEACH•

•
•
•

See the STR$ function for numeric to string
conversion.

Ka
yp
roJ
ou
rna
l

BASIC-SO FUNCTIONS Page 3-24

3,43 VARP'1'R

Format 1:

Versions:

Format 2:

Version:

Action:

NO'l'E:

Example:

VARP'l'R(<variable name>)

Extended, Disk

VARP'l'R(t<file number>)

Disk

Format 1: Returns the address of the first byte
of data identified with <variable name>. A
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an •Illegal
function ca11• error results. Any type variable
name may be used (numeric, string, array), and
the address returned will be an integer in the
range 32767 to -3.2768, If a negative address is
returned, add it to 65536 to obtain the actual
address.

VARP'1'R is usually u.sed to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR(A(0)) is usually specified
when passing an array, so that the
lowest-addre~sed element of the array is
returned.

All simple variables should be assigned before
calling VARP'!'R for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2: For sequential files, returns the
starting address of the disk I/O buffer assigned
to <file number>, For random files, returns the
address of the FIELD buffer assigned to <file
number>.

In Standalone
returns the
Appendix B.

Disk BASIC, VARPTR(t<file number>)
first byte of the file block. See

100 X•OSR(VARP'l'R(Y))
Ka
yp
roJ
ou
rna
l

APPENDIX A

New Features in BASIC-80, Release 5.0

The execution of BASIC programs written under Microsoft
BASIC, release 4.51 a-nd earlier may be affected by some of
the new features in release 5. 0. Before attempting to run
such programs, check for the following:

l. New reserved words: CALL, CHAIN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

2. Conversion from floating 1>0int to integer values
results in rounding, as opposed to truncation.
This affects not only assignment statements (e.g.,
Il•2.S results in I1•3), but also affects function
and statement evaluations (e.g., TAB(4.S) goes to
the 5th position, A(l.5) yeilds A(2), and X•ll.S
MOD 4 yields O for X) .

3. The body of a FOR ... NEXT loop is skipped if the
initial value of the loop times the sign of the
step exceeds the final value times the sign of the
step. See Section 2.22.

4. Division by zero and overflow no longer produce
fatal errors. See Section l.8.l.2.

5. The RND function has been changed so that RND with
no argument is the same as RND with a positive
argument. The RND function generates the same
sequence of random numbers with each RUN, unless
RANDOMIZE is used. See Sections 2.53 and 3.30.

6. The rules
precision
2.49.

for PRINTing single precision and double
numbers have been changed. See Section

7. String space is allocated dynamically, and the
first argument in a two-argument CLEAR statement
sets the end of memory. The second argument sets
the amount of stack space. See Section 2.4. Ka
yp
roJ
ou
rna
l

Page A-2

8. Responding to INPUT with too many or too few items,
or with non-numeric characters instead of digits,
causes the message "?Redo from start" to be
printed. If a single variable is requested, a
carriage return may be entered to indicate the
default values of 0 for numeric input or null for
string input. However, if more than one variable
is requested, entering a carriage return will cause
the "?Redo from start• message to be printed
because too few items were entered. No assignment
of input values is made until an acceptable
response is given.

9. There are two new field formatting characters for
use with PRINT OSING. An ampersand is used for
variabl.e length string fields, and an underscore
s.ignifies a literal character in a format string.

10. If the expression supplied with the WIDTH statement
is 255, .BASIC uses an •infinite• line width, that
is, it does not insert carriage returns. WIDTH
LPRINT may be used to set the line width at the
line printer. See Section 2.66.

11. The at-sign and underscore are no longer used as
editing characters.

12. Variable names are significant up to 40 characters
and can contain embedded rese·rved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserte9
between adjoining reserved words and variable
names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line
length is close to 255 characters.

13. BASIC programs may be saved in a protected binary
format. See SAVE, Section 2.60. Ka
yp
roJ
ou
rna
l

APPENDIX B

BASIC-SO Disk I/0

Disk I/0 procedures for the beginning BASIC-SO user are
examined in this appendix.. If you are new to BASIC-SO or if
you' re getting disk re-lated errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.

Wherever a filename is required in a disk command or
statement, use a name that conforms to your operating
system's requirements for filenames. The CP/M operating
system will append a defaul.t extension .BAS to the filename
given in a SAVE, RON, MERGE or LOAD command.

B .1 PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in
program file manipulation.

SAVE <filename-> [,Al

LOAD <filename> [, R]

Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
(Otherwise, BASIC uses a compressed
binary format.)

Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files. Ka
yp
roJ
ou
rna
l

RtJN <filename>[,Rl

MERGE <filename>

KILL <filename>

NAME <old filename>
AS<new filename>

B.2 PROTECTED FILES

If you wish to save
use the "Protect•
example:

SAVE "MYPROG",P

Page B-2

RUN <filename> loads the program from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open.

Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged" program
resides in memory, and BASIC returns
to command level.

Deletes the file from the disk.
<filename> may be a program file, or a
sequential or random access data file.

To change the name of a disk file,
execute the NAME statement, NAME
<oldfile> AS <newfile>. NAME may be
used with program files, random files,
or sequential files.

a program in an encoded
option with the SAVE

binary format,
command. For

A program saved this way cannot be listed or edited. You
may also want to save an unprotected copy of the program for
listing and editing purposes.

B.3 ill!~ FILES.:, SEQUENTIAL~ RANDOM I/O

'!'here are two
and accessed
random access

types of disk data files
by a BASIC-80 program:

files.

that may be created
sequential files and

Ka
yp
roJ
ou
rna
l

Page B-3

B.3.1 Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored, one item after another
(sequentially), in the order it is sent and is read back in
the same way.

The statements and functions that are used with sequential
files are:

OPEN PRINTt INPOTt
PRINTt USING LINE INPOTt

CLOSE EOP' LOC

The following program steps are
sequential file and access the data

1. OPEN the file in •on mode.

2. Write data to the file
using the PRINTt statement.
(WRITE# may be used instead.)

3. To access the data in the
file, you must CLOSE the file
and reOPEN it in •t• 1110de.

4. Use the INPUT# statement to
read data from the sequential
file into the program.

WRITE#

required to create
in the file:

OPEN "O",#1,"DATA"

PRINTtl,A$1B$1C$

CLOSE #1
OPEN "I",#1,"DATA•

INPOTtl,X$,Y$,Z$

a

Program B-1 is a short program that creates a sequential
file, "DATA", from information you input at the terminal.

Ka
yp
roJ
ou
rna
l

10 OPEN •o•,t1,•DATA•
20 INPUT •NAME•:N$
25 IF N$••DONE" THEN END
30 INPUT -OEPARTMENT• :D$
40 INPUT •DATE HIRED•:H$
50 PRINTtl,N$:•,•:D$:•,•7H$
60 PRINT:GOTO 20
RON
NAME? MICKEY MOUSE
DEPARTMEN'l'? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SEERLOCX HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMEN'l'? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMEN'l'? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

PROGRAM B-l - CREATE A SEQUE?i'rIAL DATA FILE

Page B-4

Ka
yp
roJ
ou
rna
l

Page B-5

Now look at Program B-2. It accesses the file nDATAn that
was created in Program B-1 and displays the name of everyone
hired in 1978.

10 OPEN nin,.l,•DATA•
20 INPUT.l,N$,D$,H$
30 IF RIGHT${H$,2)••7a• THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input pa.st end in 20
Ok

PROGRAM B-2 - ACCESSING A SEQOENTIAL FILE

Program B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an •Input
past end• error. To avoid getting this error, insert line
15 which uses the EOF function to test for end-of-file:

15 IF EOF(l) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential
formatted data to the disk with the
For example, the statement

PRINTtl,USING•····•··••7A,B,C,D

file can also write
PRINTt USING statement.

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serve~ to separate the items in the disk file.

The LOC function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was OPENed. A sector is a 128-byte block
of data.

B.3.1.1 Adding Data !2 ! Sequential File -
If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in •on mode and start writing data. As soon
as you open a sequential file in •o• mode, you destroy its
current contents. The following procedure can be used to
add data to an existing file called nNAMEsn.

Ka
yp
roJ
ou
rna
l

Page B-6

l. OPEN "NAMES• in • I • mode .

2. OPEN a second file called •copy• in •o• mode.

3. Read in the data in "NAMES• and write it to •copy•.

4. CLOSE "NAMES" and KILL it.

5. Write the new information to "COPY".

6. Rename "COPY" as "NAMES" and CLOSE.

7. Now there is a file
includes all the
you just added.

on disk called "NAMES• that
previous data plus the new data

Program B-3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUTt to read strings with
embedded commas from the disk file. Remember, LINE INPUTt
will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas) or
until it has read 255 characters.

Ka
yp
roJ
ou
rna
l

10 ON ERROR GOTO 2000
20 OPEN "I",tl,"NAMES"
30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN •o•,t2,•copy•
50 IF EOF(l) THEN 90
60 LINE INPUTtl,A$
70 PRINTt2,A$
80 GOTO 50
90 CLOSE tl
100 KILL "NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME"1N$

Page B-7

130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? "1A$
150 LINE INPUT "BIRTHDAY? "1B$
160 PRINTt2,N$
170 PRINTt2,A$
180 PRINTt2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"
2000 IF ERR•S3 AND ERL•20 THEN OPEN •o•,t2,•copy•:RESOME 120
2010 ON ERROR GOTO 0

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line
not exist" error in line 20.
statements that copy the file are
created as if it were a new file.

B.3.2 Random Files

2000 traps a "File does
If this happens, the

skipped, and "COPY" is

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are used with random files
are:

Ka
yp
roJ
ou
rna
l

OPEN

PO'l'

FIELD

CLOSE

MKI$ CVI
MKS$ CVS
MKD$ CVD

LSET/RSET

LOC

GET

Page B-8

B.3.2.l Creating A Random File -
The following program steps are required to create a random
file.

l.

2.

3.

4.

OPEN the file for random
access c•R• mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128
bytes.

Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be written to the random
file.

Use LSET to move the data
into the random buffer.
Numeric values must be made
into strings when placed in
the buffer. To do this, use the
•make• functions: MKI$ to
make an integer value into a
string, MKS$ for a sing.le
precision value, and MKD$ for
a double precision value.

Write the data from
the buffer to the disk
using the PO'l' statement.

FIELD tl 20 AS N$,
4 AS A$, 8 AS P$

LSET N$•X$
LSET A$•MKS$ (AMT)
LSET P$•TEL$

PO'l' tl,CODEI

Look at Program B-4. It takes information th.at is input at
the terminal and writes it to a random file. Each time the
PO'l' statement is executed, a record is written to the file.
The two-digit code that is input in line 30 becomes the
record number.

Ka
yp
roJ
ou
rna
l

Do not use a
variable in
statement.
pointer for
point into
instead of
buffer.

10 OPEN "R",tl,"FILE"r32

NOTE

FIELDed string
an INPUT or LET

This causes the
that variable to

string space
the random file

20 FIELD tl,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE"tCODE%
40 INPUT "NAME• 7 X$
50 INPUT "AMOUNT" 7AMT
60 INPUT "PHONE" 7TEL$:PRINT
70 LSET NaX
80 LSET A$aMKS$(AMT)
90 LSET P$aTEL$
100 PUT tl,CODE%
110 GOTO 30

PROGRAM B .. 4 - CREATE A RANDOM FILE

B. 3. 2. 2 Access A Rand.om File -

Page B-9

The following program steps are required to access a random
file:

l.

2.

OPEN the file in "'R" mode.

Use the l!'IELD statement to
allocate space in the random
buffer for the variables that
will be read from the file.

NOTE:
In a program that performs both
input and output on the same random
file, you can often use just one
OPEN statement and one FIELD
statement.

FIELD tl 20 AS N$,
4 AS A$, 8 AS P$ Ka

yp
roJ
ou
rna
l

3.

4.

Use the GET statement to move
the desired record into the
random buffer.

The data in the buffer may
now be accessed by the program.
Numeric values must be converted
back to numbers using the
•convert• functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

GET #1,CODEI

PRINT N$
PRINT CVS (A$)

Page B-10

Program B-5 accesses the random file •FILE• that was created
in Program B-4. By inputt.ing the three-digit code at the
terminal, the information associated with that code is read
from the file and displayed.

10 OPEN •R•,tl,•FILE•,32
20 FIELD fl, 20 AS N$, 4 AS A$, 8 ASP$
30 INPUT •2-DIGIT CODE•7CODEI
40 GET tl, CODEI
50 PRINT N$
60 PRINT USING •$$ttt.tt•1CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

PROGRAM B-5 - ACCESS A RANDOM FILE

The LOC function, with random files,
record number.• The current record
last record number that was used in a
For example, the statement

IF LOC(l)>S0 TBEN END

returns the •current
number is one plus the
GET or PUT statement.

ends program execution if the current record number in
filetl is higher than SO.

Program B-6 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

Ka
yp
roJ
ou
rna
l

Page B-ll

120 OPEN"R",tl,"INVEN.DAT•,39
125 FIELDtl,l AS F$,30 AS D$, 2 AS 0$,2 AS R$,4 ASP$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT l,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION"iFONCTION
225 IF (FUNCTION<l)OR(FONCTION>6) THEN PRINT

"BAD FUNCTION NOMBER":GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT"OVERWRITE"1A$:

IF A$<>"Y" THEN RETURN
280 LSET F$-cHR$(0)
290 INPUT "DESCRIPTION"1DESC$
300 LSET D$=-CESC$
310 INPUT "QUANTITY IN STOCK"iOI
320 LSET 0$=MKI$(01)
330 INPUT "REORDER LEVEL"1RI
340 LSET R$=MKI$(RI)
350 INPUT "UNIT PRICE"iP
360 LSET P$•MKS$(P)
370 PUTtl,PARTI
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=-255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ttt"iPARTI
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND ttttt" 1CVI (0$)
450 PRINT USING "REORDER LEVEL ttttt"1CVI(R$)
460 PRINT USING "UNIT PRICE $$ti. tt" 1CVS (P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT D$:INPUT "QUANTITY TO ADC "1AI
520 Ol=CVI(0$)+AI
530 LSET 0$•MKI$(01)
540 PUTtl,PART\
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$)•255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT"iSI
610 Ol=CVI (0$)
620 IF (QI-Sl)<O THEN PRINT "ONLY"1Ql1" IN STOCK":GOTO 600
630 01•01-SI

Ka
yp
roJ
ou
rna
l

640 IF Ql•<CVI(R$) THEN PRINT •QUANTITY NOW•1Ql7
• REORDER LEVEL• 7CVI (R$)

650 LSET Q$•MKI$(QI)
660 PUTtl,PARTI
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I•l TO 100
710 GETtl,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$7• QOANTITY•7

CVI(Q$) TAB(50) •REORDER LEVEL•7CVI(R$)
730 NEXT I
740 RETURN
840 INPUT •PART NOMBER•1PARTI

Page B-12

850 IF(PARTl<l)OR(PARTl>l00) THEN PRINT •BAD PART NUMBER•:
GOTO 840 ELSE GETtl,PARTl:RETURN

890 END
900 REM INITIALIZE FILE
910 INPUT •ARE YOU SORE•7B$:IF B$<>•y• THEN RETURN
920 LSET F$-cBR$(255)
930 FOR I•l TO 100
940 PUTtl,I
950 NEXT I
960 RETURN

PROGRAM B-6 - INVENTORY

Ka
yp
roJ
ou
rna
l

APPENDIX C

Assembly Language Subroutines

All versions of BASIC-80 have provisions for interfacing
with assembly language subroutines. The OSR function allows
assembly language subroutines to be called in the same way
BASIC' s intrinsi.c functions are called.

NOTE

The addresses of the DEIN'r,
GIVABF, MAKIN'r and FRCIN'r
routines are stored in
locations that must be
supplied individually for
different implementations of
BAS'IC.

C.l MEMORY ALLOCATION

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine(s). BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called, the stack
pointer is set up for 8 levels (16 bytes) of stack storage.
If more stack space is needed, BASIC's stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC's stack must be restored, however, before
returning from the subroutine. Ka

yp
roJ
ou
rna
l

Page C-2

The assembly language subroutine may be loaded into memory
by means of the system monitor, or the BASIC POKE statement,
or (if the user has the MACRO-80 or FORTRAN-SO package)
routines may be assembled with MACRO-80 and loaded using
LINK-80.

C.2 £§! FUNCTION CALLS - ~ BASIC

The starting address of the assembly language subroutine
must be stored in USRLOC, a two-byte location in memory that
is supplied individually with different implementations of
BASIC-80. With 8K BASIC, the starting address may be POKEd
into USRLOC. Store the low order byte first, followed by
the high order byte.

The function USR will call the routine whose address is in
USRLOC. Initially USRLOC contains the address of ILLFUN,
the routine that gives the •Illegal function ca11• error.
Therefore, if USR is called without changing the address in
USRLOC, an "Illegal function call" error results.

The format of a USR function call is

USR(argument)

where the argument is a numeric expression. To obtain the
argument, the assembly language subroutine must call the
routine DEINT. DEINT places the argument into the D,E
register pair as a 2-byte, 2's complement integer. (If the
argument is not in the range -32768 to 32767, an "Illegal
function call" error occurs.)

To pass the result back from an assembly language
subroutine, load the value in register pai.r [A,B], and call
the routine GIVABF. If GIVABF is not called, USR(X) returns
x. To return to BASIC, the assembly language subroutine
must execute a RET instruction.

For example, here is an assembly language subroutine that
multiplies the argument by 2:

USRSUB: CALL DEINT
XCHG

;put arg in D,E
imove arg to H,L
iH,L=-H,L+H,L DAD H

MOV A,H
MOV B,L

imove result to A,B

JMP GIVABF ;pass result back and RETurn

Note that valid
for arguments
instruction JMP

results will be obtained from this routine
in the range -l6384<=x<=l6383. The single
GIVABF has the same effect as:

Ka
yp
roJ
ou
rna
l

CALL GIVABF
RET

Page c-3

To return additional values to the program, load them into
memory and read them with the PEER function.

There are several methods by which a program may call more
than one USR routine. For example, the starting address of
each routine may be POKEd into USRLOC prior to each USR
call, or the argument to USR could be an index into a table
of USR routines.

C.3 ,!!!! FUNCTION CALLS - EXTENDED~ DISK BASIC

In the Extended and Disk versions, the format of the USR
function is

USR[<digit>] (argument)

where DIGIT> is from Oto 9 and the argument is any numeric
or string expression. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed. The address given in the DEF USR
statement determines the starting address of the subroutine.

When the USR
value that
The value in

Value in A

2

3

4

8

function call is made, register
specifies the type of argument
A may be one of the following:

A contains a
that was given.

~ of Argument

Two-byte integer (two's complement)

String

Single precision floating point number

Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

Ka
yp
roJ
ou
rna
l

FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (Q=-positive, 1-negative).
FAC is the exponent minus 128, and the binary
point is to the left of the most significant
bit of the mantissa.

Page C-4

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the
to 3
string
255).

argument is a string, the [D,E] register pair points
bytes cal.led the •string descri.ptor. • Byte O of the
descriptor contains the length of the string (0 to

Bytes 1 and 2, respect.ively, are the lower and upper
of the string starting address in string space. 8 bits

CATJTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +•• to the string
literal. in the program. Example:

A$• •BASic-so•+••

This will copy the string l.iteral into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a OSR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MAKINT routine returns the integer in [H,L] as the value of
the function, forcing the value returned by the function to
be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

POSH
LHLD
XTHL

RE'l'

H
XXX

1save value to be returned
7get address of MAKINT routine
7save return on stack and
7get back [H,L]
1return

Also, the argument of the function, regardless of its type,
may be forced to an integer by calling the FRCINT routine to
get the integer value of the argument in [H,L]. Execute the
following routine:

LXI H 1get address of subroutine
7continuation

POSH H 7place on stack
LHLD XXX 7get address of FRCINT
PCHL

SOBl: • • • • •

Ka
yp
roJ
ou
rna
l

Page c-s

C.4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be
made with the CALL statement. The calling sequence used is
the same as that in Microsoft's FORTRAN and COBOL compilers.

A CALL statement with no arguments generates a simple •CALL•
instruction. The corresponding subroutine should return via
a simple •RET.• (CALL and RET are 8080 opcodes - see an 8080
reference manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine.
That parameter is the address of the low byte of the
argument. Therefore, parameters always occupy two bytes
each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

l. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
l will be in BL, 2 in DE (if present), and 3 in BC
(if present).

2. ~f the number of parameters is greater than 3, they
are passed as follow-a:

l. Parameter l in HL.

2. Parameter 2 in DE,

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3) •

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
the correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named $AT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2). The subroutine is

Ka
yp
roJ
ou
rna
l

responsible for
calling $AT.
parameters, it

SUBR: SBLD
XCHG
SHLD
MVI
LXI
CALL
•
•
•

Page C-6

saving the first
For example, if a

should look like:

two parameters before
subroutine expects 5

Pl 7SAVE PARAMETER l

7SAVE PARAMETER 2
7NO. OF PARAMETERS LEFT
7POINTER TO LOCAL AREA

P2
A,3
B,P3
$AT 7TRANSFER TEE OTBER 3 PARAMETERS

[Body of subroutine]

Pl:
P2:
P3:

•
•
•
RET
DS
DS
OS

2
2
6

7RETORN TO CALLER
7SPACE l!'OR PARAMETER l
7SPACE l!'OR PARAMETER 2
7SPACE l!'OR PARAMETERS 3-5

A listing of the argument transfer routine $AT follows.

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300

7
7 {B,C]
7 [B,L]
dA]

$AT:

ATl:

ARGUMENT TRANSFER
POINTS TO 3RD PARAM.
POINTS TO LOCAL STORAGE l!'OR PARAM 3
CONTAINS TEE t OF PARAMS TO XFER (TOTAL-2)

ENTRY $AT
XCHG
MOV B,B
MOV L,C
MOV C,M
INX B
MOV B,M
INX B
XCHG
MOV M,C
INX B
MOV M,B
INX B
XCBG
OCR A
JNZ ATl
RET

7SAVE [B,L] IN [D,E]

7(B,L] • PTR TO PARAMS

7 [B,C] • PARAM ADR
7 [B,L] POINTS TO LOCAL STORAGE

7STORE PARAM IN LOCAL AREA
7SINCE GOING BACK TO ATl
7TRANSFERRED ALL PARAMS?
7NO, COPY MORE
7 YES, RETURN

Ka
yp
roJ
ou
rna
l

Page C-7

When accessing parameters in a subroutine, don't forget that
they are pointers to the actual arguments passed.

C.S INTERRUPTS

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, type,
and length with the parameters
expected by the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register A-Land the PSW. Interrupts should always
be re-enabled before returning from the subroutine., since
an interrupt automatically disables all further interrupts
once it is received. The user should b.e aware of which
interrupt vectors are free in the particular version of
BASIC that ha.s been supplied. (Note to CP/M users: In CP/M
BASIC, all interrupt vectors are free.)

Ka
yp
roJ
ou
rna
l

Ka
yp
roJ
ou
rna
l

APPENDIX D

BASIC-80 with the CP/M Operating System

The CP/M version of BASIC-80 (MBASIC) is
standard size 3740 single density diskette.
file is MBASIC.COM. (A 28K or larger
recommended .)

supplied on a
The name of the

CP/M system is

To run MBASIC, bring up CP/M and type the following:

A>MBASIC <carriage return>

The system will reply:

xxxx :Bytes Free
BASIC-80 Version 5.0
(CP/M Version)
Copyright 1978 (Cl by Microsoft
C:re,ated: dd-111111111-yy
Ok

MBASIC is the same as Disk BASIC-SO as described in this
manual, with the following exceptions:

D. l INITIAL I ZAT!ON

The initialization dialog has been replaced by a
options which are placed after the MBASIC command
The format of the command line is:

set of
to CP/M.

A>MBASIC [<filename>] [/F:<nwnber of files>] [/M:<highest memory location>]
[/S:<maximwn record size>]

If <filename> is present, MBASIC proceeds as if a RON
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
when they have finished, allowing the next program in the Ka

yp
roJ
ou
rna
l

Page D-2

batch stream to execute.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at any one time during the
execution of a BASIC program. Each file data block
allocated in this fashion requires 166 bytes of memory. If
the /F option is omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the highest
memory location that will be used by MBASIC. In some cases
it is desirable to set the amount of memory well below the
CP/M's FOOS to reserve space for assembly language
subroutines. In all cases, <highest memory location> should
be below the start of FOOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory
up to the star·t of FOOS is used ..

/S:<maximum record
command line to
random files. The

size> may be added at the end 0£ the
set the maximum record size for use with
default record size is 128 bytes.

Examples:

NOTE

<number of files>, <highest
memory location>, and <maximum
record size> are numbers that
may be either decimal, octal
(preceded by &O) or
hexadecimal (preceded by &H).

A>MBASIC PAYROLL.BAS Use all memory and 3 files,
load and execute PAYROLL.BAS.

A>MBASIC INVENT/F:6

A>MBASIC /M:32768

Use all memory and 6 file.s,
load and execute INVENT.BAS.

Use first 32K of memory and
3 files.

A>MBASIC DATACX/F:2/M:&H9000

D.2 DISK FILES

Use first 36K of memory, 2
files, and execute DATACX.BAS.

Disk filenames follow the normal CP/M naming conventions.
All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the currently
selected drive is assumed. A default extension of .BAS is

Ka
yp
roJ
ou
rna
l

Page o-3

used on LOAD, SAVE, MERGE and RUN <filename> commands if no
"•" appears in the filename and the filename is less than 9
characters long.

For systems with CP/M 2.x, large random files are supported.
The maximum logical record number is 32767. If a record
size of 2S6 is specified, then files up to 8 megabytes can
be accessed.

0.3 FILES COMMAND

Format:

Purpose:

Remarks:

Examples:

FILES[<filename>J

To print the names of files residing on the
current disk.

If <filename> is omitted, all the files on the
currently selected drive will be listed.
<filename> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the
firs,t character of the filename or extension
will match any file or any extension.

FILES
FTI.ES "*'. BAS"
F.'rL!TS "B :.* •-*"
FILES "TEST?.BAS"

D. 4 RESET COMMAND

Format:

Purpose:

Remarks:

RESET

To c-J.ose all disk file.s and write the directory
information to a diskette before it is removed
from a disk drive.

Always execute a RESET command before removing a
diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.

RESET closes all open files on
writes the directory track
with open files.

all drives and
to every diskette

Ka
yp
roJ
ou
rna
l

Page D-4

D.5 LOF FUNCTION

Format:

Action:

Example:

D.6 !Q!

LOF(<file number>)

Returns the number of records present in
last extent read or written. If the file
not exceed one extent (128 records), then
returns the true length of the file.

the
does

LOF

110 IF NtJMl>LOF(l) THEN PRINT •INVALID ENTRY•

With CP/l4, the EOF function may be used with random files.
If a GET is done past the end of file, EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithm.

D.7 MISCELLANEOUS

1. CSAVE and CLOAD are not implemented.

2. To return to CPJl,t, use the SYSTEM command or
statement. SYSTEM closes all files and then
performs a CPJl,t warm start. Control-C always
returns to MBASIC, not to CPJl,t.

3. FRCINT is at 103 hex and MAKINT
(Add 1000 hex for ADDS versions,
versions.)

is at 105 hex.
4000 for SBC CP/M

Ka
yp
roJ
ou
rna
l

APPENDIX E

BASIC-80 with the ISIS-II Operating System

With ISIS-II, BASIC-80 is the same as described in this
manual, with the following exceptions:

E.l INITIALIZATION

The initialization dialog has been
options which are placed after
ISIS-II. The format of the command

replaced by a set
the MBASIC command
line is:

of
to

-MBASIC [<filename>] [/!':<number of files>] [/M:<highest memory location>]
[/S:<maximum record size>]

If <filename·> is present, BASIC proceeds as if a RON
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied.

If /!':<number of file-s> is present, it sets the number of
disk data files that may be open at any one time during the
execution of a BASIC program. The maximum is six and the
default is three. The /M:<highest memory location> option
sets the highest memory location that will be used by BASIC.
Use this option to reserve memory locations above BASIC for
assembly language subroutines. /S:<maximum record size> may
be added at the end of the command line to set the maximum
record size for use with random files. The default record
size is 128 bytes.

At initialization, the system will reply:

xxxx Bytes Free
BASIC-SO Version x.x
(ISIS-II Version)
Copyright 1978 (C) by Microsoft Ka
yp
roJ
ou
rna
l

Page E-2

E.2 LINE PRINTER I/O

To send output to the printer during execution of a BASIC
program, open the line printer as if it were a disk file:

50 N•4
100 OPEN •o•,N,•:LP:•

•
•
•

120 PRINT IN,A,B,C

Since BASIC buffers disk I/O, you may want to force buffers
out by CLOSEing the printer channel.

To LIST a program on the line printer, use:

SAVE• :LP:" ,A

E. 3 AT'l'RIB STATEMENT

In ISIS-II BASIC-SO, the AT'l'RIB statement
attributes. The format of the statement is:

AT'l'RIB <filename string>,<attribute string>

sets file

The attribute string
attribute, followed
reset.

consi.sts of F, w, S or I for the
by a 1 to set the attribute or a Oto

Examples:

AT'l'RIB "INFO.DAT•,•w1•
AT'l'RIB •GHOST. BAS:•, •Il"
AT'l'RIB • :Fl: SYSFIL•, •wlFlSlil •
AT'l'RIB A$,B$

E.4 MISCELLANEOUS

Note these other differences for ISIS-II BASIC:

1. MAKINT is located at 3903 hex, and GIVINT is
located at 3905 hex.

2. There is no FILES command in ISIS-II BASIC.
Filenames
and MERGES.

do .!!2! default to ,BAS on SAVES, LOADS,

Ka
yp
roJ
ou
rna
l

APPENDIX F

BASIC-80 with the TEKDOS Operating System

The operation of BASIC-80 with the TEKDOS operating system
is the same a·s described in this manual with the following
exc.eptions:

l. At initialization, BASIC asks MEMORY SIZE? If you
respond with a carriage return, BASIC will use all
available memory. If you respond with a memory
location (in decimal), BASIC will use memory only
up to that location. This lets you reserve space
at the top of memory for assembly language
subroutines.

2. The number of disk files that may be open at one
time defaults to S.

3. LPRINT and LLIST are not implemented.
open a file to the printer.

Instead,

4. TEKDOS does not support random disk I/O.
corresponding BASIC-80 statements (PUT,
OPEN"R", etc.) are inoperable under TEKDOS.

The
GET,

5. Control-C works only once due to a bug in TEKDOS.
If you inte·r·rupt a running program or a LIST
command with Control-C, BASIC appears to be in
"single statement" mode. To clear this condition,
exit BASIC with a SYSTEM command and re-enter BASIC
with an XEQ BASIC. Avoid using the AUTO command,
since it requires a Control-C to return to BASIC
command level.

Ka
yp
roJ
ou
rna
l

APPENDIX G

BASIC-80 with the INTEL SBC and MDS Systems

G.l INITIALIZATION

The paper tape of BASIC-80 supplied for
is in Intel-compatible hex format.
command to load the tape, then execute
start BASIC-80. The command is:

SBC and MDS systems
Use the monitor's R
the G command to

.G4000

BASIC will respond:

Memory siz·e?

If you want BASIC to use all available RAM,
carriage return. If you want to reserve space
memory for machine language subroutines, enter
memory address (in decimal) that BASIC may use.

Terminal Width?

just type a
at the top of

the highest

(8K versions only) Respond with the number of characters for
the output line width in PRINT statements. The default is
72 characters. (Extended versions use WIDTH command.)

Want SIN-COS-TAN-ATN?

Type Y to retain these functions, type N to delete them, or
type A to delete ATN only.

G.2 SUBROUTINE ADDRESSES

In the 8K version of SBC and MDS BASIC-80, DEINT is located
at 0043 hex and GIVABF is located at 0045 hex. USRLOC is at
xxxx hex. I'n the Extended version, FRCINT is located at
xxxx hex, and MAKINT is located at xxxx hex.
Ka
yp
roJ
ou
rna
l

Page G-2

G.3 LLIST AND LLPRINT

LLIST and LPRINT are not implemented.

Ka
yp
roJ
ou
rna
l

APPENDIX B

Standalone Disk BASIC

Standalone Disk BASIC is an easily implemented,
self-contained ve•rsion of BASIC-80 tha·t runs on almost any
8080 or Z80 based disk hardware without. an operating system.
Standalone Disk BASIC incorporates several. unique disk I/O
methods that make fa-ster and more efficient use of disk
access and storage.

Random access with Standalone BASIC is faster than other
disk operating systems because the file allocation table is
kept in memory and updated periodically on the diskette.
Therefore, there is no need for index blocks for random
files, and there is no need to distinguish between random
and sequential files. Because there are no index blocks,
there is no large per-file-overhead either in memory or on
disk. Binary SAVEs and LOADs are also faster because they
are optimized by c·luster, i.e., an entire cluster is read or
written at one time, instead of a single sector.

To initialize Standalone Disk BASIC, insert the BASIC
diskette and power up the system. In one- or two-drive
systems, BASIC asks if there are two drives. In systems
with more than two drives, BASIC asks for the number of
drives. BASIC then asks how many files, i.e., how many disk
fil.es may be ope.n a,t one time. An·swe-r with a number from O
to 15, or, for a de-fault of l file pe-r drive, just enter a
carriage return.

The operation
BASIC-80 as
exceptions:

B.l FILENAMES

of Standalone Disk BASIC is the same as Disk
described in this manual, with the following

The format for disk filenames is:

[drivet:]filename[.extension]

The first drive isl.

Ka
yp
roJ
ou
rna
l

Page H-2

Disk filenames are six characters with an optional
three-character extension that is preceded by a decimal
point. If a decimal point appears ~n a filename after fewer
than six characters, the name is blank-filled to six
characters and the next three characters are the extension.
If the filename is six or fewer characters with no decimal
point, there is no extension. If the filename is more than
six characters, BASIC inserts a decimal point after the
sixth character and uses the next three characters as an
extension. (Any additional characters are ignored.)

11.2 ill,! FILES

The FILES command prints the names of the files residing on
a disk. The format is: [LJFILES[<drive number>]
LP'ILES outputs to the line pr inter. In addition to the
filename, the size of each file, in clusters, is output. A
cluster is the minimum unit of alloca·tion for a file -- it
is one-half of a track. Filenames of files created with
OPEN or ASCII SAVE are listed with a space between the name
and extension. Filenames of binary files created with
binary SAVE are listed with a decimal point between the name
and extension. The protected file option with SAVE is not
supported in Standalone Disk BASIC.

The FPOS function:

FPOS(<file number>)

is the same as BASIC-80's LOC function except it returns the
number of the physical sector where <filenumber> is located.
(BASIC-80's LOC function and CP/M BASIC-80's LOF function
are also implemented.)

H.4 DSKI$/DSKO$

The DSKO$ statement:

DSKO$<drive>,<track>,<sector>,<string expression>

writes the string on the
length for the string is
than 128 characters is
characters.

specified sector. The
128 characters. A string
zero-filled at the end

maximum
of fewer

to 128

Ka
yp
roJ
ou
rna
l

Page H-3

DSKI$
DSKI$
name.

is the complementary function to the DSKO$ statement.
returns the contents of a sector to a string variable
The format is:

DSKI$(<drive>,<track>,<sector>)

Example: A$2 DSKI$(0,I,J)

H.S MOUNT COMMAND

Before a diskette can be used for file operations (i.e., any
disk I/O beside-s DSKI$, DSKO$, or IBM or USR modes) , it must
be MOUNTed. The format of the command is:

MOUNT[<drive>[,<drive> ...]]

MOUNT with no arguments mounts all drives. When a diskette
is mounted, BASIC reads the File Allocation Table (see
Section H.11.2) from the diskette into memory and checks it
for errors. If there are no errors, the disk is mounted.
If an error is found, BASIC reads one or both of the back-up
allocation tables from the diskette in an attempt to mount
the diski and a warning message, •x copies of allocation
bad on drive y", is issued. xis 1 or 2 and y is the drive
number. When a warning occurs, it is a good idea to make a
new copy of the diskette. If all copies of the allocation
table are bad or if a free entry is encountered in the file
chain, a fatal error--"bad allocation table•--is given and
the diskette will not be mounted.

While a disk is mounted,
allocation table to the
check for errors unless the
set for that drive (see SET

H.6 REMOVE COMMAND

BASIC occasionally writes
directory track, but it does
read after write attribute
statement).

the
not

is

REMOVE is the complement of MOUNT.
taken out of the drive, a REMOVE
The format of the command is:

Before a diskette can be
command must be executed.

REMOVE[<drive>[,<drive> ...]]

REMOVE writes three copies of the current allocation table
to disk and follows the same error-check procedure as MOUNT.
MOUNT and REMOVE replace the RESET command that is in
BASIC-80.

Ka
yp
roJ
ou
rna
l

NOTE

ALWAYS do a REMOVE before
taking a diskette out of a
drive. If you do not, the
diskette you took out will not
have an updated and checked
allocation table, and the data
on the next diske-tte inserted
will be destroyed when ·the
wrong allocation table is
written to the directory
track.

Page H-4

B.7 _§!! STATEMENT

The SET statement determines the att.ributes of the currently
mounted disk drive, a curren·tly open file, or a file that
need not be open. The format of the SET statement is:

SET<drive> I t<file> I <filename>,<attribute string>

<attribute string> is a string of
what attributes are set. Any
following are ignored:

char.acters that determines
characters other than the

R Read after write
P Write protect
E EBCDIC conversion (if available)

Attributes are assigned in the following order:

l. MOUNT command

2.

3.

When a MOUNT is done for a particular drive, the
first byte of the information sector on the
diskette (track 35, sector 20 for floppy7 track
18, sector 13 for minifloppy) contains the
attributes for the disk. (octal values: R•l00,
P•20, E•40)

SET<drive>,<attribute string> Statement
This statement sets the current attributes for
disk, in memory, while it is mounted.
attributes are not permanently recorded and
only while the disk is mounted.

the
The

apply

When a file is created, the permanent file
attributes recorded on the disk will be the same as
the current drive attributes.

Ka
yp
roJ
ou
rna
l

Page H-5
4. SET<filename>,<attribute string> Statement

This statement changes the permanent file
attributes that are stored in the directory entry
for that file. It does not affect the drive
attributes.

5. When an existing file is OPENed, the attributes of
the file number are those of the directory entry.

6. SETt<file number>,<attribute string> Statement
This statement changes the attributes for that file
number but does not change the directory entry.

Examples:

SET l,"R" Force read after write checking on all
output to drivel

SET tl, "'R" Force read after write for all output to
file l while it is open

SET tl, "P" Glve write pro.tact error if any output is
attempted to file l

SET "TEST•, "P" Protect TEST from deletion and
modification

SET l, Turn off all attributes for drivel

H.8 ATTR$ FUNCTION

ATTR$ returns a string
drive, currently open
The format of A'l"l'R$ is:

of the current attributes for a
file, or file that need not be open.

A'l"l'R$ (<drive> I t<file number> I <filename>)

For example:

SET l,"R":A$•ATTR$(l) :PRINT A$
R
Ok

H.9 OPEN STATEMENT

The format for the OPEN statement in Standalone BASIC is:

OPEN <filename> [FOR <mode>] AS [t]<file number>

where <mode> is one of the following:

INPUT
OU'1'PU'1'
APPEND
IBM
OSR

Ka
yp
roJ
ou
rna
l

Page a:-6

The mode determines only the initial positioning within the
file and the actions to be taken if the file does not exist.
The action taken in each mode is:

INPUT

OO'l'PIJT

APPEND

IBM

The initial position is at the start of the file.
An error is returned if the file is not found.

The initial position is at the start of the file.
A new file is always created.

The initial position is at the end of the file.
An error is returned if the file is not found.

The initial position is after the last DSKI$ or
DSXO$. The file is then set up to write
contiguous. No file search is done. (The same
effect may be achieved in many cases by altering
the FORMAT program. See section a:.ll.2.l.)

Same as IBM mode except, instead of write
contiguous, USRO is called and returns the next
track/sector number. The OSRO routine should read
the current track/sector from B,C and return the
next location in B,C. When OSRO is first called,
B,C contains the track and sector number of the
previous DSKI$ or DSKO$.

If the FOR <mode> clause is omitted, the initial position is
at the start of the file. If the file is not found, it is
created.

Note that variable length records are not supported in
Standalone Disk BASIC. All records are 128 bytes in length.

OSR mode is especially useful for creating diskettes that
require sector mapping. This is the case if the diskette is
intended for use on another system, for example, a CP/M
system. Instead of opening the file for write contiguou.s
(IBM mode), the OSRO routine may be used to map the sectors
logically, as required by the other system.

When a file is OPENed FOR APPEND, the file mode is set to
APPEND and the record number is set to the last record of
the file. The program may subsequently execute disk I/0
statements that move the pointer . elsewhere in the file.
When the last record is read, the file mode is reset to FILE
and the pointer is left at the end of the file. Then, if
you wish to append another record, execute:

GETtn ,LOF (n)

This positions the pointer at the end of the file in
preparation for appending.

At any one time, it is possible to have a particular

Ka
yp
roJ
ou
rna
l

Page E-7

filename OPEN under more than one file number. This allows
different attributes to be used for different purposes. or,
for program clarity, you may wish to use different file
numbers for different methods of access. Each file number
has a different buffer, so changes made under one file are
not accessible to (or affected by) the other numbers until
that record is written (e.g., GETtn,LOC(n)).

E.10 DISK I/O

A GET or PUT (i.e., random access) cannot be done on a file
that is OPEN FOR IBM or OPEN FOR USR. Otherwise, GET/PUT
may be executed along with PRINTt/INPUTt on the same file,
which makes midfile updating possible. The statement
formats for GET, PUT, PRINTt, and INPUTt are the same as
those in BASIC-SO. The action of each statement in
Standalone BASIC is as follows:

GET

PUT

INPUTt

PRINTt

If the "buffer changed" flag is set, write the
buffer to disk. Then execute the GET (read the
record into the buffer), and reset the position
for sequential I/O to the beginning of the buffer.

Execute the PUT (write the buffer to the specified
record number), and set the "sequential I/O is
illegal" flag until a GET is done.

If the buffer is empty, write it if the "buffer
changed" flag is set, then read the next buffer.

Set the "buffer changed" flag.
full, write it to disk. Then,
not been reached, read the next

If the buffer is
if end of file has
buffer.

E.10.l File Format

For a single density floppy, each file requires 137 bytes:
9 bytes plus the 128-byte buffer. Because the File
Allocation Table keeps random access information for all
files, random and sequential files are identical on the
disk. The only distinction is that sequential files have a
Control-Z (32 octal) as the last character of the last
sector. When this sector is read, it is scanned from the
end for a non-zero byte. If this byte is Control-Z, the
size of the buffer is set so that a PRINT overwrites this
byte. If the byte is not Control-Z, the size is set so the
last null seen is overwritten.

Any sequential file can be copied in random mode and remain
identical. If a file is written to disk in random mode

Ka
yp
roJ
ou
rna
l

(i.e., with PUT
sequential mode,
detection.

instead
it will

Page B-8

of PRINT) and then read in
still have proper end of file

B.11 DISK ALLOCATION INFORMATION

With Standlone Disk BASIC, storage space on the diskette is
allocated beginning with the cluster closest to the current
position of the head. (This method is optimized for
writing. custom versions can be optimized for reading.)
Disk allocation information is placed in memory when the
disk is mounted and is periodically written back to the
disk. Because this allocation information is kept in
memory, there is no need for inde~ blocks for random files,
and there is no need to distinguish between random and
sequential files.

B.11.1 Directory Format

On the diskette, each
eight file entries.
formatted as follows:

sector of the directory track contains
Each file entry is 16 bytes long and

Bytes

0-8

9

Osage

Filename, 1 to 9 characters. The
first character may not be O or 255.

Attribute:
Octal

200 Binary file
100 Force read after write check

40 EBCDIC file
2.0 Write protected file

Excluding 200, these bi ts are the same
for the disk attribute byte which is the
first byte of the information sector.

10

11-15

Pointer into File Allocation Table
to the first cluster of the file's
cluster chain.

Reserved for future expansion.

If the first byte of a filename is zero, that
slot is free. If the first byte is 255, that
last occupied slot in the directory, i.e., this
end of the directory.

file entry
slot is the

flags the

Ka
yp
roJ
ou
rna
l

Page H-9

H.11.2 Drive Information

For each disk drive that is MOUNTed,
information is kept in memory:

the following

1. Attributes
Drive attributes are read from the information
sector when the drive is mounted and may be changed
with the SET statement. Current attributes may be
examined with the ATTR$ function.

2. Track Number
This is the current track while the disk is
mounted. Otherwise, track number contains 255 as a
flag that the disk is not mounted.

3. Modification Counter
This counter is incremented whenever an entry in
the File Alloc·ation Table is changed. After a
given number of changes has been made, the File
Allocation Table is written to disk.

4. Number of Free Clusters
This is calculated when the drive is mounted., and
updated whenever a file is deleted or a cluster is
allocated.

5. File Allocation Table
The File Allocation '!'able has a one-byte entry for
evary c:luste-r allocated on the disk. If the
cluster is free, this entry is 255. If the cluster
is rese-rved, this entry is 254. If the cluster is
the last cluster of the file, this entry is 300
(octal) plus the number of sectors from this
cluster that were used. Otherwise, the entry i.s a
pointer to the next c·luster of the file. The File
Allocation Table is read into memory when the drive
is mounted, and updated:

1. When a file is deleted

2. When a file is closed

3. When modifications to the table total twice the
number of sectors in a cluster (this can be
changed in custom versions)

4. When modifications to
and the disk head
directory track.

the t~ble have been
is on (or passes)

made
the

Ka
yp
roJ
ou
rna
l

Page H-10

H.11.2.l FORMAT Proqram - Before mounting a
drive with a new diskette, run BASIC's FORMAT program to
initialize the directory (set all bytes to 255), set the
information sector to O, and set all the File Allocation
Table entries (except the directory track entry (254)) to
"free" (255).

The FORMAT program is:

10 CLEAR 1500
20 A$•STRING$(128,255)
30 B$-STRING$(35*2,255)+STRING$(2,254)+STRING$(56,255)
40 FOR S•l TO 19:DSKO$ l,35,S,A$:NEXT
50 FOR S•21 TO 25 STEP 2:OSX0$ 1,3S,S,B$
60 DSKO$ l,35,S+l,A$:NEXT
70 DSKO$ 1, 35, 20 ,CHR$ (0.)

After running
allocated as
track.

FORMAT and MOUNTing the drive, files will be
usual, i.e., on either side of the directory

The FORMAT program may be altered to pre-allocate selected
files. For instance, you may wish to use the FORMAT program
to pre-allocate f.iles contiguously (as they would be
allocated in IBM mode). Then IBM and BASIC files may both
exist on the diskette. The altered FORMAT program must also
write the name of the file(s) to the directory track (i.e.,
files 1-8 in sector 1, files 9-16 in sector 2, etc.), so
BASIC knows where the fi~es start.

H.11.3 fil! Block

Each file on the disk has a file block that contains the
following information:

1. File Mode (byte 0)
This is the first byte (byte 0) of the file block,
and its location
VARPTR(lfilenumber). The
byte in the file block is
byte. The file mode byte

(octal)
1
2
4

10
20
40

Input only
Output only
File mode
Append mode
Delete file
IBM mode

may be read with
location of any other

relative to the file mode
is one of the following:

100
200

Special format (USR)
Binary save

Ka
yp
roJ
ou
rna
l

NOTE

It is not recommended that the user attempt
to modify the next four bytes of the File
Allocation Table. Many unforeseen
complications may result.

2. Pointer to the File Allocation Table entry for the
first cluster allocated to the file (+l)

3. Pointer to the File Allocation Table entry for .the
last cluster accessed (+2)

4. Last sector accessed (+3)

5. Disk number of file (+4)

6. The size of the last buffer read (+5). This is 128
unless the last sector of the file is not full
(i.e., Control-Z).

7.

8.

The current position in the buffer (+6).
the offset within the buffer for the next
input.

File flag (+7), is one of the following:
Octal

100
40

20
10

4

2

Read after write check
Re-ad/Write EBCDIC, not ASCII
(Not available in all ve.rsions.)
File write protected
Buffer changed by PRINT
PU'l' has been done. PRINT/INPU'l' are
errors until a GET is done.
(See Section H.10.)
Flags buffer is empty

This is
print or

9. Terminal position for TAB function and comma in
PRINT statements (+8)

10. Beginning of sector buffer (+9), 128 bytes in
length

H.12 ADVANCED OSES OF FILE BOFFERS

l. Information may be passed
another by FIELDing it to
(not t0). The FIELD buffer
as the file is not OPENed.

from one program to
an unopened file number
is not cleared as long

Ka
yp
roJ
ou
rna
l

Page B-12

2. The FIELDed buffer for an unopened file can also be
used to format strings. For example, an
BO-character string could be placed into a FIELDed
buffer with LSET. The strings could then be
accessed as four 20-character strings using their
FIELDed variable names. For example:

3.

100 FIELDtl, 80 AS A$
200 FIELDtl, 20 AS.Al$, 20 AS A2$, 20 AS A3$, 20 AS A4$
300 LINE INPUT "COS'?OMER INFORMATION: • :B$
400 LSET A$•B$
S00 PRINT "NAME •:Al$: •sSN: • :A2$

FIELDtO may be used
that this buffer
following commands:
DSKO$, MOCN'r, OPEN.

as a temporary buffer, but note
is cle-ared after each of the
FILES, LOAD, SAVE, MERGE, RUN,

4. The effect of PRINT[USING]t into a string may be
achieved by printing to a FIELDed buffer and then
accessing it without reopening the file. To assure
that this temporary buffer is not written to the
disk, return the pointer to the beginning of the
buffer and reset the •buffer changed" flag as
follows:

10 OPEN "'O" FOR IBM AS l:REM THIS DOESN'T USE SPACE
20 PlUNT USINGtl ...
30 P•PEEK(6+VARPTR(t,l)) :REM OPTIONAL, TO GET LENGTH OF PRINT
USING
40 PIELDt l . . . AS ...
50 Y•7+VARPTR(tl)
60 POKE Y,PEEK(Y AND &360) :REM RESET ~UPPER CHANGED FLAG
70 POKE 6+VARPTR,0:REM CI.EAR POSITION IN BUFFER

Ka
yp
roJ
ou
rna
l

H·.13 STANDALONE BASIC DISK ERRORS

50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 File already open
55 Disk not mounted
56 Disk I/O error
57 File already exists
59 Disk already mounted
61 Input past end
62 Bad file name
63 Dire.ct statement in file
64 Bad allocation table
65 Bad drive number
66 Bad track/sector
67 File write protected
68 Disk offline
69 Dele-ted record
70 Rename across disks
71 Sequential after PUT
72 Sequential I/O only
73 File not OPEN

H.14 DOUBLE DENSITY, DOUBLE SIDED DISKETTES

Page H-13

For diskettes with 2.56-byte sectors, DSKI$ and DSKO$ are
modified.

The DSKI$ function returns as its value the first 255 bytes
of the sector read.

The DSKO$ statement does not use the <string expression>
field. The format is:

DSKO$ <drive->,< track>,< sector>

In order to specify the data to write with DSKO$ and to
retrieve all 256 bytes of the data read by DSKI$, the user
must FIELD two or more variables (for a total of 256 bytes)
to the filet0 buffer. The FIELDed variables will be
identical to the data read with DSKI$ and written with
DSKO$. For example:

FIELDt0,128 AS A$,l28 AS 8$

For double-sided diskettes, the formats of DSKI$ and DSKO$
must also include the surface number:

DSKI$(<drive>,<surface>,<track>,<sector>)

DKSO$ <drive>,<surface>,<track>,<sector>
or

DKSO$ <drive>,<surface>,<track>,<sector>,<string exp>

Ka
yp
roJ
ou
rna
l

APPENDIX I

Converting Programs to BASIC-80

If you have programs written in a BASIC other than BASIC-80,
some minor adjustments may be nece-ssary before running them
with BASIC-80. Here are some specific things to look for
when converting BASIC programs.

I.l STRING DIMENSIONS

Delete all statements that are used to declare the length of
strings. A statement such as DIM A$(I,J), which dimensions
a string array for J elements of length I, should be
converted to the BASIC-80 statement DIM A$(J).

Some BASICs use a comma or ampersand for
concatenation. Each of the-se must be changed to
sign, which is the operator for BASIC-80
concatenation.

string
a plus
string

In BASIC-80, the MID$, RIGHT$, and
to take substrings of strings.
access the Ith character in A$,
substring of A$ from position
changed as follows:

LEFT$ functions are used
Forms such as AS(I) to

or A$ (I,J) to take a
I to position J, must be

Other BASIC

X$•A$ (I)
X$•A$ (I,J)

BASIC-80

X$•MID$(A$,I,l)
X$•MID$(A$,I,J-I+l)

If the substring reference is on the left side of an
assignment and X$ is used to replace characters in A$,
convert as follows:

Other BASIC

A$(I)•X$
A$(I,J)•X$

A$(I)•X$
A$(I,J9•X$

!!_ BASIC-80

A$•LEFT$(A$,I-l)+X$+MID$(A$,I+l)
A$•LEFT$(A$,I-l) ;X$;MID$(A$,J+l)

!!hand E!!Js. BASIC-80

MID$(A$,l,l)=-X$
MID$(A$,I,J-I+l)•X$

Ka
yp
roJ
ou
rna
l

Page I-2

I.2 MULTIPLE ASSIGNMENTS

Some BASICs allow statements of the form:

10 LET B-C•O

to set Band C equal to zero. BASIC-80 would interpret the
second equal sign as a logical operator and set B equal to
-1 if C equaled o. Instead, convert this statement to two
assignment statements:

10 C•O:B•O

I.3 MULTIPLE STATEMEN'?S

Some BASICS
statements on
on a line are

use a baclcs·lash (\) to
a line. With BASIC-80, be
separated by a colon (:).

separate multiple
sure all statements

I.4 fil FUNCTIONS

Programs using the MAT functions available in
must be rewritten using FOR ... NEXT loops
properly.

some BASICS
to execute

Ka
yp
roJ
ou
rna
l

Code

NF

SN

RG

OD

FC

APPENDIX J

Summary of Error Codes and Error Messages

Number

l

2

3

4

5

Message

NEXT without FOR
A variable in a NEXT
correspond to any
unmatched FOR statement

statement
previously
variable.

does not
executed,

Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement,- incorrect. punctuation, etc.).

Return w-i thout GOSUB
A RETURN statement is encountered for
there is no previous, unmatched
statement.

out of data

which
GOSUB

A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

Illegal function call
A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:

l. a negative or unreasonably large
subscript

2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent Ka
yp
roJ
ou
rna
l

ov 6

OM 7

UL 8

BS 9

DD 10

/0 11

ID 12

TM 13

Page J-2

5. a call to a USR function for which the
start.ing address has not yet been given

6. an improper argument to MID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRING$, SPACE$, INSTR, or
ON ••• GOTO.

overflow
The result of a calculation is too large to
be represented in BASIC-80's number format.
If underflow occurs, the result is zero and
execution continues without an error.

out of memory
A program is too large,
loops or GOSO'Bs, too
expressions that are too

Undefined line

has too many
many variables,
complicated.

FOR
or

A line reference in a GOTO,
IF ... TBEN ••• ELSE or DELETE is
nonexistent line.

GOSOB,
to a

Subscript out of
An array element
subscript that
the array, or
subscripts.

range
is referenced either with a
is outside the dimensions of
with the wrong number of

Redimensioned array
Two DIM statements are given for the same
array, or a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

Division by zero
A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

Illegal direct
A statement that is illegal in direct mode is
entered as a direct mode command.

Type mismatch
A string variable name is assigned a numeric
value or vice versai a function that expects
a numeric argument is given a string argument
or vice versa.

Ka
yp
roJ
ou
rna
l

OS

LS

ST

CN

14

15

16

17

Page J-3

out of string space
String variables have caused BASIC to exceed
the amount of free memory remaining. BASIC
will allocate string space dynamically, until
it runs out of memory.

String too long
An attempt is made to create a string more
than 255 characters long.

String formula too complex
A string expression is too long or too
complex. The expression should be broken
into smaller expressions.

Can' t con.tinue
An attempt is made to continue a program
that:

1. has halted due to an error,

2. has been modified during a break in
execution, or

3. does not exist.

18 Undefined user function
A USR function is called before the function
definition (DEF statement) is given.

Extended~ Qi!J5. Versions Only

19 No RESUME
An error trapping routine is entered but
contains no RESUME statement.

20 RESUME without error

21

A RESUME statement is encountered before an
error trapping routine is entered.

Unprintable error
not available

which exists.
an ERROR with an

An error message is
error condition
usually caused by
error code.

for the
This is

undefined

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow
An attempt is made to input a line that has
too many characters.

Ka
yp
roJ
ou
rna
l

Page J-4

26 FOR without NEXT
A FOR was encountered without a matching
NEXT.

29 WHILE without WEND
A WHILE statement does not have a matching
WEND.

30 WEND without WHILE
A WEND was encountered without a matching
WHILE.

Disk Errors

50 Fiel.d overflow
A FIELD • statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error
An internal malfunction has occurred in Disk
BASIC-80. Report to Microsoft the conditions
und.er which the message appeared.

52 Bad file number
A statement or command references a file with
a file number that is not OPEN or is out of
the range of file numbers specified -at
initializ·ation.

53 File not found

54

55

57

A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.

Bad file mode
An attempt is made to use PUT, GET, or LOF
w-ith a sequentia.l file, to LOAD a random file
or to execute an OPEN with a file mode other
than I, o, or R.

File already open
A sequential output mode
file that is already
given for a file that is

Disk I/O error
An I/O error occurred

OPEN is issued for a
open7 or a KILL is
open.

on a disk I/O
operation. It is a fatal error, i.e. , the
operating system cannot recover from the
error.

Ka
yp
roJ
ou
rna
l

Page J-5

58 File already exists
The filename specified in a NAME statement is
identical to a filename already in use on the
disk.

61 Disk full
All disk storage space is in use.

62 Input past end
An INPUT statement is exeucted after all the
data in the file has been INPUT, or for a
null (empty) file. To avoid this error, use
the EOF function to detect the end of file.

63 Bad record number
In a PUT or GET statement, the record number
is e-i.the-r gre-ater than the maximum allowed
(32.767) or equal to zero.

64 Bad file name

66

67

An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many characters).

Direct statement in file
A di.rect statement is
LOADing an ASCII-format
terminated.

Too many fiJ.e-s

encountered while
file. The LOAD is

An attempt is made to create a new file
(using SAVE or OPEN) when all 255 directory
e-ntrie.•s are full.

Ka
yp
roJ
ou
rna
l

I

APPENDIX K

Mathematical Functions

Derived Functions

Functions that are not intrinsic to BASIC-80 may be
calculated as follows.

Function BASIC-80 Equivalent

SECANT SEC(X)•l/COS(X)
COSECANT CSC(X)•l/SIN(X)
COTANGENT COT(X)•l/TAN(X)
INVERSE SINE ARCSIN(X)•ATN(X/SOR(-X*X+l))
INVERSE COSINE ARCCOS(X)•-ATN (X/SOR(-X*X+l))+l.5708
INVERSE SECANT ARCSEC(X)•ATN(X/SOR(X*X-1))

+SGN(SGN(X)-I)*l.5708
INVERSE" COSECANT ARCCSC(X) 2 ATN(X1/SOR(X*X-l))

+(S"GN (X) -1) .. l. 5708
INVERSE COTANGENT ARCCOT(X)•ATN(X)+l.5708
HYPERBOLIC SINE SINH(X)•(EXP(X)-EXP(-X))/2
HYPERBOtIC COSINE COSH(X)•(EXP(X)+EXP(-X))/2
HYPERBOLIC TANGENT TANH(X)•EXP(-X)/EXP(X)+EXP(-X))•2+l
HYPERBOLIC SECANT SECH(X)•2/(EXP(X)+EXP(-X))
HYPERBOLIC COSECANT CSCH(X)•2/(EXP(X)-EXP(-X))
HYPERBOLIC COTANGENT COTH(X)•EXP(-X)/(EXP(X)-EXP(-X))*2+l
INVERSE HYPERBOLIC
SINE ARCSINH(X)•LOG(X+SOR(X*X+l))
INVERSE HYPERBOLIC
COSINE ARCCOSB(X)•LOG(X+SOR(X*X-1)
INVERSE HYPERBOLIC
TANGENT ARCTANH(X)•LOG((l+X)/(l-X))/2
INVERSE HYPERBOLIC
SECANT ARCSECH(X)•LOG((SOR(-X*X+l)+l)/X)
INVERSE HYPERBOLIC
COSECANT ARCCSCH(X)•LOG((SGN(X)*SOR(X*X+l)+l)/X
INVERSE HYPERBOLIC
COTANGENT ARCCOTH(X)•LOG((X+l)/(X-1))/2 Ka

yp
roJ
ou
rna
l

APPENDIX M

ASCII Character Codes

ASCII ASCII ASCII
Code Character Code Character Code Character

000 NOL 043 + 086 V
001 SOB 044 , 087 w
002 STX 045 - 088 X
003 ETX 046 • 089 y
004 E!OT 04-7 I 09·0 z
005 :eMQ 04-8 0 091 [
006 ACX 049 l 09·2 \
007 BEL 050 2 093 l
008 BS 051 3 09-4 ...
009 B!l' 052 4- 09·5 <
010 12 053 5 096
011 VT 054 6 097 a
012 'E'P 055 7 098 b
013 CR 056 8 099 C
014 so 057 9 100 d
015 SI 058 • 101 e •
016 OLE 059 • 102 f ,
01.7 DCl 060 < 103 g
018 DC2 061 - 104 b
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
02:l BK" 064- @. 107 k
022 SYN 065 A 108 l
023 m'B 06:6 B 109 m
024 ON 067 C ll0 n
025 BM 068 D ill 0
026 SOB 069 :a 112 p
027 :SSCAPE 070 p 113 q
028 FS on G 114 r
029 GS 072 Ii llS s
030 RS 073 r 116 t
031 OS 074, J 117 u
032 SPACE 075 K' 118 V
033 I 076 Ii 119 w
034 • 077 M 120 lC
035 t 078 N 121 y
036 $ 079 0 122 z
037 ' 080 p 123

I 038 & 081 Q. 124
039 I 082 R 125
040 (083 s 126 ~

041) 084 T 127 DEL
042 * 085 0

ASCII codes are in decimal.
LF•Line Peed, 'E'P•Form Peed, CR-Carriage Return, DEL•Rubout

Ka
yp
roJ
ou
rna
l

INDEX

ABS • • • • • • • • • • • • • 3-2
Addition • • • • • • • • • • • l-10
ALL • • • • • • • • • • • • • 2-4, 2-9
Arctangent • • • • • • • • • • 3-3
Array variables • • • • • • • l-7, 2-9, 2-19
Arrays • • • • • • • • • • • • l-7, 2-7, 2-12, 2-25
ASC • • • • • • • • • • • • • 3-2
ASCII codes • • • • • • • • • 3-2, 3-4
ASCII format • • •· • • • • • • 2-4, 2-50, 2-78
Assembly language subroutines 2-3, 2-17, 2-60, 3-23 to 3-24,

c-1
ATN • • • • • • • • • • • • • 3-3
A'rl'R$ • • • • • • • • • • • • H-5
A'rl'RIB • • • • • • • • • • • • E-2
AUTO • • • • • • • • • • • • • 1-2, 2-2

Boolean operators • • • • • • l-12

CALL • • • • • • • • •· • • • • 2-3, C-5
Carriage return • • • • • • • l-3, 2-37, 2-42 to 2-43,

2-84 to 2-86
Cassette tape • • • • • • • • 2-7, 2-12
CDBL • • • • • • • • • • • • 3-3
CHAIN • • • • • • • • • • • • 2-4, 2-9
Character set • • • • • • • • l-3
CHR$ • • • • • • • • • • • • • 3-4
CINT • • • • • • • • • • • • • 3-4
CLEAR • • • • • • •· • • • •· • 2-6, A-l
CLOAD • • • • • • • • • • • • 2-7
CLOAD* • • • • • • • • • • • • 2-7
CLOAD? • • • • • • • • • • • •· 2-7
CLOSE • • • • • • • • • • • • 2-8, B-3, B-8
Command level • • • • • • • • l-l
COMMON • • • • • • • • • • • • 2-4, 2-9
Concatenation • • • • • • • • l-15
Constants • • • • • • • • • • l-4
CONT • • • • • • • • • • • • • 2-11, 2-42
Control characters • • • • • • l-4
Control-A • • • • • • • • • • 2-23
cos • • • • • • • • • • • • • 3-5
CP/M . • • • • • • • • • • • • 2-47, 2-50, 2-77 -to 2-78,

B-l, D-l
CSAVE • • • • • • • • • • • • 2-12
CSAVE* • • • • • • • • • • • • 2-12
CSNG • • • • • • • • • • • • • 3-5
CVD • • • • • • • • • • • • • 3-6, B-8
CVI • • • • • • • • • • • • • 3-6, B-8
CVS • • • • • • • • • • • • • 3-6, B-8

Ka
yp
roJ
ou
rna
l

DATA • • • • • •
DEF FN • • • • •
DEF USR • • • •
DEFDBL • • • • •
DEFINT • • • • •
DEFSNG • • • • •
DEFSTR • • • • •
DEINT • • • • •
DELETE • • • • •
DIM • • • • • •
Direct mode • •
Division • • • •
Double precision

DSKI$ • • • •
DSKO$ • • • •

EDIT • • • • •
Edit mode • •
END • • • • •

EOF • • • • •
ERASE • • • •
ERL • • • • •
ERR • • • • •
ERROR • • • •
Error codes •
Error messages
Error trapping

Escape • • • •
EXP • • • • •
Exponentiation
Expressions •

FIELD • • • •
FILES • • • •
!!'IX • • • • •
FOR ... NEXT • •
FORMAT program
FPOS • • •
FRCINT • •
FRE • • •
Functions

GET • • •

GIVABF • •
GIVINT • •
GOSUB • •
GOTO • • •

HEX$
Hexadecimal

• •

• •
• •
• •
• •

• •

• •
• •
• •
• •

•
•

•
•

•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•

•

•
•
•
•

•
•

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

• •
• •

• •
• •
• •

• •
• •
• •
• •
• •
• •
• •
• •

• •
• •
• •
• •

• •
• •
• •
• •
• •
• •
• •
• •
• •

• •

• •
• •
• •
• •

• •
• •

IF ... GOTO • • • •
IF ..• THEN . . . • •
IF ... THEN ... ELSE. •

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•

•

•
•
•
•

•
•

•
•

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • •
• • •

• • •
• .. •
• • •

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • •
• • •
• • •
• • •

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • •

• • •
• • •
• • •
• • •

• • •
• • •

• • •
• • •
• • •

• 2-13, 2-75
• 2-14
• 2-17, 3-23
• l-7, 2-16
• l-7, 2-16
• l-7, 2-16 . l-7, 2-16
• C-1, G-l
• l-2, 2-4, 2-18
• 2-19
• l-1, 2-35, 2-55
• 1-10
• l-5, 2-16, 2-61, 3-3, A-l,

L-4
• H-2, H-13
• H-2, H-13

• l-2, 2-20
• l-4, 2-20
• 2-8, 2-11, 2-24, 2-33,

L-3
• 3-6, B-3, B-5, D-4
• 2-25
• 2-26
• 2-26
• 2-27
• l-16, 2-26 to 2-27, J-l
• l-16, J-l
• 2-26 to 2-27, 2-55, 2-76,

B-7
• l-3, 2-20
• 3-7
• l-10 to l-11
• l-9

• 2-29, B-8, H-11
• D-3, H-2
• 3-7
• 2-30, A-l
• H-10
• H-2
• c-1, C-4, D-4, G-l
• 3-8
• l-14, 2-14, 3-l, K-l

• 2-29, 2-32, B-8, D-4,
H-7

• c-1 to C-2, G-l
• E-2
• 2-33
• 2-33

• 3-8
. 1-5,

•
•
•

2-35
2-26,
2-35

to 2-34

3-8

2-35

Ka
yp
roJ
ou
rna
l

Indirect mode • • • • • • • • 1-1
INKEY$ • • • • • • • • • • • 3-9
INP • • • • • • • • • • • • 3-9
INPUT • • • • • • • • • • • 2-11, 2-29, 2-37, A-2,

B-9
INPUT$ • • • • • • • • 3-10
INPUT# • • • • • • • • • • H-7
INPUT# • • • • • • • • • • B-3
INPUT# • • • • • • • • • • 2-39
INSTR • • • • • • • • • • • 3-11
INT • • • • • • • • • • • • • 3-7, 3-12
Integer • • • • • • • • • • • 3-4, 3-7, 3-12
Integer division • • • • • • • 1-11
INTEL • • • • • • • • • • • G-1
Interrupts • • • • • • • • • • c-1
ISIS-II • • • • • • • • • • • 2-77, E-1

KILL . • • • • • • • • • • • • 2-40, B-2

LEFT$ • • • • • • • • • • • • 3-12
LEN • • • • • • • • • • • • • 3-13
LET • • • • • • • • • • • • • 2-29, 2-41, B-9
LFILES • • • • • • • • • • • • H-2
Line feed • • • • • • • • • • 1-2, 2-37, 2-42 to 2-43,

2-85 to 2-86
LINE INPUT • • • • • • • • • • 2-42
LINE INPUTt • • • • • • • • • B-3
LINE INPUT# • • • • • • • • • 2-43
Line numbers • • • • • • • • • 1-1 to 1-2, 2-2, 2-74,

Line printer • • • • • • • • • 2-46, 2-48, 2-84, 3-14,
A-2, E-2

Lines • • • • • • • • • • • • 1-l
LIST • • • • • • • • • • . . • • 1-2, 2-44
LLIST • • • • • • • • • • • • 2-46, F-1, G-2
LOAD • • • • • • • • • • • • • 2-47, 2-78, B-1
LOC • • • • • • • • • • • • • 3-13, B-3, B-5, B-8, H-2
LOF • • • • • • • • • • • • • D-4, H-2
LOG • • • • • • • • • • • • 3-14
Logical operators • • • • • • 1-12
Loops • • • • • • • • • • • 2-30, 2-83
LPOS • • • • • • • • • • • • 2-84, 3-14
LPRINT • • • • • • • • • • • 2-48, 2-84, F-1, G-2
LPRINT USING • • • • • • • • • 2-48
LSET . • • • • • • • • • • • 2-4-9, B-8

MAKINT • • • • • • • • • • • C-1, C-4, o-4, E-2, G-1
MBASIC • • • • • • • • • • • • 0-1
MDS • • • • • • • • • • • • G-1
MERGE • • • • • • • • • • • 2-4, 2-50, B-2
MID$ • • • • • • • • • • • 2-51, 3-15, I-1
MKD$ • • • • • • • • • • • • 3-15, B-8
MRI$ • • • • • • • • • • • 3-15, B-8
MKS$ • • • • • • • • • • • 3-15, B-8
MOD operator • • • • • • • • l-11
Modulus arithmetic • • • • • l-11
MOUNT • • • • • • • • • • • H-3
Multiplication • • • • • • l-10

Ka
yp
roJ
ou
rna
l

r • NAME ••
Negation.
NEW • • •

• • •
• • •
• • •

NULL • • • • • •
Numeric constants
Numeric variables

OCT$
Octal • • •
ON ERROR GOTO
ON ... GOSTJB.
ON ••• GOTO •

• •
• •

•
• •

•

•
•
•
•

•
•
•
•
•

• • • •
• •
• • • •
• • • •
• • •
• • • •

• • • •
• • • •
• • • •
• • • •
• • • •

•
•
•
•
•
•

•
•
•
•
•

2-52
. 1-10
. 2-8,
. 2-54
. 1-4
. 1-7

• 3-16

2-53

3-16

OPEN .. • •
•
• • • • • • • •

. 1-5,

. 2-55
, 2-56
. 2-56
. 2-8,

B-8,
. 1-9,

2-29, 2-57, B-3,
B-5 to B-6

Operators

OPTION BASE
• • OUT

overflow.
•

• • •

• •
• • •
• • •

• •

• •
• •
• •

•

•
•
•

•

•
•
•

•

•
•
•

•

•
•
•

. 2-58

. 2-59

. 1.-11,

1-11 to 1-13, 1-15

3-7, 3-22, A-1

overlay • • • • • • • • • • . 2-4

Paper tape . .
PEEK . . • • •
POKE
POS
PRINT

• •
•

•
•

PRINT USING
PRINTt .

• •
• •

•
•

PRINTt USING.
PRINTt USING,
PRINTt , , , .
PRINTt USING,
PRINTt , ...
Protected files
PUT • • • • •

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

•
• •

•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•
•

Random files. • • • •

Random numbers ... •
RANDOMIZE • • • • • •
REA.D • • • • • • • • •
Relational operators.
REM • • • • • • • •
REMOVE • ••••••
UNUM
RESET
RESTORE

•
•

• •
• •
• •

• • • •
• • • •
• • • •

RESTJME • ••••••
RETURN • • • • • • •
RIGHT$. , . , , . .
RND • • • • • • • •
RSET • . .
Rubout
RUN • • • • • • • •

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

, . 2-54
. . 2-60,
. . 2-60,
, , 2-84,
. . 2-61,
. . 2-63,
. . H-7
. . B-5
.. B-3
. . B-3
. • 2-61

3-16
3-16
3-17
A-1
A-2

• •
• •

. . 2-61

.. 2-78,

.. 2-29,
A-2, B-2
2-69, B-8,

• • •

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

. 2-29, 2-32,
2-57, 2-69,
B-7, D-4

. 2-70, 3-18

2-40,
3-13,

. 2-70, 3-18, A-1

. 2-71, 2-75

. 1-11

. 2-73
• e:-3
. 2-4, 2-26, 2-74
. D-3
. 2-75
. 2-76
. 2-33
. 3-17
. 2-70, 3-18, A-1
. 2-49, B-8
. 1-3, 1-15, 2-21
. 2-77 to 2-78, B-2

B-7

2-49,
3-15,

SAVE. • • • • • • • • • • • . 2-47, 2-77 to 2-78, B-1

Ka
yp
roJ
ou
rna
l

SBC • • • • • • • • • • • • • G-1
Sequential files • • • • • • • 2-39 to 2-40, 2-43, 2-57,

2-67, 2-86, 3-6, 3-13,
B-3

SE'l' • • • • • • • • • • • • l!-4
SGN • • • • • • • • • • • • • 3-18
SIN • • • • • • • • • • • • • 3-19
Single precision • • • • • • • l-5, 2-16, 2-61, 3-5, A-1
Space Requirements for variables l-8
SPACE$ • • • • • • • • • • • • 3-19
SPC • • • • • • • • • • • • • 3-20
SQR • • • • • • • • • • • • • 3-20
Standalone Disk BASIC • • • • l!-1
STOP • • • • • • • • • • • • • 2-11, 2-24, 2-33, 2-79

STR$ • • • • • • • • • • • • • 3-21
String c:onstants • • • • • • • l-4
String functions • • • • • • • 3-6, 3-11 to 3-13, 3-15,

3-17, 3-21, 3-23, I-l
String operators • • • • • • • l-15
String space • • • • • • • • • 2-6, 3-8, A-1, B-9

String variables • • • • • • • l-7, 2-16, 2-42 to 2-43
STRING$ • • • • • • • • • • • 3-21
Subroutines • • • • • • • • • 2-3, 2-33, 2-56, C-l ' Subscripts • • • • • • • • • • l-7, 2-19, 2-58 I S-Ubtraction • • • • • • • • • l-10
SWAP • • • • • • • • • • • • • 2-80
SYSTEM • • • •· • • • • • • • • D-4, r-1

TAB • • • • • • • • • • • • • 3-22
Tab • • • • • • • • • • • • • l-3 to l-4
TAN • • • • • • • • • • • • • 3-22,
TEKDOS • • • • • • • • • • • • r-l
TR.Off • • • • • • • • • • • • 2-81
TRON • • • • • • • • • • • • 2-81

CISR • • • • • • • • • • • • 2-17, 3-23, c-1
CISRLOC • • • • • • • • • • • • c-2, G-1

VAL • • • • • • • • • • • • 3-23
Variables • • • • • • • • • • l-6
VARP'rR • • • • • • • • • • • • 3-24, l!-10

WAIT • • • • • • • • • • • • • 2-82
WEND • • • • • • • • • • • • • 2-83
WHILE • • • • • • • • • • • • 2-83
WIDTH • • • • • • • • • • • • 2-84
WIDTH LPRINT • • • • • • • • • 2-84
WRITE • • • • • • • • • • • • 2-85
WRITEt • • • • • • • • • • • • B-3
WRITEt • • • • • • • • • • • • 2-86

Ka
yp
roJ
ou
rna
l

Microsoft
Software Problem Report

Use this form to report errors or problems in:

Date

Report only one problem per form.

Describe your hardware and operating system:

BASIC Release number:

D Microsoft
0 Microsoft
D Microsoft

BASIC-SO
BASIC-86
BASIC
Compiler

Please supply a concise description of the problem and the
circumstances surrounding its occurrence. If possible, reduce
the problem to a simple test case. Otherwise, include all
programs and data in machine readable form (preferably on a
diskette), If a patch or interim solution is being used,
please describe it.

This form may also be used to describe suggested enhancements
to Microsoft BASIC.

Problem Description:

-over-

Ka
yp
roJ
ou
rna
l

Did you find errors in the BASIC-80 Reference Manual?
If so, please .include page numcers and describe:

Fill in the following information before returning this form:

Name Phone ------------------- ------------
Organization ____________________________ _

Address ------------- City _____ _

Return form to: Microsoft, Inc.
10700 Northup Way
Bellevue, WA 98004

State_ Zip __ _

Ka
yp
roJ
ou
rna
l

